JPS5861671A - Preparation of semiconductor device - Google Patents

Preparation of semiconductor device

Info

Publication number
JPS5861671A
JPS5861671A JP16068881A JP16068881A JPS5861671A JP S5861671 A JPS5861671 A JP S5861671A JP 16068881 A JP16068881 A JP 16068881A JP 16068881 A JP16068881 A JP 16068881A JP S5861671 A JPS5861671 A JP S5861671A
Authority
JP
Japan
Prior art keywords
film
poly
polycrystalline silicon
etching
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16068881A
Other languages
Japanese (ja)
Other versions
JPH0542817B2 (en
Inventor
Takeo Yamada
山田 彪夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Suwa Seikosha KK
Original Assignee
Seiko Epson Corp
Suwa Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp, Suwa Seikosha KK filed Critical Seiko Epson Corp
Priority to JP16068881A priority Critical patent/JPS5861671A/en
Publication of JPS5861671A publication Critical patent/JPS5861671A/en
Publication of JPH0542817B2 publication Critical patent/JPH0542817B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Abstract

PURPOSE:To prevent scraping-out below the poly-si film, leakage current and drop of dielectric strength by removing the etching proof mask after etching the poly-Si film up to the desired depth and thereafter by forming a thermal oxide film on the exposed surface of substrate. CONSTITUTION:The SiO2 film 2 and the poly-Si 3 are stacked on the quartz substrate 1. The poly-Si 3 is photo-etched using CF4 and it is left in the thickness of about 500Angstrom . The remaining poly-Si 3 in the thickness of 500Angstrom is perfectly converted to the SiO2 by covering it the gate film 4 in the thickness of about 1,000Angstrom through high temperature oxidation. Thereafter, the poly-Si 5 is precipitated in the thickness of about 3,000Angstrom on the gate film 4 and the gate oxide film 4 is etched through patterning. At this time, even if a fine flaw is generated on the gate oxide film 4, any scraping-out is not generated on the SiO2 film 2 in the periphery of the poly-Si 3. Thereafter, the source, drain are provided in the poly-Si by diffusing the N<+>, the PSG film used in such a process is etched, the surface is covered with the SiO2 6 and the Al-Si electrode is provided. According to this structure, since there is no scraping-out, any breakage of wiring does not occur and leakage or drop of dielectric strength can be prevented.

Description

【発明の詳細な説明】 本発明はシリコンゲートトランジスターあるいは薄膜ト
ランジスター等の半導体装置における多結晶シリコン族
の蝕刻、ならびに表面処理方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to etching and surface treatment of polycrystalline silicon in semiconductor devices such as silicon gate transistors or thin film transistors.

周知の如く多結晶シリコン膜はシリコンゲートトランジ
スターはもとより、今や薄膜トランジスターへとその応
用範囲を拡げつつある。
As is well known, the range of applications of polycrystalline silicon films is expanding from silicon gate transistors to thin film transistors.

特に最近ではガラスあるいは石英板上に多結晶シリコン
膜を形成しアクティブマトリクス回路を構成してなる平
板型液晶ディスプレーが報告されており低コストでしか
も大里パネル化が可能なディスプレーとして将来を有望
視されている。
In particular, recently, a flat panel liquid crystal display has been reported that consists of an active matrix circuit formed by forming a polycrystalline silicon film on a glass or quartz plate, and is seen as a promising future as a low-cost display that can be made into an Osato panel. ing.

従来多結晶シリコン膜は基板上に形成された酸化膜等の
絶縁皮膜上に約600℃前後の炉中にてSiH4(モノ
シランガス)を分解させて形成される。この多結晶シリ
コン膜の形成の目的は一般的にはゲート電極としである
いは配線用としてさらにはN膜トランジスター用である
Conventionally, a polycrystalline silicon film is formed on an insulating film such as an oxide film formed on a substrate by decomposing SiH4 (monosilane gas) in a furnace at about 600°C. The purpose of forming this polycrystalline silicon film is generally for use as a gate electrode, wiring, or even for an N-film transistor.

本発明はこれら多結晶シリコン膜のパターン形成時及び
その後の表面処理等において従来発生している前記多結
晶シリコン膜と下層の絶縁膜界面周辺部のいわゆるえぐ
れ状態を防止するものであるが従来の界面周辺部におけ
るえぐれの発生状況を薄膜トランジスタにおける製造工
程をおって説明する。
The present invention is intended to prevent the so-called gouge state in the vicinity of the interface between the polycrystalline silicon film and the underlying insulating film, which conventionally occurs during pattern formation of the polycrystalline silicon film and subsequent surface treatment. The occurrence of gouges around the interface will be explained through the manufacturing process of thin film transistors.

第1図は従来の一般的な薄膜トランジスターの製造工程
を示す断面図である。
FIG. 1 is a cross-sectional view showing the manufacturing process of a conventional general thin film transistor.

先ず第1図αの如く石英基板−1上にOVD酸化族2を
被着しさらに多結晶シリコン膜3を形成する次に第11
J−bで前記多結晶シリコン股3を写真蝕刻し所定のパ
ターニングを行ない表出している多結晶シリコン膜表面
層を熱酸化しゲート膜4を形成し、つづいて基板全面に
多結晶シリコン膜5を形成すする。
First, as shown in FIG.
The polycrystalline silicon crotch 3 is photo-etched using J-b to perform predetermined patterning, the exposed surface layer of the polycrystalline silicon film is thermally oxidized to form a gate film 4, and then the polycrystalline silicon film 5 is formed on the entire surface of the substrate. form sip.

次に第1図Cの如く前記多結晶シリコン膜5を写真蝕刻
しさらに表出したゲート酸化膜4を除去する。この際第
1層の多結晶シリコン膜界面のOVD酸化膜2はパター
ン周辺部においてアンダーエッチされえぐれを生ずる。
Next, as shown in FIG. 1C, the polycrystalline silicon film 5 is photoetched, and the exposed gate oxide film 4 is removed. At this time, the OVD oxide film 2 at the interface of the first layer polycrystalline silicon film is underetched at the pattern periphery, causing gouges.

このえぐれ量は当然のことながらゲート酸化膜4のパタ
ーン周辺部のえぐれ量に較べて過剰エツチングの分だけ
大きくなる。
Naturally, this amount of gouge is larger than the amount of gouge in the peripheral portion of the pattern of gate oxide film 4 by the amount of excessive etching.

次に表出−する第1及び第2の多結晶シリコン膜中に熱
拡散方式にてリンを拡散しソース、ドレイン部等を形成
する。
Next, phosphorus is diffused into the exposed first and second polycrystalline silicon films by a thermal diffusion method to form source, drain parts, etc.

次に第1図dの如く基板全面にOVD醗化膜6を形成後
写真蝕刻にてコンタクトホールを開孔し、さらにアルミ
−シリコン合金をスパッタして金属配線7を形成する。
Next, as shown in FIG. 1d, an OVD film 6 is formed on the entire surface of the substrate, contact holes are formed by photolithography, and metal wiring 7 is formed by sputtering an aluminum-silicon alloy.

以上の如〈従来の製造方法においては第2層目の多結晶
シリコン膜のパターニングの後拡散工程のために必ずゲ
ート酸化膜のエツチング工程が入りこのエツチングのた
めに第1層目の多結晶シリコン膜とOjD酸化膜の界面
周辺部はえぐれを生じる。さらに熱拡散工程におけるリ
ンガラス層の除去のためのエツチング工程が追加される
ため、前記えぐれは、さらに拡大され第3図の如く大き
な空間が生じることになる。
As described above, in the conventional manufacturing method, after patterning the second layer polycrystalline silicon film, there is always an etching process for the gate oxide film for the diffusion process, and for this etching, the first layer polycrystalline silicon film is etched. The area around the interface between the film and the OjD oxide film is hollowed out. Furthermore, since an etching step for removing the phosphor glass layer is added in the thermal diffusion step, the recess is further enlarged and a large space is created as shown in FIG. 3.

このえぐれは第1に後工程におけるOVD酸化膜のカバ
レージに悪影響を与える。仮りにこのえぐれ部分がOV
D酸化膜によりてカバーされたとしてもこの空間部を完
全に埋め尽くすことは不可能であり残存するガスが後工
程における熱処理によりOVD酸化膜の段差部における
クラック発生の原因となる。さらにこのクラックの発生
あるいはステップカバレージの不完全なものが次の電極
配縁の断線に一起因することになり初期歩留りの低下は
勿論のこと長期信頼性に悪影響を与える結果となる。
First, this gouge has an adverse effect on the coverage of the OVD oxide film in the subsequent process. Suppose this gouge part is OV
Even if covered by the D oxide film, it is impossible to completely fill this space, and the remaining gas causes cracks to occur at the stepped portions of the OVD oxide film during heat treatment in a subsequent step. Furthermore, the occurrence of cracks or incomplete step coverage causes the subsequent disconnection of the electrode arrangement, which not only lowers the initial yield but also adversely affects long-term reliability.

又ゲートs>周辺部のえぐれも同様のことが云えるがこ
のえぐれがトランジスターのリーク原因や耐圧の低下に
もつながることが考えられるため多結晶シリコン膜下の
えぐれを極力押えることが望まれている。
The same thing can be said about the gouges in the periphery of the gate s, but it is thought that these gouges may cause leaks in the transistor and lower the withstand voltage, so it is desirable to suppress gouges under the polycrystalline silicon film as much as possible. There is.

本発明は以上の様な従来方式の欠点を除去し多結晶シリ
コン股下のえぐれを防止する方式を提供するものであり
以下に1実施例をもとに詳細に説明する。
The present invention eliminates the drawbacks of the conventional method as described above and provides a method for preventing the polycrystalline silicon crotch from gouging, and will be described in detail below based on one embodiment.

第2図α〜dは本発明における製造工程を工程順に図示
した基板断面図である。
FIGS. 2a to 2d are cross-sectional views of the substrate illustrating the manufacturing steps of the present invention in the order of the steps.

先ず第2図αにおいて石英基板上にOVD酸化膜2を約
5oooX被覆する。さらにこのOVD酸化膜上に第1
層目の多結晶シリコン膜を減圧OVD炉にて約600℃
中で気相生長させ3oooXの膜厚にて形成する。
First, in FIG. 2 α, an OVD oxide film 2 of about 500X is coated on a quartz substrate. Furthermore, a first layer is placed on this OVD oxide film.
The polycrystalline silicon film of each layer is heated to approximately 600℃ in a low pressure OVD furnace.
The film is grown in a vapor phase to form a film with a thickness of 300X.

次に第2図すの如く写真蝕刻法にて前記第1層目の多結
晶シリコン膜3を加工する。
Next, as shown in FIG. 2, the first polycrystalline silicon film 3 is processed by photolithography.

この工程においての多結晶シリコン膜のエツチングはド
ライエツチング法にて行ない反応ガスはC74(フレオ
ン)を用いた。さらに本工程においてのエツチングは、
OVD酸化膜が表出するまで行なわず多結晶シリコン膜
が約5001程度残った肩でエツチングを停止する方式
を採用した。
In this step, the polycrystalline silicon film was etched by a dry etching method, and C74 (Freon) was used as the reaction gas. Furthermore, the etching in this process is
A method was adopted in which the etching was not performed until the OVD oxide film was exposed, and the etching was stopped at the shoulder where approximately 5001 of the polycrystalline silicon film remained.

この際の残膜厚の制御はプラズマ出力及びフレオンガス
量さらにはエツチング時間等を実験的にもとめることに
より可能である。
At this time, the remaining film thickness can be controlled by experimentally determining the plasma output, Freon gas amount, etching time, etc.

次に表出する多結晶シリコン膜表面に1100℃50分
のドライ酸化法にてゲート膜4を約10001形成する
Next, about 10,000 layers of gate film 4 are formed on the surface of the exposed polycrystalline silicon film by dry oxidation at 1100° C. for 50 minutes.

この際前記工程にて残存せしめた多結晶シリコン膜約5
001は完全に酸化され絶縁膜となる。
At this time, about 50% of the polycrystalline silicon film left in the above step
001 is completely oxidized and becomes an insulating film.

つづいてゲート膜4上に第2層目の多結晶シリコン合金
ン膜5ooo1形成する。
Subsequently, a second layer polycrystalline silicon alloy film 5ooo1 is formed on the gate film 4.

次に°第2図Cの如く多結晶シリコン膜5を写真蝕刻し
所定のパターンを形成後該多結晶シリコンパターンをマ
スクに表出するゲート酸化膜をエツチングする。
Next, as shown in FIG. 2C, the polycrystalline silicon film 5 is photoetched to form a predetermined pattern, and then the exposed gate oxide film is etched using the polycrystalline silicon pattern as a mask.

この際ゲート膜周辺部はゲート膜厚に相当するアンター
エツチングが起こるが量的にはわずかなえぐれである。
At this time, underetching occurs in the peripheral area of the gate film in an amount corresponding to the thickness of the gate film, but the amount is only a slight gouge.

しかし第1JI目の多結晶シリコン膜のパターン周辺部
に接する。vDo化膜は該aVD酸化膜上層の酸化膜の
みがエツチングされるため過剰エツチングをおこなわな
ければはとんどエツチングされることはない。
However, it is in contact with the peripheral portion of the pattern of the first JI polycrystalline silicon film. Since only the oxide film above the aVD oxide film is etched in the vDo film, it will hardly be etched unless excessive etching is performed.

工程はその後960℃のN+g散を行ない多結晶シリコ
ンi中にソース、ドレイン部を形成する。
In the process, N+g dispersion is then performed at 960° C. to form source and drain portions in the polycrystalline silicon i.

この際基板表面に形成されるリンガラス膜は希釈された
弗酸にて短時間エツチングし除去する。
At this time, the phosphorus glass film formed on the substrate surface is removed by etching for a short time with diluted hydrofluoric acid.

次に表出面全体をCVD酸化膜6で被覆しコンタクトホ
ールを開孔する。
Next, the entire exposed surface is covered with a CVD oxide film 6, and contact holes are opened.

さらにアルミシリコン合金をスパッタし電極配線7を形
成する。
Further, an aluminum silicon alloy is sputtered to form electrode wiring 7.

以上の如く本発明は多結晶シリコン膜のエツチングの際
エツチング面の多結晶シリコン膜をわずか残存させこの
多結晶シリコン膜を次工程にて熱酸化し絶lj&膜とす
ることにより、後工程における酸化膜のエツチング工程
によるフィールド膜のえぐれ現像を防止するとともにフ
ィールド膜と多結晶シリコン膜との段差も減少し特に電
極配線の断線防止に大きな効果をもたらすものである。
As described above, in the present invention, when etching a polycrystalline silicon film, a small amount of the polycrystalline silicon film remains on the etched surface, and this polycrystalline silicon film is thermally oxidized in the next step to form a complete film, thereby preventing oxidation in the subsequent step. This prevents gouge development of the field film due to the film etching process, and also reduces the level difference between the field film and the polycrystalline silicon film, which is particularly effective in preventing disconnection of electrode wiring.

なお本発明の実施例においては多結晶シリコン膜を用い
た薄膜トランジスターの製法について、しかも第1層目
の多結晶シリコン膜への適用例を示しであるが本発明の
効果はシリコンゲートトランジスターにおける多結晶シ
リコン膜の加工時においてもさらに前記実施例における
第2層目の多結晶シリコン膜への適用が可能である。
In the embodiments of the present invention, a method for manufacturing a thin film transistor using a polycrystalline silicon film is shown, and an example of application to the first layer of polycrystalline silicon film is shown. When processing a crystalline silicon film, the present invention can also be applied to the second layer polycrystalline silicon film in the above embodiment.

特にゲート酸化膜上の多結晶シリコン膜への適用では断
線防止の効果は勿論であるがえぐれ現像から生ずるトラ
ンジスターのリーク現像あるいは耐圧の低下等に対する
効果も大きいことが立証されている。
In particular, when applied to a polycrystalline silicon film on a gate oxide film, it has been proven that it not only has the effect of preventing wire breakage, but also has a great effect on leakage development of transistors caused by gouge development, reduction in breakdown voltage, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(α)〜Cd)は従来の多結晶シリコン膜を用い
た薄膜トランジスターの製造工程を示す断面図である。 第2図(cL)〜Cd)は本発明を適用したWljNト
ランジスターの製造工程を示す断面図である。 第3図は従来の製造工程中に生ずるフィールド酸化膜の
えぐれ現象を示す断面図であり第1図Jの(A)部の拡
大図である。 第4図は本発明を適用した製造下゛程によりフィールド
酸化膜にえぐれが生じていないことを示す断面図であり
第2図dのCB)部拡大断面図である。 1・・・・・・石英基板 2・・・・・・CVD酸化膜 3・・・・・・多結晶シリコン膜 4・・・・・・ゲート酸化膜 5・・・・・・多結晶シリコン膜 6・・・・・・CVD酸化膜 7・・・・・・アルミシリコン配線
FIGS. 1(α) to Cd) are cross-sectional views showing the manufacturing process of a conventional thin film transistor using a polycrystalline silicon film. FIGS. 2(cL) to 2(cd) are cross-sectional views showing the manufacturing process of a WljN transistor to which the present invention is applied. FIG. 3 is a cross-sectional view showing the erosion phenomenon of the field oxide film that occurs during the conventional manufacturing process, and is an enlarged view of section (A) in FIG. 1J. FIG. 4 is a cross-sectional view showing that the field oxide film is not hollowed out due to the manufacturing process according to the present invention, and is an enlarged cross-sectional view of section CB in FIG. 2d. 1...Quartz substrate 2...CVD oxide film 3...Polycrystalline silicon film 4...Gate oxide film 5...Polycrystalline silicon Film 6...CVD oxide film 7...Aluminum silicon wiring

Claims (1)

【特許請求の範囲】[Claims] 基板の表面に耐蝕刻皮膜を選択的に形成し次に該耐蝕刻
皮膜をマスクとして表出されている多結晶シリコン膜を
任意の深さまでエツチングする工程と、前記耐蝕刻皮膜
を除去してその下の多結晶シリコン膜を表出し、しかる
後前記基板の露出表面に熱酸化皮膜を形成する工程を有
する半導体装置の製造方法。
A process of selectively forming an etching-resistant film on the surface of the substrate, then etching the exposed polycrystalline silicon film to a desired depth using the etching-resistant film as a mask, and removing the etching-resistant film to remove the exposed polycrystalline silicon film. A method for manufacturing a semiconductor device, comprising the steps of exposing an underlying polycrystalline silicon film and then forming a thermal oxide film on the exposed surface of the substrate.
JP16068881A 1981-10-08 1981-10-08 Preparation of semiconductor device Granted JPS5861671A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16068881A JPS5861671A (en) 1981-10-08 1981-10-08 Preparation of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16068881A JPS5861671A (en) 1981-10-08 1981-10-08 Preparation of semiconductor device

Publications (2)

Publication Number Publication Date
JPS5861671A true JPS5861671A (en) 1983-04-12
JPH0542817B2 JPH0542817B2 (en) 1993-06-29

Family

ID=15720313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16068881A Granted JPS5861671A (en) 1981-10-08 1981-10-08 Preparation of semiconductor device

Country Status (1)

Country Link
JP (1) JPS5861671A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63314871A (en) * 1987-06-17 1988-12-22 Nec Corp Manufacture of mosfet of soi structure
US6465284B2 (en) 1993-07-27 2002-10-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63314871A (en) * 1987-06-17 1988-12-22 Nec Corp Manufacture of mosfet of soi structure
US6465284B2 (en) 1993-07-27 2002-10-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same

Also Published As

Publication number Publication date
JPH0542817B2 (en) 1993-06-29

Similar Documents

Publication Publication Date Title
JPS6072268A (en) Method of producing bipolar transistor structure
US3972756A (en) Method of producing MIS structure
JP2004006660A (en) Method for manufacturing semiconductor device
JP2955847B2 (en) Method for forming platinum thin film and method for forming capacitor for memory
JPS5861671A (en) Preparation of semiconductor device
JPS5912021B2 (en) Manufacturing method of semiconductor device
JP3216173B2 (en) Method of manufacturing thin film transistor circuit
JPH02119135A (en) Semiconductor device and its manufacture
JP3291069B2 (en) Semiconductor device and manufacturing method thereof
JP3392557B2 (en) Processing method of aluminum wiring
JPH0226025A (en) Method of forming contact hole
JP3344051B2 (en) Method for manufacturing thin film transistor
KR100222671B1 (en) Storage electrode fabricating method of semiconductor device
JPS6320383B2 (en)
JPS6047437A (en) Semiconductor device and manufacture thereof
JPS59150478A (en) Thin film circuit device
JP3303545B2 (en) Semiconductor device manufacturing method
JPH05226479A (en) Manufacture of semiconductor device
JPH0448644A (en) Manufacture of semiconductor device
JPS5889869A (en) Manufacture of semiconductor device
JPH06163452A (en) Manufacture of semiconductor device
JPS60163466A (en) Manufacture of semiconductor device
JPH1167684A (en) Semiconductor device and its manufacture
JPH0666312B2 (en) Method for manufacturing semiconductor device
JPS6038854A (en) Manufacture of semiconductor device