JPH0240860A - Nonaqueous electrolytic secondary battery and manufacture of positive electrode active material used thereto - Google Patents

Nonaqueous electrolytic secondary battery and manufacture of positive electrode active material used thereto

Info

Publication number
JPH0240860A
JPH0240860A JP63191887A JP19188788A JPH0240860A JP H0240860 A JPH0240860 A JP H0240860A JP 63191887 A JP63191887 A JP 63191887A JP 19188788 A JP19188788 A JP 19188788A JP H0240860 A JPH0240860 A JP H0240860A
Authority
JP
Japan
Prior art keywords
manganese dioxide
positive electrode
active material
crystals
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63191887A
Other languages
Japanese (ja)
Other versions
JPH07105232B2 (en
Inventor
Satoru Saito
哲 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP63191887A priority Critical patent/JPH07105232B2/en
Publication of JPH0240860A publication Critical patent/JPH0240860A/en
Publication of JPH07105232B2 publication Critical patent/JPH07105232B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To increase the discharge capacity by using those in which lithium hydroxide is contained in the crystals of an electrolytic manganese dioxide as a positive electrode active material. CONSTITUTION:Those in which lithium hydroxide is contained in crystals of an electrolytic manganese dioxide is used as a positive electrode active material. The charge and discharge by manganese dioxide is accompanied by the going in and out of lithium ion. However, as lithium hydroxide is preliminarily contained in manganese dioxide crystals to swell the crystals preliminarily even in the state in which the crystals of manganese dioxide is not charged nor discharged, the volume change accompanied by the going in and out of lithium in the charge and discharge is made smaller than the case when the electrolytic manganese dioxide is used independently. At a result, the swelling and shrinkage by charge and discharge is extremely reduced to maintain the contact between the crystals and with a conductive agent at a satisfactory state, and thus almost the manganese dioxide is used for the reaction. Hence, the discharge capacity can be increased.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、負極にリチウムあるいはリチウム合金、電解
液に有機電解液を使用した非水電解液二次電池に関する
ものであり、電解二酸化マンガンを改良した正極活物質
を使用することにより、放電電圧が高く、エネルギー密
度が大きく、充放電サイクル寿命の長い二次電池を提供
するものである。
[Detailed Description of the Invention] Industrial Application Field The present invention relates to a non-aqueous electrolyte secondary battery using lithium or a lithium alloy for the negative electrode and an organic electrolyte for the electrolyte, which is an improved version of electrolytic manganese dioxide. By using a positive electrode active material, a secondary battery with high discharge voltage, high energy density, and long charge/discharge cycle life is provided.

従来の技術 負極にリチウムあるいはリチウム合金、電解液に有′R
電解液を使用した充放電可能な、いわゆる非水電解液二
次電池を得る試みは、さかんに行われており、正極活物
質としては、主に二硫化チタンや二硫化モリブデン等の
カルコゲン化合物が使用されてきた。[竹原 化学 3
7 168 (1982)]しかし、正極にカルコゲン
化合物を使用した場合、放電電圧が低く、したがってエ
ネルギー密度は小さくなる。また、多くのカルコゲン化
合物は合成が困難で高価である。
Conventional technology Lithium or lithium alloy is used in the negative electrode, and R is used in the electrolyte.
Many attempts have been made to obtain so-called non-aqueous electrolyte secondary batteries that can be charged and discharged using an electrolyte, and chalcogen compounds such as titanium disulfide and molybdenum disulfide are mainly used as positive electrode active materials. has been used. [Takehara Chemistry 3
7 168 (1982)] However, when a chalcogen compound is used in the positive electrode, the discharge voltage is low, and therefore the energy density is low. Additionally, many chalcogen compounds are difficult and expensive to synthesize.

これらの欠点を克服するために、正極活物質として各種
酸化物を使用することが検討され、その中でも電解二酸
化マンガンが、リチウムと組み合わせた場合、平均放電
電圧が2.8vと高いことや、工業的生産が可能で安価
なことから、二次電池への応用が期待されている。
In order to overcome these drawbacks, the use of various oxides as positive electrode active materials has been considered.Among them, electrolytic manganese dioxide has a high average discharge voltage of 2.8V when combined with lithium, and has a high average discharge voltage of 2.8V. It is expected to be applied to secondary batteries because it can be produced efficiently and is inexpensive.

ところが、有機電解液中の電解二酸化マンガンを充放電
する場合の反応は、二酸化マンガン結晶中へのリチウム
イオンの出入りであるため、充放電によって二酸化マン
ガンの体積は膨脹と収縮を繰り遅し、次第に結晶構造が
崩壊することや、二酸化マンガンの結晶と導電材との接
触が悪くなって、サイクル数の増大と共に放電容量が減
少するという問題点を有していた。[G、Pistoi
a J、 Ele−ctrochen、 Sac、、 
1291861  (1982)]この問題点を解決す
るために、二酸化マンガンに各種化合物を添加して充放
電特性を改良する試みがなされている。その中には水酸
化リチウムを使用する方法として、電解二酸化マンガン
を水酸化リチウム水溶液中に入れてマイクロ波を照射し
て二酸化マンガン中へリチウムをドープし、350〜4
30°Cで加熱する方法[特開昭62−108455号
公報]や、Li0H−HnO□焼成体が可逆性に優れて
いること[第28間電池討論会予稿集、3BO9,P2
O3,1987、11,18〜20]等が報告されてい
る。
However, when charging and discharging electrolytic manganese dioxide in an organic electrolyte, the reaction is the movement of lithium ions into and out of manganese dioxide crystals, so the volume of manganese dioxide slows down to expand and contract due to charging and discharging, and gradually becomes crystallized. There have been problems in that the structure collapses and the contact between the manganese dioxide crystals and the conductive material deteriorates, resulting in a decrease in discharge capacity as the number of cycles increases. [G, Pistoi
a J, Ele-ctrochen, Sac,,
1291861 (1982)] In order to solve this problem, attempts have been made to improve the charge-discharge characteristics by adding various compounds to manganese dioxide. Among them, as a method of using lithium hydroxide, electrolytic manganese dioxide is placed in a lithium hydroxide aqueous solution and irradiated with microwaves to dope lithium into the manganese dioxide.
The method of heating at 30°C [JP-A-62-108455] and the fact that the Li0H-HnO□ fired body has excellent reversibility [Proceedings of the 28th Battery Symposium, 3BO9, P2]
O3, 1987, 11, 18-20] have been reported.

発明が解決しようとする課題 以上述べたように電解二酸化マンガンを使用した非水電
解液二次電池において、サイクル数の増大に伴い放電容
量が減少するという欠点を取り除くことにより、放電電
圧が高く、放電容量が大きく、エネルギー密度の大きい
二次電池を得ることが課題とされていた。
Problems to be Solved by the Invention As described above, in a non-aqueous electrolyte secondary battery using electrolytic manganese dioxide, by eliminating the drawback that the discharge capacity decreases as the number of cycles increases, it is possible to achieve a high discharge voltage. The challenge has been to obtain a secondary battery with a large discharge capacity and high energy density.

課題を解決するための手段 本発明は、負極にリチウムあるいはリチウム合金を用い
た非水電解液二次電池において、正極活物質として電解
二酸化マンガンの結晶中に水酸化リチウムを含有したも
のを用いたことを特徴とする。また、前記正極活物質の
製造方法として電解二酸化マンガンに30重量%以下の
水酸化リチウム一水塩を加え350°C以下の温度で加
熱することを特徴とする。
Means for Solving the Problems The present invention uses electrolytic manganese dioxide crystals containing lithium hydroxide as the positive electrode active material in a non-aqueous electrolyte secondary battery using lithium or a lithium alloy for the negative electrode. It is characterized by The method for producing the positive electrode active material is characterized in that 30% by weight or less of lithium hydroxide monohydrate is added to electrolytic manganese dioxide and heated at a temperature of 350° C. or less.

作用 電解二酸化マンガンを非水電解液電池の活物質に使用す
る場合、結晶中に含まれている水分をある程度除去する
ために、一定の温度で加熱脱水する方法がとられている
。本発明は電解二酸化マンガンを加熱脱水する際、あら
かじめ電解二酸化マンガンに一定量の水酸化リチウム一
水塩(LiOH・H2O)を添加しておき、加熱によっ
て水酸化リチウム一水塩が分解して生成した水酸化リチ
ウムが二酸化マンガン結晶中にはいることを利用するも
のである。
When electrolytic manganese dioxide is used as an active material in a non-aqueous electrolyte battery, a method of heating and dehydrating it at a constant temperature is used to remove some of the water contained in the crystals. In the present invention, when heating and dehydrating electrolytic manganese dioxide, a certain amount of lithium hydroxide monohydrate (LiOH H2O) is added to the electrolytic manganese dioxide in advance, and lithium hydroxide monohydrate is decomposed and generated by heating. This method takes advantage of the fact that lithium hydroxide is present in manganese dioxide crystals.

ただし、電解二酸化マンガンは室温では含水のγ−型結
晶椙造であり、加熱によって脱水するが、250℃以上
ではγ−型とβ−型の結晶構造の混合物、350″C以
上ではβ−型結晶構造となる。電池の充放電を行なう場
合はβ−型よりもγ−型結晶横遺の方が望ましいため、
加熱温度は350℃以下とする必要がある。
However, electrolytic manganese dioxide is a water-containing γ-type crystal at room temperature and dehydrates when heated, but at temperatures above 250°C it becomes a mixture of γ- and β-type crystal structures, and at temperatures above 350°C it becomes a β-type crystal structure. It has a crystalline structure.When charging and discharging batteries, it is preferable to have a γ-type crystal structure rather than a β-type crystal structure.
The heating temperature needs to be 350°C or less.

本発明による正極活物質は、電解二酸化マンガンからの
水分の離脱と、水酸化リチウム一水塩の分解が同時に起
こる条件で合成される。したがって、生成物は二酸化マ
ンガン結晶中に水酸化リチウムがはいった状態となって
いるものと考えられる。そのため、二酸化マンガンが充
放電を行う場合、電気化学的なリチウムイオンの出入り
を伴うが、あらかじめ水酸化リチウムが二酸化マンガン
結晶中に入って、二酸化マンガンの結晶を充放電しない
状態においても、あらかじめ膨脹させておくので、充放
電におけるリチウムの出入りに伴う体積変化を電解二酸
化マンカン単独の場合よりも小さくし、その結果充放電
による膨脹収縮が非常に小さくなり、結晶間や導電剤と
の接触が良好な状態に保たれ、はとんどの二酸化マンガ
ンが反応に使われる。
The positive electrode active material according to the present invention is synthesized under conditions where the separation of water from electrolytic manganese dioxide and the decomposition of lithium hydroxide monohydrate occur simultaneously. Therefore, the product is considered to be a state in which lithium hydroxide is contained in manganese dioxide crystals. Therefore, when manganese dioxide is charged and discharged, electrochemical lithium ions move in and out, but lithium hydroxide enters the manganese dioxide crystal in advance and expands even when the manganese dioxide crystal is not charged or discharged. As a result, the volume change due to the inflow and outflow of lithium during charging and discharging is smaller than that of electrolytic mancan dioxide alone, and as a result, expansion and contraction due to charging and discharging are extremely small, and contact between crystals and with the conductive agent is good. Manganese dioxide is used in the reaction.

また、加熱温度を350℃以下とすることによって、二
酸化マンガンの結晶がβ−型へと変化せず、γ−型ある
いはγ−型とβ−型の混合物という電池の充放電に有利
な結晶構造が保持されるものである。
In addition, by setting the heating temperature to 350°C or lower, the crystals of manganese dioxide do not change to the β-type, and the crystal structure of the γ-type or a mixture of the γ-type and β-type is advantageous for battery charging and discharging. is maintained.

実施例 以下に本発明を好適な実施例を用いて説明する。Example The present invention will be explained below using preferred embodiments.

[1,正極活物質の合成方法コ 電解二酸化マンガン(γ−型結晶構造)粉末と、水酸化
リチウム一水塩粉末とを一定の割合で均一に混合し、ル
ツボに入れて電気炉で5時間加熱し、正極活物質N08
1〜No、 10を合成した。混合比および加熱温度は
第1表に示す通りである。
[1, Synthesis method of positive electrode active material Co-electrolytic manganese dioxide (γ-type crystal structure) powder and lithium hydroxide monohydrate powder were uniformly mixed at a certain ratio, placed in a crucible, and heated in an electric furnace for 5 hours. Heating, positive electrode active material N08
1 to No. 10 were synthesized. The mixing ratio and heating temperature are as shown in Table 1.

第1表 [2,正極板の製法] 上記の正極活物質とアセチレンブラック(導電剤)とデ
ィスバージョンテフロンとを重量比で90:8:2とな
るように混合し、ペースト状とし、ニッケルリード線を
取り付けた 10nn xlonnのエキスバンドニッ
ケルグリッド上に塗布した。正極混合物の塗布量は極板
1枚当り約50I1gとしな。これを加圧して均一な表
面とした後、200℃で20時間真空乾燥して余分の水
を脱水した。
Table 1 [2. Manufacturing method of positive electrode plate] The above positive electrode active material, acetylene black (conductive agent), and dispersion Teflon are mixed in a weight ratio of 90:8:2, made into a paste, and nickel lead It was coated on a 10 nn x lonn expanded nickel grid with wires attached. The amount of the positive electrode mixture to be applied is approximately 50I1g per electrode plate. This was pressurized to make a uniform surface, and then vacuum dried at 200° C. for 20 hours to remove excess water.

[3,電池の試作と試験条件] 電池は正極板1枚と負極板1枚とで構成されている。負
極板は10111×10IIlのリチウム板にニッケル
リード線を圧着で収り付けたものである。セパレータと
してはrR細孔を備えたポリプロピレンシートを使用し
、電解液としては2−メチルテトラヒドロフランに六フ
ッ化砒酸リチウム(LiAsF6)を1.51ol#l
溶解させた非水電解液を使用した。
[3. Prototype production of battery and test conditions] The battery consists of one positive electrode plate and one negative electrode plate. The negative electrode plate was a 10111×10IIl lithium plate with a nickel lead wire crimped onto it. A polypropylene sheet with rR pores was used as the separator, and the electrolyte was 1.51 ol#l of lithium hexafluoroarsenate (LiAsF6) in 2-methyltetrahydrofuran.
A dissolved non-aqueous electrolyte was used.

この極板群をテフロンケースに入れ、全体をセパラブル
フラスコ中、アルゴン雰囲気に密閉して、充放電試験を
行なった。充放電試験条件は以下の通りである。
This electrode plate group was placed in a Teflon case, the whole was sealed in an argon atmosphere in a separable flask, and a charge/discharge test was conducted. The charge/discharge test conditions are as follows.

温度:25℃±2℃ 電流: 充放電とも1.0mA/cell  定電流終
始電圧= (充電) 3.50V 、  (放電) 2
.OOV[4、充放電試験結果] 活物質NO61〜No、6を用いた電池について、正極
活物質合成時の水酸化リチウム一水塩の添加量と、正極
活物質1にg当りの放電容量との関係を第1図に示す。
Temperature: 25°C ± 2°C Current: 1.0mA/cell for both charging and discharging Constant current end-to-end voltage = (Charging) 3.50V, (Discharging) 2
.. OOV [4, charge/discharge test results] For batteries using active materials No. 61 to No. 6, the amount of lithium hydroxide monohydrate added during synthesis of the positive electrode active material, and the discharge capacity per gram of positive electrode active material 1. The relationship is shown in Figure 1.

ただし、放電容量はサイクル数で変化するので、以下全
て10サイクル目の値を比較する。
However, since the discharge capacity changes with the number of cycles, the values at the 10th cycle will be compared in all cases below.

放電容量は水酸化リチウム一水塩添加量が10wt%の
とき最大となり、添加量を増すと減少する。水酸化リチ
ウム一水塩の添加量が30wt%以下であれば、無添加
の場合に比べて放電容量は大きくなる。
The discharge capacity is maximum when the amount of lithium hydroxide monohydrate added is 10 wt%, and decreases as the amount added is increased. If the amount of lithium hydroxide monohydrate added is 30 wt % or less, the discharge capacity will be larger than that without the addition.

活物質NO33とN017〜No、 10を用いた電池
について、水酸化リチウム一水塩を1(1wt%添加し
た場合の加熱温度と放電容量との関係を第2図に示す。
FIG. 2 shows the relationship between heating temperature and discharge capacity when 1 (1 wt %) of lithium hydroxide monohydrate was added for batteries using active materials NO33 and NO17 to No. 10.

放電容量は300℃加熱の場合に餞大となり、加熱温度
がこれより低くなっても、高くなっても、小さくなる。
The discharge capacity becomes large when heated at 300° C., and decreases even if the heating temperature becomes lower or higher than this.

これは二酸化マンガンは室温ではγ−型結晶楕遣である
が、加熱によって脱水されて250〜350℃の範囲で
は17β−型結晶構造に、350〜450℃の範囲では
β−型結晶構造となって350℃以上での加熱では、充
放電に適さない結晶構造となってしまうためであると考
えられる。したがって、正極活物質の加熱温度は、35
0℃以下が適している。
This is because manganese dioxide has a γ-type crystal ellipse at room temperature, but when it is dehydrated by heating, it becomes a 17β-type crystal structure in the range of 250 to 350°C, and a β-type crystal structure in the range of 350 to 450°C. This is thought to be because heating at 350° C. or higher results in a crystal structure that is unsuitable for charging and discharging. Therefore, the heating temperature of the positive electrode active material is 35
A temperature below 0°C is suitable.

次に活物質No、1 (無添加)を用いた電池とN00
3(水酸化リチウム一水塩10wt%添加)を用いた電
池の充放電サイクル数による放電容量の変化を第3図に
示す。同図より水酸化リチウム一水塩を添加しないと放
電容量のサイクル数による減少は激しいが、水酸化リチ
ウム一水塩を添加した場合の放電容量変化は非常に小さ
いことがわかる。
Next, a battery using active material No. 1 (no additives) and N00
FIG. 3 shows the change in discharge capacity depending on the number of charge/discharge cycles of a battery using No. 3 (addition of 10 wt % of lithium hydroxide monohydrate). It can be seen from the figure that if lithium hydroxide monohydrate is not added, the discharge capacity decreases sharply depending on the number of cycles, but when lithium hydroxide monohydrate is added, the change in discharge capacity is very small.

発明の効果 本発明による正極活物質を使用すれば、充放電反応にお
いて極板中に含まれる大部分の二酸化マンガンが反応に
関与するため、同じ重量の電解二酸化マンガンを単独で
使用した場合よりも放電容量は大きくなる。しかも放電
電圧は二酸化マンガン単独の場合同様、平均2.8vで
あるため、電池の放電エネルギー密度は極めて大きい。
Effects of the Invention When the positive electrode active material according to the present invention is used, most of the manganese dioxide contained in the electrode plate participates in the charge/discharge reaction, so the reaction rate is greater than when the same weight of electrolytic manganese dioxide is used alone. The discharge capacity increases. Moreover, since the discharge voltage is 2.8 V on average as in the case of manganese dioxide alone, the discharge energy density of the battery is extremely high.

また、水酸化リチウムが二酸化マンガンの結晶中に入る
ために、充放電に伴う二酸化マンガン結晶の体積変化が
小さく、結晶間の接触も良好な状態に保たれることによ
って、サイクル数に伴う放電容量の減少は小さく、サイ
クル寿命の極めて長い二次電池が得られる。
In addition, since lithium hydroxide enters the manganese dioxide crystal, the volume change of the manganese dioxide crystal during charging and discharging is small, and the contact between the crystals is maintained in a good state, resulting in discharge capacity that increases with the number of cycles. The decrease is small, and a secondary battery with an extremely long cycle life can be obtained.

なお、実施例においては負極にリチウム、電解液に2−
メチルテトラヒドロフン−六フ・ソ化砒酸リチウムを使
用したが、負極はリチウムを含む合金、例えばりチウム
−アルミニウム合金等も使用でき、また、電解液もリチ
ウムと直接反応しない各種有v!A電解液の使用も可能
であり、いずれの場合においても本発明の効果を得るこ
とができる6
In addition, in the example, lithium was used in the negative electrode, and 2-
Although methyltetrahydrofuran-hexafluoride lithium arsenate was used, alloys containing lithium such as lithium-aluminum alloys can also be used for the negative electrode, and various electrolytes that do not react directly with lithium can also be used. It is also possible to use electrolyte A, and the effects of the present invention can be obtained in either case6.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、正極活物質合成時の水酸化リチウム一水塩含
有量と、その活物質を使った電池の放電容量との関係を
示す図、第2図は、正極活物質合成時の加熱温度と、電
池の放電容量との関係を示す図。第3図は、本発明によ
る電池および従来の電池の充放電サイクル数と放電容量
の関係を示した図。 にL熱湛廣 (で)
Figure 1 shows the relationship between the lithium hydroxide monohydrate content during the synthesis of the positive electrode active material and the discharge capacity of a battery using that active material. The figure which shows the relationship between temperature and the discharge capacity of a battery. FIG. 3 is a diagram showing the relationship between the number of charge/discharge cycles and the discharge capacity of a battery according to the present invention and a conventional battery. ni L Nettanhiro (de)

Claims (1)

【特許請求の範囲】 1、負極にリチウムあるいはリチウム合金を用いた非水
電解液二次電池において、正極活物質として電解二酸化
マンガン結晶中に水酸化リチウムを含有したものを用い
たことを特徴とする非水電解液二次電池。 2、請求項1記載の非水電解液二次電池に用いる正極活
物質の製造方法であって、電解二酸化マンガンに30重
量%以下の水酸化リチウム一水塩(LiOH・H_2O
)を加え350℃以下の温度で加熱することを特徴とす
る非水電解液二次電池用正極活物質の製造方法。
[Claims] 1. A non-aqueous electrolyte secondary battery using lithium or a lithium alloy for the negative electrode, characterized in that a material containing lithium hydroxide in electrolytic manganese dioxide crystal is used as the positive electrode active material. A non-aqueous electrolyte secondary battery. 2. A method for producing a positive electrode active material used in a non-aqueous electrolyte secondary battery according to claim 1, wherein 30% by weight or less of lithium hydroxide monohydrate (LiOH.H_2O) is added to electrolytic manganese dioxide.
) and heating at a temperature of 350° C. or lower.
JP63191887A 1988-07-30 1988-07-30 Non-aqueous electrolyte secondary battery and method for producing positive electrode active material used therein Expired - Lifetime JPH07105232B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63191887A JPH07105232B2 (en) 1988-07-30 1988-07-30 Non-aqueous electrolyte secondary battery and method for producing positive electrode active material used therein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63191887A JPH07105232B2 (en) 1988-07-30 1988-07-30 Non-aqueous electrolyte secondary battery and method for producing positive electrode active material used therein

Publications (2)

Publication Number Publication Date
JPH0240860A true JPH0240860A (en) 1990-02-09
JPH07105232B2 JPH07105232B2 (en) 1995-11-13

Family

ID=16282109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63191887A Expired - Lifetime JPH07105232B2 (en) 1988-07-30 1988-07-30 Non-aqueous electrolyte secondary battery and method for producing positive electrode active material used therein

Country Status (1)

Country Link
JP (1) JPH07105232B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5477410A (en) * 1989-11-07 1995-12-19 Canon Kabushiki Kaisha Recording or reproducing apparatus using a stabilizing pad
JP2017068966A (en) * 2015-09-29 2017-04-06 古河電池株式会社 Positive electrode active material for lithium secondary battery and lithium secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5477410A (en) * 1989-11-07 1995-12-19 Canon Kabushiki Kaisha Recording or reproducing apparatus using a stabilizing pad
JP2017068966A (en) * 2015-09-29 2017-04-06 古河電池株式会社 Positive electrode active material for lithium secondary battery and lithium secondary battery

Also Published As

Publication number Publication date
JPH07105232B2 (en) 1995-11-13

Similar Documents

Publication Publication Date Title
JPH0746607B2 (en) Non-aqueous secondary battery
JPH09320588A (en) Manufacture of lithium battery positive electrode active material, and lithium battery
JP4152618B2 (en) Method for producing positive electrode active material for layered oxide battery
CN111785917A (en) Niobium-tungsten oxide electrode material and preparation and application thereof
US6514638B2 (en) Non-aqueous electrolyte secondary battery including positive and negative electrodes
US3998658A (en) High voltage organic electrolyte batteries
JP2000331680A (en) Lithium secondary battery and manufacture thereof
JP2002042812A (en) Positive electrode active material for lithium secondary battery and lithium secondary battery using the same
JP2599975B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JPH0240860A (en) Nonaqueous electrolytic secondary battery and manufacture of positive electrode active material used thereto
JPH04198028A (en) Lithium manganese double oxide, its production and use
JPH10302766A (en) Lithium ion secondary battery
JP2553920B2 (en) Non-aqueous electrolyte secondary battery and method for producing positive electrode active material used therein
JP2979826B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP2646689B2 (en) Non-aqueous electrolyte secondary battery and method for producing positive electrode active material used therein
JP4803867B2 (en) Method for producing lithium manganate for positive electrode of lithium battery
JP2000149943A (en) Process for lithium manganese compound oxide for lithium secondary battery positive active material
JP2564175B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JPH04237970A (en) Nonaqueous electrolyte secondary battery and manufacture of its positive electrode active material
Fey et al. A rechargeable Li/LiχCoO2 cell incorporating a LiCF3SO3 NMP electrolyte
JP2797526B2 (en) Manufacturing method of positive electrode active material for lithium secondary battery
JP3436292B2 (en) Positive electrode material for lithium battery, method for producing the same, and lithium battery using the same
JPH06163046A (en) Manufacture of positive electrode active material for nonaqueous electrolyte battery
JP2006324258A (en) Lithium secondary battery and its manufacturing method
KR100246923B1 (en) Cathode active material for lithium battery, method of preparing same, positive electrode with same and lithium battery with same