JPH0240961A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH0240961A
JPH0240961A JP19177088A JP19177088A JPH0240961A JP H0240961 A JPH0240961 A JP H0240961A JP 19177088 A JP19177088 A JP 19177088A JP 19177088 A JP19177088 A JP 19177088A JP H0240961 A JPH0240961 A JP H0240961A
Authority
JP
Japan
Prior art keywords
silicon nitride
semiconductor layer
gate insulating
amorphous silicon
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19177088A
Other languages
Japanese (ja)
Other versions
JPH07114284B2 (en
Inventor
Ikunori Kobayashi
郁典 小林
Sadakichi Hotta
定吉 堀田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63191770A priority Critical patent/JPH07114284B2/en
Publication of JPH0240961A publication Critical patent/JPH0240961A/en
Publication of JPH07114284B2 publication Critical patent/JPH07114284B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a device wherein characteristics of a thin film transistor is excellent and the generation of failures is little in a manufacturing process, by forming a gate insulating film of the thin film transistor, of a two-layered silicon nitride whose film properties are different with each other. CONSTITUTION:A chromium gate electrode 12 is formed on a glass substrate 11. Silicon nitride gate insulating films 13a, 13b, an amorphous silicon semiconductor layer 14, and amorphous silicon semiconductor layers 15a, 15b containing phosphorus are continuously formed in order. In this case, the composition of mixed gas of silane, ammonia, nitrogen and hydrogen, which is used for forming the films 13a, 13b, is made different, thereby reducing the etching speed of the film 13b. By using mixed solution of hydrofluoric acid and nitric acid, the layers 14, 15a, 15b are formed in an island type, and source drain electrodes 16a, 16b are formed. Finally, the layers 15a, 15b left on the layer 14 of a thin film transistor(TFT) channel part are eliminated by using mixed solution of hydrofluoric acid and nitric acid. Since the film 13a is etched very little, a TFT having no failures such as corrosion, disconnection, and short-circuiting of an electrode 12 can be obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は半導体装置、特に液晶などと組み合わせて画像
表示装置を構成するための薄膜トランジスタ(以後TP
Tと呼ぶ)のゲート絶縁膜等の半導体装置に間するもの
である。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to semiconductor devices, particularly thin film transistors (hereinafter referred to as TP) for constructing image display devices in combination with liquid crystals and the like.
It is used between semiconductor devices such as gate insulating films (referred to as T).

従来の技術 第5図は、従来のTPTの要部の断面図である。Conventional technology FIG. 5 is a sectional view of the main parts of a conventional TPT.

ガラス基板l上に例えばクロムよりなるゲート電極2が
形成され、非晶質シリコン半導体層4が窒化シリコンゲ
ート絶縁膜3を介して形成され、アルミニウムよりなる
ソース、ドレイン電極6a、6bがリンを含む非晶質シ
リコン半導体N5 a、5bを介して形成されている。
A gate electrode 2 made of, for example, chromium is formed on a glass substrate l, an amorphous silicon semiconductor layer 4 is formed via a silicon nitride gate insulating film 3, and source and drain electrodes 6a and 6b made of aluminum contain phosphorus. It is formed via amorphous silicon semiconductors N5a and 5b.

次に上述の構造を持つTPTの製作工程につぃて簡単に
説明する。まず、ガラス基板1上にクロムゲート電極2
を選択的に被着する。ついで全面に窒化シリコンゲート
絶縁膜3、非晶質シリコン半導体層4、リンを含む非晶
質シリコン半導体層5を化学気相堆積法により順次被着
する。その後、第5図に示すように、非晶質シリコン半
導体層4およびリンを含む非晶質シリコン半導体層5を
島状にする。さらに、ゲート電極の表面を露出させてソ
ース、ドレイン電極を形成する金属との電気的接触を得
るために窒化シリコンゲート絶縁膜3に開孔部(第5図
(b)に示す)を設け、ソース、トレイン電極6a、6
bを形成した後、チャンネル部となる非晶質シリコン半
導体層4の上に被着しであるリンを含む非晶質シリコン
半導体層5を除去して第5図に示すTPTが完成する。
Next, the manufacturing process of the TPT having the above structure will be briefly explained. First, a chromium gate electrode 2 is placed on a glass substrate 1.
selectively applied. Next, a silicon nitride gate insulating film 3, an amorphous silicon semiconductor layer 4, and an amorphous silicon semiconductor layer 5 containing phosphorus are sequentially deposited over the entire surface by chemical vapor deposition. Thereafter, as shown in FIG. 5, the amorphous silicon semiconductor layer 4 and the phosphorus-containing amorphous silicon semiconductor layer 5 are formed into an island shape. Further, an opening (shown in FIG. 5(b)) is provided in the silicon nitride gate insulating film 3 in order to expose the surface of the gate electrode and make electrical contact with the metal forming the source and drain electrodes. Source, train electrodes 6a, 6
After forming the channel portion b, the phosphorus-containing amorphous silicon semiconductor layer 5 deposited on the amorphous silicon semiconductor layer 4 serving as the channel portion is removed to complete the TPT shown in FIG.

発明が解決しようとする%jML鉄趣、このような従来
の構造を持つTPTでは上述した製造方法において、非
晶質シリコン半導体層4およびリンを含む非晶質シリコ
ン半導体層5を島状にする工程および非晶質シリコン半
導体層4の上に被着しであるリンを含む非晶質シリコン
半導体N5を除去する工程では弗酸系統のエツチング液
またはフッ素元素を含むエツチングガスを使用する。し
かしながら、これらのエツチング液、エツチングガスは
窒化シリコンゲート絶縁膜をもエツチングしうるため、
前述の工程時に窒化シリコンゲート絶縁膜ピンホール等
にエツチング液が侵入してピンホールを拡大、あるいは
ゲート電極2による窒化シリコン膜の段差部のエツチン
グ速度が速いということが原因となりゲート電極2の腐
食、切断あるいはゲート電極2とソース、ドレイン電極
6との短絡というような不良を発生しやすかった。
In the TPT having such a conventional structure, the amorphous silicon semiconductor layer 4 and the phosphorus-containing amorphous silicon semiconductor layer 5 are formed into islands in the manufacturing method described above. In the step and the step of removing the phosphorus-containing amorphous silicon semiconductor N5 deposited on the amorphous silicon semiconductor layer 4, a hydrofluoric acid-based etching liquid or an etching gas containing fluorine element is used. However, these etching liquids and etching gases can also etch the silicon nitride gate insulating film.
Corrosion of the gate electrode 2 may occur due to the etching solution penetrating into the pinholes in the silicon nitride gate insulating film during the above process and enlarging the pinholes, or due to the high etching speed of the stepped portion of the silicon nitride film caused by the gate electrode 2. , defects such as disconnection or short circuit between the gate electrode 2 and the source and drain electrodes 6 are likely to occur.

また前述の開孔部の形状が切り立っていることからそこ
で接触する金属に亀裂が入り、電気的接続が得られない
という不良も発生した。
Furthermore, since the shape of the above-mentioned opening is steep, cracks occur in the metal that comes in contact with the hole, resulting in defects in which electrical connection cannot be obtained.

一方、上述のような不良を防止するには弗酸系統のエツ
チング液またはフッ素元素を含むエツチングガスにたい
しエツチング速度が極めて小さい窒化シリコンをゲート
絶縁膜として使用することが望ましい。ところが、エツ
チング速度が小さい窒化シリコンはその組成においてシ
リコン成分が化学量論比よりも多くなったり、組成比は
化学量論比に近いが密度が大きくなるために窒化シリコ
ンの内在応力が極めて大きい圧縮応力であったりする。
On the other hand, in order to prevent the above-mentioned defects, it is desirable to use silicon nitride as the gate insulating film, which has an extremely low etching rate with respect to a hydrofluoric acid-based etching solution or an etching gas containing elemental fluorine. However, silicon nitride, which has a low etching rate, has a composition in which the silicon component is higher than the stoichiometric ratio, or the composition ratio is close to the stoichiometric ratio but the density is large, so the inherent stress of silicon nitride is extremely high. It may be stress.

シリコン成分が多い窒化シリコンをゲート絶縁膜に用い
た場合、そのTPTのしきい値電圧の経時変化が非常に
大きくなり信頼性が非常に乏しくなった。また、大きな
圧縮応力をゲート絶縁膜に用いた場合非晶質シリコン半
導体層が剥離し、TPTが動作しないという不良を生じ
た。
When silicon nitride, which has a large silicon content, is used for the gate insulating film, the change in the threshold voltage of the TPT over time becomes very large, resulting in very poor reliability. Furthermore, when a large compressive stress was applied to the gate insulating film, the amorphous silicon semiconductor layer peeled off, resulting in a defect in which the TPT did not operate.

本発明はかかる従来技術の課題に鑑みて発明されたもの
で、ゲート絶縁膜を膜質の異なる窒化シリコンの二層で
形成することにより、良好なTPT特性を示し、かつそ
の製造工程において不良の発生しない半導体装置を提供
することを目的としている。
The present invention was invented in view of the problems of the prior art, and by forming the gate insulating film with two layers of silicon nitride of different film quality, it exhibits good TPT characteristics and is free from defects in the manufacturing process. The purpose is to provide a semiconductor device that does not

課題を解決するための手段 本発明は、ゲート電極上に極めてエツチング速度の小さ
い窒化シリコン膜を形成し、その上に前者の窒化シリコ
ン膜よりも比較的エツチング速度が大きく、良好なTP
T特性の得られる従来の窒化シリコン膜を形成した二層
のゲート絶縁膜とすることを特徴とする。
Means for Solving the Problems The present invention forms a silicon nitride film with an extremely low etching rate on the gate electrode, and on top of that a silicon nitride film with a relatively higher etching rate than the former silicon nitride film and a good TP.
The present invention is characterized by a two-layer gate insulating film formed of a conventional silicon nitride film that provides T characteristics.

作用 TPT特性において非晶質シリコン半導体層と窒化シリ
コン膜との界面の特性が重要であり、それは窒化シリコ
ンの膜質に大きく左右される。本発明においては、非晶
質シリコン半導体層と接触する窒化シリコン膜は良好な
界面特性の得られる従来の窒化シリコン膜で形成される
ため良好なTPT動作特性示し、しきい値の経時変化の
小さいTPTが得られる。ざらにTPT特性にはあまり
大きな影響を与えないゲート電極に接触する窒化シリコ
ンをエツチング速度が極めて小さい膜で形成することに
よりT、FT製造工程において非晶質シリコン半導体層
に接触する窒化シリコン膜のピンホール等からエツチン
グ液が侵入したとしてもゲート電極に接触する窒化シリ
コンはほとんどエツチングされることなく、さらにエツ
チング速度が小さい、すなわち高密度化による圧縮応力
化した窒化シリコン膜は段差部のエツチング速度は小さ
くなり、従ってゲート電極の腐食、ゲート電極とソース
、ドレイン電極との短絡などの不良を抑制できる。また
、非晶質シリコン半導体層に接触する従来の窒化シリコ
ン膜の内在応力は非常に小さいかまたは引張応力である
ため、ゲート電極に接触する窒化シリコン膜の圧縮応力
を緩和でき非晶質シリコン半導体層の剥離を防止できる
In terms of operational TPT characteristics, the characteristics of the interface between the amorphous silicon semiconductor layer and the silicon nitride film are important, and are largely influenced by the quality of the silicon nitride film. In the present invention, the silicon nitride film in contact with the amorphous silicon semiconductor layer is formed of a conventional silicon nitride film that has good interface characteristics, so it exhibits good TPT operating characteristics and has a small change in threshold value over time. TPT is obtained. By forming the silicon nitride in contact with the gate electrode, which does not have a large effect on the TPT characteristics, with a film with an extremely low etching rate, the silicon nitride film in contact with the amorphous silicon semiconductor layer in the T and FT manufacturing process can be easily etched. Even if the etching solution enters through pinholes, etc., the silicon nitride in contact with the gate electrode is hardly etched, and the etching rate is slow; in other words, the silicon nitride film, which has become compressively stressed due to high density, has a lower etching rate at the stepped portion. Therefore, defects such as corrosion of the gate electrode and short circuit between the gate electrode and the source and drain electrodes can be suppressed. In addition, since the inherent stress of the conventional silicon nitride film in contact with the amorphous silicon semiconductor layer is very small or tensile stress, the compressive stress of the silicon nitride film in contact with the gate electrode can be alleviated. It can prevent layer peeling.

さらにゲート電極側よりも半導体層側に接触する窒化シ
リコンのエツチング速度が大きいことから、ゲート電極
の電気的接触を得るための窒化シリコンの開孔部の径が
半導体層側の方が大きくなり、従ってその形状が緩やか
になり電気的接触を得るための金属に亀裂が入ることを
防止できる。
Furthermore, since the etching rate of silicon nitride in contact with the semiconductor layer side is higher than that with the gate electrode side, the diameter of the opening in the silicon nitride for obtaining electrical contact with the gate electrode is larger on the semiconductor layer side. Therefore, the shape becomes gentle and it is possible to prevent cracks from forming in the metal used for electrical contact.

実施例・ 以下に、本発明の実施例について説明する。Example· Examples of the present invention will be described below.

第1図(a)は本発明の一実施例であるTPTの要部断
面図を示す。11はガラス基板、12はクロムよりなる
ゲート電極(膜厚1000XIO−8011)、13a
は第1窒化シリコンゲート絶縁膜(膜厚1500XlO
−’eWI)、13bは第2窒化シリコンゲート絶縁膜
(1500XlO−8[!W+)、14は非晶質シリコ
ン半導体層(100OXIO−8cm)、15a、15
bはリンを含む非晶質シリコン半導体層(500X 1
0−8cm)、16a、16bはアルミニウムよりなる
ソース、ドレイン電極(7000X 10−’am)で
ある。ここで、第1窒化シリコンゲート絶縁膜13a、
第2窒化シリコンゲート絶縁膜13bのエツチング液(
弗酸:フッ化アンモニウム=1:6)にたいするそれぞ
れのエツチング速度を50 X 10−8L?III/
 5eC1380×10−81/ seeとなるように
形成した。
FIG. 1(a) shows a sectional view of a main part of a TPT which is an embodiment of the present invention. 11 is a glass substrate, 12 is a gate electrode made of chromium (film thickness 1000XIO-8011), 13a
is the first silicon nitride gate insulating film (film thickness 1500XlO
-'eWI), 13b is the second silicon nitride gate insulating film (1500XIO-8[!W+), 14 is the amorphous silicon semiconductor layer (100OXIO-8cm), 15a, 15
b is an amorphous silicon semiconductor layer containing phosphorus (500×1
0-8 cm), 16a, and 16b are source and drain electrodes (7000×10-'am) made of aluminum. Here, the first silicon nitride gate insulating film 13a,
Etching solution for the second silicon nitride gate insulating film 13b (
Each etching rate for hydrofluoric acid: ammonium fluoride = 1:6) was 50 x 10-8L? III/
5eC1380×10-81/see.

次にこのTPTの製造方法について説明する。Next, a method for manufacturing this TPT will be explained.

まずガラス基板ll上にクロムゲート電極12を形成す
る。つづいて第1窒化シリコンゲート絶縁膜13a、第
2窒化シリコンゲート絶縁膜13b、非晶質シリコン半
導体層14、リンを含む非晶質シリコン半導体層15を
13.56MHzの周波数のグロー放電を用いた化学気
層堆積法により順次連続形成する。
First, a chromium gate electrode 12 is formed on a glass substrate 11. Subsequently, the first silicon nitride gate insulating film 13a, the second silicon nitride gate insulating film 13b, the amorphous silicon semiconductor layer 14, and the amorphous silicon semiconductor layer 15 containing phosphorus were formed using glow discharge at a frequency of 13.56 MHz. Continuously formed by chemical vapor deposition method.

ここで第1窒化シリコンゲート絶縁膜13a、第2窒化
シリコンゲート絶縁膜13bを形成するときにシラン5
iHa−アンモニアNH3−窒素N2−水素H2の混合
ガスを用いるが、この混合ガスのうち窒素N2と水素H
2の組成比H2/ (N2+H2)とエツチング速度と
が第3図に示すような関係がある。従って第1窒化シリ
コンゲート絶縁膜13aを形成する時は組成比H2/ 
(N2+H2)を0.3、第2窒化シリコンゲート絶縁
膜13bを形成する時は組成比H2/ (N 2 + 
H2)を1.0にする。これにより前述のエツチング速
度となる窒化シリコンゲート絶縁膜13a、13bが形
成できる。
Here, when forming the first silicon nitride gate insulating film 13a and the second silicon nitride gate insulating film 13b, silane 5
A mixed gas of iHa-ammonia NH3-nitrogen N2-hydrogen H2 is used, but of this mixed gas, nitrogen N2 and hydrogen H2
The relationship between the composition ratio H2/(N2+H2) of 2 and the etching rate is as shown in FIG. Therefore, when forming the first silicon nitride gate insulating film 13a, the composition ratio H2/
(N2+H2) is 0.3, and when forming the second silicon nitride gate insulating film 13b, the composition ratio H2/(N2 +
Set H2) to 1.0. As a result, silicon nitride gate insulating films 13a and 13b having the above-mentioned etching speed can be formed.

つづいて形成された非晶質シリコン半導体N14、リン
を含む非晶質シリコン半導体層15を弗酸と硝酸の混合
液を用いて島状にする。その後ソース、ドレイン電極1
6a、16bを形成し、最後にTPTチャンネル部の非
晶質シリコン半導体層14上に残存しているリンを含む
非晶質シリコン半導体層15を弗酸と硝酸の混合液を用
いて除去して本発明によるTPTが完成する。
Subsequently, the formed amorphous silicon semiconductor N14 and the phosphorus-containing amorphous silicon semiconductor layer 15 are made into island shapes using a mixed solution of hydrofluoric acid and nitric acid. After that, source and drain electrodes 1
6a and 16b, and finally, the amorphous silicon semiconductor layer 15 containing phosphorus remaining on the amorphous silicon semiconductor layer 14 in the TPT channel portion is removed using a mixed solution of hydrofluoric acid and nitric acid. TPT according to the present invention is completed.

本実施例によれば、非晶質シリコン半導体層14、リン
を含む非晶質シリコン半導体層15を島状およびTFT
チャンネル部の非晶質シリコン半導体層14上に残存し
ているリンを含む非晶質シリコン半導体層15を除去す
る際に用いる弗酸と硝酸の混合液により第1窒化シリコ
ンゲート絶縁膜13aはほとんどエツチングされないた
め、ゲート電極12の腐食、切断あるいはゲート電極1
2とソース、ドレイン電極16 a、  16 bとの
短絡というような不良のないTPTを製造できる。
According to this embodiment, the amorphous silicon semiconductor layer 14 and the phosphorus-containing amorphous silicon semiconductor layer 15 are formed in an island shape and a TFT.
Most of the first silicon nitride gate insulating film 13a is removed by a mixed solution of hydrofluoric acid and nitric acid used when removing the amorphous silicon semiconductor layer 15 containing phosphorus remaining on the amorphous silicon semiconductor layer 14 in the channel region. Since it is not etched, the gate electrode 12 may be corroded or cut, or the gate electrode 1
Accordingly, it is possible to manufacture a TPT free from defects such as short circuits between the electrodes 2 and the source and drain electrodes 16a and 16b.

またゲート電極12と電気的接触を得るための窒化シリ
コンの開孔部の形状が第1図(b)に示す様な緩やかな
形状になるため、電気的接触を得るための金属の亀裂が
発生することがなく、従ってゲート電極12との電気的
接続が得られないという不良を防止できる。
In addition, since the shape of the opening in the silicon nitride for making electrical contact with the gate electrode 12 has a gentle shape as shown in FIG. 1(b), cracks occur in the metal for making electrical contact. Therefore, defects such as failure to obtain electrical connection with the gate electrode 12 can be prevented.

さらに次のような効果をも有する。Furthermore, it also has the following effects.

第4図は本実施例のTPT特性(ドレイン電流−ゲート
電圧曲線)A、従来例Bおよびゲート絶縁膜3000X
10−8cynを第1窒化シリコンゲート絶縁膜と同条
件で形成した場合CのTPT特性をそれぞれ示したもの
である。ゲート絶縁膜3000XIO−8cmを第1窒
化シリコンゲート絶縁膜と同条件で形成すれば、前述し
たような不良は発生しないが、第4図に示すようにTP
T特性は悪化する。この悪化した原因は非晶質シリコン
半導体層が剥離したためである。
Figure 4 shows TPT characteristics (drain current-gate voltage curve) A of this embodiment, conventional example B, and gate insulating film 3000X.
The TPT characteristics of C are shown when 10-8 cyn is formed under the same conditions as the first silicon nitride gate insulating film. If a gate insulating film of 3000XIO-8cm is formed under the same conditions as the first silicon nitride gate insulating film, the above-mentioned defects will not occur, but as shown in FIG.
T characteristics deteriorate. The cause of this deterioration is that the amorphous silicon semiconductor layer has peeled off.

一方、本実施例のTPT特性は従来例の場合と大差ない
。すなわち本実施例によればTPT特性を悪化させるこ
となく不良のないTPTを作製できる。
On the other hand, the TPT characteristics of this embodiment are not much different from those of the conventional example. That is, according to this example, a defect-free TPT can be manufactured without deteriorating the TPT characteristics.

次に本発明の他の実施例について説明する。Next, other embodiments of the present invention will be described.

第2図は、本実施例のTPTの要部断面図を示す。第2
図に示すごとく、本実施例のTPTはチャンネル部を形
成する非晶質シリコン半導体層24上にパッシベーショ
ン用窒化シリコン膜(膜厚1000XIO”8ctn)
27を形成し、他の構成は前述の実施例と同様の構成で
ある。
FIG. 2 shows a sectional view of the main part of the TPT of this embodiment. Second
As shown in the figure, the TPT of this embodiment has a silicon nitride film for passivation (thickness: 1000XIO"8ctn) on the amorphous silicon semiconductor layer 24 forming the channel part.
27, and the other configurations are similar to those of the previous embodiment.

この構成を有するTPTの製造方法について説明する。A method for manufacturing TPT having this configuration will be explained.

前述の実施例と同様にゲート電極22を形成する。次に
13.56MHzの周波数のグミ−放電を用いた化学気
層堆積法を用いて全面に第1窒化シリコンゲート絶縁膜
23a、第2窒化シリコンゲート絶縁膜23b、非晶質
シリコン半導体層24、パッシベーション用窒化シリコ
ン膜27を順次連続被着する。なお本実施例における第
1窒化シリコンゲート絶縁膜23a、第2窒化シリコン
ゲート絶縁膜23bも前述の実施例の第1窒化シリコン
ゲート絶縁膜13a、第2窒化シリコンゲート絶縁膜1
3bと同条件で形成する。つづいて第2図に示すように
パッシベーション用窒化シリコン膜27を弗酸とフッ化
アンモニウムの混合比がl対6であるエツチング液によ
り島状にする。次にリンを含む非晶質シリコン半導体層
25a、bを全面に形成した後、非晶質シリコン半導体
層24およびリンを含む非晶質シリコン半導体層25 
a 、 bを弗酸と硝酸の混合液を用いて島状にする。
A gate electrode 22 is formed in the same manner as in the previous embodiment. Next, a first silicon nitride gate insulating film 23a, a second silicon nitride gate insulating film 23b, an amorphous silicon semiconductor layer 24, A silicon nitride film 27 for passivation is successively deposited. Note that the first silicon nitride gate insulating film 23a and the second silicon nitride gate insulating film 23b in this embodiment are also the same as the first silicon nitride gate insulating film 13a and the second silicon nitride gate insulating film 1 in the previous embodiment.
Formed under the same conditions as 3b. Subsequently, as shown in FIG. 2, the passivation silicon nitride film 27 is made into an island shape using an etching solution containing hydrofluoric acid and ammonium fluoride in a mixing ratio of 1:6. Next, after forming amorphous silicon semiconductor layers 25a and 25b containing phosphorus on the entire surface, the amorphous silicon semiconductor layer 24 and the amorphous silicon semiconductor layer 25 containing phosphorus are formed.
A and b are made into islands using a mixture of hydrofluoric acid and nitric acid.

その後ソース、ドレイン電極26a、26bを形成し、
最後にパッシベーション用窒化シリコン膜27上に残存
しているリンを含む非晶質シリコン半導体FI25を弗
酸と硝酸の混合液を用いて除去して本実施例のTPTが
完成する。
After that, source and drain electrodes 26a and 26b are formed,
Finally, the amorphous silicon semiconductor FI 25 containing phosphorus remaining on the passivation silicon nitride film 27 is removed using a mixed solution of hydrofluoric acid and nitric acid to complete the TPT of this embodiment.

本実施例によれば前述の実施例と同様TPT特性を悪化
させることなく、また工程に於て不良を発生することな
くパッシベーション膜27をチャンネル部に形成したT
PTを作製できる。
According to this embodiment, the passivation film 27 is formed in the channel portion without deteriorating the TPT characteristics or causing defects in the process, as in the previous embodiments.
PT can be produced.

本発明の上記二つの実施例はその製造工程においてエツ
チング液による湿式エツチング法を用いることを中心に
説明したが、本発明はエツチングガスによる乾式エツチ
ング法を用いる場合でも同様の効果を有する。
Although the above two embodiments of the present invention were mainly explained using a wet etching method using an etching liquid in the manufacturing process, the present invention has similar effects even when a dry etching method using an etching gas is used.

また、窒化シリコン膜のエツチング速度を制御する方法
として、形成する時に用いる原料ガス中の組成比H2/
 (N2+H2)を変化させる方法を用いたが、その他
5iHaとN H3の流量比、形成温度、グロー放電電
力などを変化させることによってもエツチング速度を制
御でき、同様の効果が得られる。
In addition, as a method of controlling the etching rate of the silicon nitride film, the composition ratio H2/
Although a method of changing (N2+H2) was used, the etching rate can also be controlled by changing the flow rate ratio of 5iHa and NH3, formation temperature, glow discharge power, etc., and similar effects can be obtained.

発明の効果 以上述べてきたように、本発明は、TPTのゲート絶縁
膜を膜質の異なる窒化シリコンの二層構造、すなわち、
例えば、非晶質シリコンに接触するゲート絶縁膜は従来
と同質の窒化シリコン膜、他方ゲート電極に接触するゲ
ート絶縁膜は前述の窒化シリコンに比べそのエツチング
速度が極めて小さい(エツチング時間が長い)窒化シリ
コン膜とする。この技術的手段により従来のTPT特性
を維持しつつ製造工程におけるゲート電極断線、ゲート
電極とソース、ドレイン電極との短絡というような不良
がない半導体装置を製造できる。
Effects of the Invention As described above, the present invention provides a TPT gate insulating film with a two-layer structure of silicon nitride of different film quality, that is,
For example, the gate insulating film in contact with amorphous silicon is a silicon nitride film of the same quality as the conventional one, while the gate insulating film in contact with the gate electrode is a nitride film whose etching rate is extremely slow (long etching time) compared to the aforementioned silicon nitride. Use silicon film. By this technical means, it is possible to manufacture a semiconductor device that maintains the conventional TPT characteristics and is free from defects such as gate electrode disconnection and short circuit between the gate electrode and the source and drain electrodes during the manufacturing process.

体装置の要部断面図、第3図は本発明の実施例の窒化シ
リコン膜の形成条件においてその原料ガス中の組成比H
2/ (N2+H2)と窒化シリコン膜のエツチング速
度との関係を示すグラフ、第4図は本発明の実施例にお
けるTPT、従来のTPT等の特性(ドレイン電流−ゲ
ート電圧曲線)を示すl・・・ガラス基板、2・・・ゲ
ート電極、3・・・窒化シリコンゲート絶縁膜、13a
、23a・・・第1窒化シリコンゲート絶縁膜、13b
、23b・・・第2窒化シリコンゲート絶縁膜、4・・
・非晶質シリコン半導体層、5・・・リンを含む非晶質
シリコン半導体層、6a、6b・・・ソース、ドレイン
電極、27・・・パッシベーション用窒化シリコン膜。
FIG. 3 is a cross-sectional view of the main part of the device, and shows the composition ratio H in the raw material gas under the formation conditions of the silicon nitride film according to the embodiment of the present invention.
2/ A graph showing the relationship between (N2+H2) and the etching rate of the silicon nitride film. Figure 4 shows the characteristics (drain current-gate voltage curve) of TPT in the embodiment of the present invention, conventional TPT, etc.・Glass substrate, 2... Gate electrode, 3... Silicon nitride gate insulating film, 13a
, 23a...first silicon nitride gate insulating film, 13b
, 23b... second silicon nitride gate insulating film, 4...
- Amorphous silicon semiconductor layer, 5... Amorphous silicon semiconductor layer containing phosphorus, 6a, 6b... Source and drain electrodes, 27... Silicon nitride film for passivation.

代理人の氏名 弁理士 粟野重孝 はか1名第1図 (a) ]]−ガラス基板 ]2−・−ゲート電極 13a−・−矛1宜化シリコンケート馴ジ縁月莫13b
−−・第2空化シリコン勺−ト絶縁月罠14−−・非晶
質ジノコン半導体層 15a、15b−−−リン1含お非晶質ツノコン半導体
層16a、16b−−−ソース・ドレイン電極第2図 第1図 (b) 2]−ガラス基板 22− ゲート@、@ 23a−m−第1窒化シリコンゲート絶縁月莢23b−
−一オ2窒イヒツノコンケート絶亀月諏24−−・ジー
晶*’:、tリコン半導体層25a、25b−−リン1
合お非晶質ツノコン半導イ本層26a、26b−−−’
l−ス・ドレイ>efi>27− パッシベーション用
窒化シリコンJ’lK第3図 H2A)+2+N2)比 第5図 (a) 1− ガラス基板 2−・−ゲート電極 3−一一宜化シリコングート絶特−莫 4・−非品質シリコン半導や幻磨 □□□、5b −リン名含む1L晶買ツノコン半導体層
6a、6b−−−ソース・ドレイン電極第4図 □A −−− B ゲート電圧 (V) 第5図 (b)
Name of agent: Patent attorney Shigetaka Awano (1 person) Figure 1 (a)] - Glass substrate] 2 - - Gate electrode 13a - - Head 1 Gytide silicone case 13b
---Second empty silicone insulating trap 14--Amorphous silicon semiconductor layer 15a, 15b---Phosphorus 1-containing amorphous silicon semiconductor layer 16a, 16b---Source/drain electrode FIG. 2 FIG. 1(b) 2] - Glass substrate 22 - Gate @, @ 23a-m - First silicon nitride gate insulating shell 23b -
-1-O-2-nitrogen concatenate Zekagezukisu 24--G-crystal*':, t-recon semiconductor layer 25a, 25b--phosphorus 1
Amorphous crystalline semiconductor main layers 26a, 26b---'
1-Glass substrate 2--Gate electrode 3-Silicon nitride for passivation Special - Mo4 - Non-quality silicon semiconductor and Genma □□□, 5b - 1L crystal containing phosphorus name Semiconductor layer 6a, 6b --- Source/drain electrode Figure 4 □A --- B Gate voltage (V) Figure 5(b)

Claims (4)

【特許請求の範囲】[Claims] (1)基板の一主面上に第1の導電体層が選択的に形成
され、同一エッチング剤でエッチングできる多層絶縁薄
膜層を介してシリコンを主成分とする第1の非単結晶半
導体層が前記第1の導電体層と一部重なるように選択的
に形成され、第2の導電体層がリンを含むシリコンを主
成分とする第2の非単結晶半導体層を介して前記第1の
非単結晶半導体層と一部重なるように形成され、前記多
層絶縁薄膜層の基板の主面側に近い層ほどエッチング速
度が小さいことを特徴とする半導体装置。
(1) A first conductor layer is selectively formed on one main surface of the substrate, and a first non-single crystal semiconductor layer mainly composed of silicon is formed through a multilayer insulating thin film layer that can be etched with the same etching agent. is selectively formed so as to partially overlap with the first conductor layer, and the second conductor layer connects the first conductor layer through a second non-single crystal semiconductor layer mainly composed of silicon containing phosphorus. A semiconductor device formed so as to partially overlap with a non-single crystal semiconductor layer of the multilayer insulating thin film layer, and characterized in that the etching rate of the layer closer to the main surface of the substrate of the multilayer insulating thin film layer is lower.
(2)第2の絶縁薄膜層が前記シリコンを主成分とする
第1の非単結晶半導体層と一部重なるように選択的に形
成されていることを特徴とする請求項1記載の半導体装
置。
(2) The semiconductor device according to claim 1, wherein the second insulating thin film layer is selectively formed so as to partially overlap with the first non-single crystal semiconductor layer mainly composed of silicon. .
(3)多層絶縁薄膜層の主成分が窒化シリコンで形成さ
れていることを特徴とする請求項1記載の半導体装置。
(3) The semiconductor device according to claim 1, wherein the main component of the multilayer insulating thin film layer is silicon nitride.
(4)多層絶縁膜層、前記第1の非単結晶半導体層、前
記第2の非単結晶半導体層がエッチング溶液を用いて所
定のパターンに形成されていることを特徴とする請求項
1記載の半導体装置。
(4) The multilayer insulating film layer, the first non-single crystal semiconductor layer, and the second non-single crystal semiconductor layer are formed into a predetermined pattern using an etching solution. semiconductor devices.
JP63191770A 1988-07-29 1988-07-29 Method for manufacturing semiconductor device Expired - Lifetime JPH07114284B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63191770A JPH07114284B2 (en) 1988-07-29 1988-07-29 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63191770A JPH07114284B2 (en) 1988-07-29 1988-07-29 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH0240961A true JPH0240961A (en) 1990-02-09
JPH07114284B2 JPH07114284B2 (en) 1995-12-06

Family

ID=16280231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63191770A Expired - Lifetime JPH07114284B2 (en) 1988-07-29 1988-07-29 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JPH07114284B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03196678A (en) * 1989-12-26 1991-08-28 Sanyo Electric Co Ltd Thin film transistor and manufacture of the same
US5399387A (en) * 1993-01-28 1995-03-21 Applied Materials, Inc. Plasma CVD of silicon nitride thin films on large area glass substrates at high deposition rates
US5902650A (en) * 1995-07-11 1999-05-11 Applied Komatsu Technology, Inc. Method of depositing amorphous silicon based films having controlled conductivity
US6352910B1 (en) 1995-07-11 2002-03-05 Applied Komatsu Technology, Inc. Method of depositing amorphous silicon based films having controlled conductivity
JP2010199390A (en) * 2009-02-26 2010-09-09 Nippon Zeon Co Ltd Method of manufacturing thin film transistor, thin film transistor, and display device
CN112909087A (en) * 2021-03-08 2021-06-04 滁州惠科光电科技有限公司 Display panel, thin film transistor and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6398152A (en) * 1986-10-14 1988-04-28 Fujitsu Ltd Thin film transistor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6398152A (en) * 1986-10-14 1988-04-28 Fujitsu Ltd Thin film transistor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03196678A (en) * 1989-12-26 1991-08-28 Sanyo Electric Co Ltd Thin film transistor and manufacture of the same
US5399387A (en) * 1993-01-28 1995-03-21 Applied Materials, Inc. Plasma CVD of silicon nitride thin films on large area glass substrates at high deposition rates
US5902650A (en) * 1995-07-11 1999-05-11 Applied Komatsu Technology, Inc. Method of depositing amorphous silicon based films having controlled conductivity
US6352910B1 (en) 1995-07-11 2002-03-05 Applied Komatsu Technology, Inc. Method of depositing amorphous silicon based films having controlled conductivity
JP2010199390A (en) * 2009-02-26 2010-09-09 Nippon Zeon Co Ltd Method of manufacturing thin film transistor, thin film transistor, and display device
CN112909087A (en) * 2021-03-08 2021-06-04 滁州惠科光电科技有限公司 Display panel, thin film transistor and preparation method thereof

Also Published As

Publication number Publication date
JPH07114284B2 (en) 1995-12-06

Similar Documents

Publication Publication Date Title
JPS60116135A (en) Method of forming noncommon surface for etchable layer and method of forming thin film field effect transistor
JPH0240961A (en) Semiconductor device
KR100404351B1 (en) Thin-film transistor and fabrication method thereof
JPS58112365A (en) Manufacture of thin film transistor
JPH09251996A (en) Manufacturing method for semiconductor device
US5723371A (en) Method for fabricating a thin film transistor having a taper-etched semiconductor film
JPH0428231A (en) Manufacture of semiconductor device
JPS59210644A (en) Manufacture of semiconductor device
JPH022310B2 (en)
JPS63168034A (en) Formation of multilayer gate electrode of semiconductor device
JPH05110088A (en) Manufacture of thin film transistor circuit
JP3310567B2 (en) Method for manufacturing semiconductor device
JPH04312921A (en) Semiconductor device and its manufacture
JPS5913348A (en) Manufacture of semiconductor device
JPS59144151A (en) Manufacture of semiconductor device
JPS6333305B2 (en)
JPS5861671A (en) Preparation of semiconductor device
JPH04323873A (en) Thin film transistor
JPH05226479A (en) Manufacture of semiconductor device
JPH03145731A (en) Manufacture of semiconductor integrated circuit
JPH05183156A (en) Semiconductor device and fabrication thereof
JPH01276645A (en) Semiconductor device
JPS61104665A (en) Semiconductor device and manufacture thereof
JPS6112394B2 (en)
JPS6249735B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071206

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081206

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081206

Year of fee payment: 13