JPH07105232B2 - Non-aqueous electrolyte secondary battery and method for producing positive electrode active material used therein - Google Patents

Non-aqueous electrolyte secondary battery and method for producing positive electrode active material used therein

Info

Publication number
JPH07105232B2
JPH07105232B2 JP63191887A JP19188788A JPH07105232B2 JP H07105232 B2 JPH07105232 B2 JP H07105232B2 JP 63191887 A JP63191887 A JP 63191887A JP 19188788 A JP19188788 A JP 19188788A JP H07105232 B2 JPH07105232 B2 JP H07105232B2
Authority
JP
Japan
Prior art keywords
positive electrode
active material
manganese dioxide
electrode active
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63191887A
Other languages
Japanese (ja)
Other versions
JPH0240860A (en
Inventor
哲 斉藤
Original Assignee
日本電池株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電池株式会社 filed Critical 日本電池株式会社
Priority to JP63191887A priority Critical patent/JPH07105232B2/en
Publication of JPH0240860A publication Critical patent/JPH0240860A/en
Publication of JPH07105232B2 publication Critical patent/JPH07105232B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、負極にリチウムあるいはリチウム合金、電解
液に有機電解液を使用した非水電解液二次電池に関する
ものであり、電解二酸化マンガンを改良した正極活物質
を使用することにより、放電電圧が高く、エネルギー密
度が大きく、充放電サイクル寿命の長い二次電池を提供
するものである。
TECHNICAL FIELD The present invention relates to a non-aqueous electrolyte secondary battery in which lithium or a lithium alloy is used as a negative electrode and an organic electrolyte is used as an electrolyte, and an electrolytic manganese dioxide is improved. By using a positive electrode active material, a secondary battery having a high discharge voltage, a large energy density, and a long charge / discharge cycle life is provided.

従来の技術 負極にリチウムあるいはリチウム合金、電解液に有機電
解液を使用した充放電可能な、いわゆる非水電解液二次
電池を得る試みは、さかんに行われており、正極活物質
としては、主に二硫化チタンや二硫化モリブデン等のカ
ルコゲン化合物が使用されてきた。[竹原 化学 37
168(1982)] しかし、正極にカルコゲン化合物を使用した場合、放電
電圧が低く、したがってエネルギー密度は小さくなる。
また、多くのカルコゲン化合物は合成が困難で高価であ
る。
2. Description of the Related Art Attempts to obtain a so-called non-aqueous electrolyte secondary battery that uses lithium or a lithium alloy as a negative electrode and an organic electrolytic solution as an electrolytic solution have been vigorously carried out, and as a positive electrode active material, Chalcogen compounds such as titanium disulfide and molybdenum disulfide have been mainly used. [Takehara Chemistry 37
168 (1982)] However, when a chalcogen compound is used for the positive electrode, the discharge voltage is low and therefore the energy density is low.
Also, many chalcogen compounds are difficult to synthesize and expensive.

これらの欠点を克服するために、正極活物質として各種
酸化物を使用することが検討され、その中でも電解二酸
化マンガンが、リチウムと組み合わせた場合、平均放電
電圧が2.8Vと高いことや、工業的生産が可能で安価なこ
とから、二次電池への応用が期待されている。
In order to overcome these drawbacks, the use of various oxides as a positive electrode active material has been studied, and among them, electrolytic manganese dioxide has a high average discharge voltage of 2.8 V when combined with lithium, and industrial use. Since it can be produced and is inexpensive, it is expected to be applied to secondary batteries.

ところが、有機電解液中の電解二酸化マンガンを充放電
する場合の反応は、二酸化マンガン結晶中へのリチウム
イオンの出入りであるため、充放電によって二酸化マン
ガンの体積は膨脹と収縮を繰り返し、次第に結晶構造が
崩壊することや、二酸化マンガンの結晶と導電材との接
触が悪くなって、サイクル数の増大と共に放電容量が減
少するという問題点を有していた。[G.Pistoia J.Elec
trochem.Soc.,129 1861(1982)] この問題点を解決するために、二酸化マンガンに各種化
合物を添加して充放電特性を改良する試みがなされてい
る。その中には水酸化リチウムを使用する方法として、
電解二酸化マンガンを水酸化リチウム水溶液中に入れて
マイクロ液を照射して二酸化マンガン中へリチウムをド
ープし、350〜430℃で加熱する方法[特開昭62−108455
号公報]や、LiOH−MnO2焼成体が可塑性に優れているこ
と[第28開電池討論会予稿集、3B09,P203,1987.11.18〜
20]等が報告されている。
However, since the reaction when charging and discharging electrolytic manganese dioxide in the organic electrolytic solution is the movement of lithium ions into and out of the manganese dioxide crystal, the volume of manganese dioxide repeats expansion and contraction due to charging and discharging, and the crystal structure gradually increases. However, there is a problem in that the discharge capacity decreases with an increase in the number of cycles due to the collapse of the particles and the poor contact between the manganese dioxide crystal and the conductive material. [G.Pistoia J. Elec
trochem.Soc., 129 1861 (1982)] In order to solve this problem, attempts have been made to improve the charge / discharge characteristics by adding various compounds to manganese dioxide. Among them, as a method of using lithium hydroxide,
A method in which electrolytic manganese dioxide is placed in an aqueous solution of lithium hydroxide to irradiate a micro liquid to dope lithium into manganese dioxide and heat at 350 to 430 ° C. [JP-A-62-108455]
No. gazette] and that the LiOH-MnO 2 fired body has excellent plasticity [Proceedings of the 28th Open Battery Symposium, 3B09, P203, 1987.11.18 ~
20] etc. have been reported.

発明が解決しようとする課題 以上述べたように電解二酸化マンガンを使用した非水電
解液二次電池において、サイクル数の増大に伴い放電容
量が減少するという欠点を取り除くことにより、放電電
圧が高く、放電容量が大きく、エネルギー密度の大きい
二次電池を得ることが課題とされていた。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention In the non-aqueous electrolyte secondary battery using electrolytic manganese dioxide as described above, by eliminating the drawback that the discharge capacity decreases with an increase in the number of cycles, the discharge voltage is high, It has been a subject to obtain a secondary battery having a large discharge capacity and a large energy density.

課題を解決するための手段 本発明は、負極にリチウムあるいはリチウム合金を用い
た非水電解液二次電池において、正極活物質として電解
二酸化マンガンの結晶中に水酸化リチウムを含有したも
のを用いたことを特徴とする。また、前記正極活物質の
製造方法として電解二酸化マンガンに30重量%以下の水
酸化リチウム一水塩を加え350℃以下の温度で加熱する
ことを特徴とする。
Means for Solving the Problems The present invention uses a non-aqueous electrolyte secondary battery using lithium or a lithium alloy for a negative electrode, in which lithium hydroxide is contained in the crystal of electrolytic manganese dioxide as a positive electrode active material. It is characterized by In addition, as a method for producing the positive electrode active material, 30% by weight or less of lithium hydroxide monohydrate is added to electrolytic manganese dioxide and heated at a temperature of 350 ° C. or less.

作用 電解二酸化マンガンを非水電解液電池の活物質に使用す
る場合、結晶中に含まれている水分をある程度除去する
ために、一定の温度で加熱脱水する方法がとられてい
る。本発明は電解二酸化マンガンを加熱脱水する際、あ
らかじめ電解二酸化マンガンに一定量の水酸化リチウム
一水塩(LiOH・H2O)を添加しておき、加熱によって水
酸化リチウム一水塩が分解して生成した水酸化リチウム
が二酸化マンガン結晶中にはいることを利用するもので
ある。
Action When using electrolytic manganese dioxide as an active material of a non-aqueous electrolyte battery, a method of heating and dehydrating at a constant temperature is used in order to remove water contained in crystals to some extent. In the present invention, when the electrolytic manganese dioxide is heated and dehydrated, a certain amount of lithium hydroxide monohydrate (LiOH.H 2 O) is added to the electrolytic manganese dioxide in advance, and the lithium hydroxide monohydrate is decomposed by heating. The fact that the lithium hydroxide thus generated enters the crystal of manganese dioxide is utilized.

ただし、電解二酸化マンガンは室温では含水のγ−型結
晶構造であり、加熱によって脱水するが、250℃以上で
はγ−型とβ−型の結晶構造の混合物、350℃以上では
β−型結晶構造となる。電池の充放電を行なう場合はβ
−型よりもγ−型結晶構造の方が望ましいため、加熱温
度は350℃以下とする必要がある。
However, electrolytic manganese dioxide has a γ-type crystal structure containing water at room temperature and is dehydrated by heating, but at 250 ° C or higher, a mixture of γ-type and β-type crystal structures, and at 350 ° C or higher, β-type crystal structure. Becomes Β when charging / discharging the battery
Since the γ-type crystal structure is preferable to the − type, the heating temperature needs to be 350 ° C. or lower.

本発明による正極活物質は、電解二酸化マンガンからの
水分の離脱と、水酸化リチウム一水塩の分解が同時に起
こる条件で合成される。したがって、生成物は二酸化マ
ンガン結晶中に水酸化リチウムがはいった状態となって
いるものと考えられる。そのため、二酸化マンガンが充
放電を行う場合、電気化学的なリチウムイオンの出入り
を伴うが、あらかじめ水酸化リチウムが二酸化マンガン
結晶中に入って、二酸化マンガンの結晶を充放電しない
状態においても、あらかじめ膨脹させておくので、充放
電におけるリチウムの出入りに伴う体積変化を電解二酸
化マンガン単独の場合よりも小さくし、その結果充放電
による膨脹収縮が非常に小さくなり、結晶間や導電剤と
の接触が良好な状態に保たれ、ほとんどの二酸化マンガ
ンが反応に使われる。
The positive electrode active material according to the present invention is synthesized under the condition that the release of water from electrolytic manganese dioxide and the decomposition of lithium hydroxide monohydrate occur at the same time. Therefore, it is considered that the product is a state in which lithium hydroxide is contained in the manganese dioxide crystal. Therefore, when manganese dioxide is charged and discharged, lithium ions are electrochemically moved in and out, but even when lithium hydroxide enters the manganese dioxide crystal in advance and the manganese dioxide crystal is not charged and discharged, it expands in advance. As a result, the volume change due to the inflow and outflow of lithium during charge and discharge is made smaller than that of electrolytic manganese dioxide alone, and as a result, the expansion and contraction due to charge and discharge is very small, and the contact between crystals and the conductive agent is good. And most of the manganese dioxide is used in the reaction.

また、加熱温度を350℃以下とすることによって、二酸
化マンガンの結晶がβ−型へと変化せず、γ−型あるい
はγ−型とβ−型の混合物という電池の充放電に有利な
結晶構造が保持されるものである。
Further, by setting the heating temperature to 350 ° C. or lower, the crystal structure of manganese dioxide does not change to β-type, and a γ-type or a mixture of γ-type and β-type, which is a crystal structure advantageous for battery charge / discharge. Is retained.

実施例 以下に本発明を好適な実施例を用いて説明する。Examples The present invention will be described below with reference to preferred examples.

[1.正極活物質の合成方法] 電解二酸化マンガン(γ−型結晶構造)粉末と、水酸化
リチウム一水塩粉末とを一定の割合で均一に混合し、ル
ツボに入れて電気炉で5時間加熱し、正極活物質No.1〜
No.10を合成した。混合比および加熱温度は第1表に示
す通りである。
[1. Method for Synthesizing Positive Electrode Active Material] Electrolytic manganese dioxide (γ-type crystal structure) powder and lithium hydroxide monohydrate powder are uniformly mixed at a constant ratio, put in a crucible and placed in an electric furnace for 5 hours. Heated and positive electrode active material No. 1 ~
No. 10 was synthesized. The mixing ratio and heating temperature are as shown in Table 1.

[2.正極板の製法] 上記の正極活物質とアセチレンブラック(導電剤)とデ
ィスパージョンテフロンとを重量比で90:8:2となるよう
に混合し、ペースト状とし、ニッケルリード線を取り付
けた10mm×10mmのエキスパンドニッケルグリッド上に塗
布した。正極混合物の塗布量は極板1枚当り約50mgとし
た。これを加圧して均一な表面とした後、200℃で20時
間真空乾燥して余分の水を脱水した。
[2. Manufacturing method of positive electrode plate] The above positive electrode active material, acetylene black (conductive agent), and dispersion Teflon were mixed at a weight ratio of 90: 8: 2 to form a paste, and a nickel lead wire was attached. It was coated on a 10 mm x 10 mm expanded nickel grid. The amount of the positive electrode mixture applied was about 50 mg per electrode plate. This was pressed to form a uniform surface, and then vacuum dried at 200 ° C. for 20 hours to dehydrate excess water.

[3.電池の試作と試験条件] 電池は正極板1枚と負極板1枚とで構成されている。負
極板は10mm×10mmのリチウム板にニッケルリード線を圧
着で取り付けたものである。セパレータとしては微細孔
を備えたポリプロピレンシートを使用し、電解液として
は2−メチルテトラヒドロフランに六フッ化砒酸リチウ
ム(LiAsF6)を1.5mol/溶解させた非水電解液を使用
した。
[3. Battery Trial Production and Test Conditions] The battery is composed of one positive electrode plate and one negative electrode plate. The negative electrode plate is a 10 mm x 10 mm lithium plate with nickel lead wires attached by pressure bonding. A polypropylene sheet having fine pores was used as the separator, and a non-aqueous electrolytic solution in which 1.5 mol / mol of lithium hexafluoroarsenate (LiAsF 6 ) was dissolved in 2-methyltetrahydrofuran was used as the electrolytic solution.

この極板群をテフロンケースに入れ、全体をセパラブル
フラスコ中、アルゴン雰囲気に密閉して、充放電試験を
行なった。充放電試験条件は以下の通りである。
This electrode group was put in a Teflon case, and the whole was sealed in a separable flask in an argon atmosphere, and a charge / discharge test was conducted. The charge / discharge test conditions are as follows.

温度:25℃±2℃ 電流:充放電とも1.0mA/cell定電流 終始電圧:(充電)3.50V,(放電)2.00V [4.充放電試験結果] 活物質No.1〜No.6を用いた電池について、正極活物質合
成時の水酸化リチウム一水塩の添加量と、正極活物質1k
g当りの放電容量との関係を第1図に示す。ただし、放
電容量はサイクル数で変化するので、以下全て10サイク
ル目の値を比較する。放電容量は水酸化リチウム一水塩
添加量が10wt%のとき最大となり、添加量ろ増すと減少
する。水酸化リチウム一水塩の添加量が30wt%以下であ
れば、無添加の場合に比べて放電容量は大きくなる。
Temperature: 25 ℃ ± 2 ℃ Current: 1.0mA / cell constant current for both charge and discharge Initial voltage: (Charge) 3.50V, (Discharge) 2.00V [4. Charge and discharge test result] Active materials No.1 to No.6 Regarding the batteries used, the amount of lithium hydroxide monohydrate added during the synthesis of the positive electrode active material and the positive electrode active material 1k
The relationship with the discharge capacity per g is shown in FIG. However, since the discharge capacity changes with the number of cycles, the values at the 10th cycle are all compared below. The discharge capacity becomes maximum when the amount of lithium hydroxide monohydrate added is 10 wt% and decreases when the amount added is increased. When the amount of lithium hydroxide monohydrate added is 30 wt% or less, the discharge capacity becomes larger than that when no lithium hydroxide is added.

活物質No.3とNo.7〜No.10を用いた電池について、水酸
化リチウム一水塩を10wt%添加した場合の加熱温度と放
電容量との関係を第2図に示す。放電容量は300℃加熱
の場合に最大となり、加熱温度がこれより低くなって
も、高くなっても、小さくなる。これは二酸化マンガン
は室温ではγ−型結晶構造であるが、加熱によって脱水
されて250〜350℃の範囲ではγ/β−型結晶構造に、35
0〜450℃の範囲ではβ−型結晶構造となって350℃以上
での加熱では、充放電に適さない結晶構造となってしま
うためであると考えられる。したがって、正極活物質の
加熱温度は、350℃以下が適している。
FIG. 2 shows the relationship between the heating temperature and the discharge capacity when 10 wt% of lithium hydroxide monohydrate was added to the batteries using the active materials No. 3 and No. 7 to No. 10. The discharge capacity becomes maximum when heated at 300 ° C, and becomes smaller when the heating temperature becomes lower or higher. Although manganese dioxide has a γ-type crystal structure at room temperature, it is dehydrated by heating to a γ / β-type crystal structure in the range of 250 to 350 ° C.
It is considered that the β-type crystal structure is formed in the range of 0 to 450 ° C., and the heating at 350 ° C. or higher results in a crystal structure not suitable for charging and discharging. Therefore, the heating temperature of the positive electrode active material is suitably 350 ° C. or lower.

次に活物質No.1(無添加)を用いた電池とNo.3(水酸化
リチウム一水塩10wt%添加)を用いた電池の充放電サイ
クル数による放電容量の変化を第3図に示す。同図より
水酸化リチウム一水塩を添加しないと放電容量のサイク
ル数による減少は激しいが、水酸化リチウム一水塩を添
加した場合の放電容量変化は非常に小さいことがわか
る。
Next, Fig. 3 shows the change in discharge capacity depending on the number of charge / discharge cycles of the battery using the active material No. 1 (no addition) and the battery using No. 3 (adding 10 wt% lithium hydroxide monohydrate). . It can be seen from the figure that the discharge capacity decreases drastically with the number of cycles unless lithium hydroxide monohydrate is added, but the change in discharge capacity when lithium hydroxide monohydrate is added is very small.

発明の効果 本発明による正極活物質を使用すれば、充放電反応にお
いて極板中に含まれる大部分の二酸化マンガンが反応に
関与するため、同じ重量の電解二酸化マンガンを単独で
使用した場合よりも放電容量は大きくなる。しかも放電
電圧は二酸化マンガン単独の場合同様、平均2.8Vである
ため、電池の放電エネルギー密度は極めて大きい。
EFFECTS OF THE INVENTION When the positive electrode active material according to the present invention is used, most of manganese dioxide contained in the electrode plate participates in the reaction in the charge / discharge reaction, so that the same weight of electrolytic manganese dioxide is used as compared with the case of using it alone. The discharge capacity becomes large. Moreover, since the discharge voltage is an average of 2.8 V as in the case of manganese dioxide alone, the discharge energy density of the battery is extremely large.

また、水酸化リチウムが二酸化マンガンの結晶中に入る
ために、充放電に伴う二酸化マンガン結晶の体積変化が
小さく、結晶間の接触も良好な状態に保たれることによ
って、サイクル数に伴う放電容量の減少は小さく、サイ
クル寿命の極めて長い二次電池が得られる。
In addition, since lithium hydroxide enters into the manganese dioxide crystal, the volume change of the manganese dioxide crystal due to charging and discharging is small, and the contact between the crystals is maintained in a good state. Is small, and a secondary battery having an extremely long cycle life can be obtained.

なお、実施例においては負極にリチウム、電解液に2−
メチルテトラヒドロフン−六フッ化砒酸リチウムを使用
したが、負極はリチウムを含む合金、例えばリチウム−
アルミニウム合金等も使用でき、また、電解液もリチウ
ムと直接反応しない各種有機電解液の使用も可能であ
り、いずれの場合においても本発明の効果を得ることが
できる。
In the examples, the negative electrode is lithium and the electrolyte is 2-
Methyl tetrahydrofun-lithium hexafluoroarsenate was used, but the negative electrode was an alloy containing lithium, such as lithium-
Aluminum alloys and the like can be used, and various organic electrolytes that do not directly react with lithium can be used as the electrolyte. In any case, the effect of the present invention can be obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図は、正極活物質合成時の水酸化リチウム一水塩含
有量と、その活物質を使った電池の放電容量との関係を
示す図。第2図は、正極活物質合成時の加熱温度と、電
池の放電容量との関係を示す図。第3図は、本発明によ
る電池および従来の電池の充放電サイクル数と放電容量
の関係を示した図。
FIG. 1 is a diagram showing the relationship between the content of lithium hydroxide monohydrate at the time of synthesizing a positive electrode active material and the discharge capacity of a battery using the active material. FIG. 2 is a diagram showing the relationship between the heating temperature during the synthesis of the positive electrode active material and the discharge capacity of the battery. FIG. 3 is a diagram showing the relationship between the number of charge / discharge cycles and the discharge capacity of the battery according to the present invention and the conventional battery.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】負極にリチウムあるいはリチウム合金を用
いた非水電解液二次電池において、正極活物質として電
解二酸化マンガン結晶中に水酸化リチウムを含有したも
のを用いたことを特徴とする非水電解液二次電池。
1. A non-aqueous electrolyte secondary battery using lithium or a lithium alloy as a negative electrode, wherein an electrolytic manganese dioxide crystal containing lithium hydroxide is used as a positive electrode active material. Electrolyte secondary battery.
【請求項2】請求項1記載の非水電解液二次電池に用い
る正極活物質の製造方法であって、電解二酸化マンガン
に30重量%以下の水酸化リチウム一水塩(LiOH・H2O)
を加え350℃以下の温度で加熱することを特徴とする非
水電解液二次電池用正極活物質の製造方法。
2. A method for producing a positive electrode active material used in the non-aqueous electrolyte secondary battery according to claim 1, wherein the electrolytic manganese dioxide contains 30% by weight or less of lithium hydroxide monohydrate (LiOH.H 2 O). )
And a method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery, which comprises heating at 350 ° C. or lower.
JP63191887A 1988-07-30 1988-07-30 Non-aqueous electrolyte secondary battery and method for producing positive electrode active material used therein Expired - Lifetime JPH07105232B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63191887A JPH07105232B2 (en) 1988-07-30 1988-07-30 Non-aqueous electrolyte secondary battery and method for producing positive electrode active material used therein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63191887A JPH07105232B2 (en) 1988-07-30 1988-07-30 Non-aqueous electrolyte secondary battery and method for producing positive electrode active material used therein

Publications (2)

Publication Number Publication Date
JPH0240860A JPH0240860A (en) 1990-02-09
JPH07105232B2 true JPH07105232B2 (en) 1995-11-13

Family

ID=16282109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63191887A Expired - Lifetime JPH07105232B2 (en) 1988-07-30 1988-07-30 Non-aqueous electrolyte secondary battery and method for producing positive electrode active material used therein

Country Status (1)

Country Link
JP (1) JPH07105232B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0427239B1 (en) * 1989-11-07 1998-02-11 Canon Kabushiki Kaisha Recording or reproducing apparatus
JP6567379B2 (en) * 2015-09-29 2019-08-28 古河電池株式会社 Lithium secondary battery charge / discharge method

Also Published As

Publication number Publication date
JPH0240860A (en) 1990-02-09

Similar Documents

Publication Publication Date Title
JP3489685B2 (en) Lithium manganate, method for producing the same, and lithium battery using the same
US4159962A (en) Method of preparing layered chalcogenides
JPH0349178B2 (en)
JPH09320588A (en) Manufacture of lithium battery positive electrode active material, and lithium battery
JPH11292547A (en) Lithium cobaltate, its production and lithium cell using that
JP4152618B2 (en) Method for producing positive electrode active material for layered oxide battery
JP4412936B2 (en) Cobalt oxyhydroxide, method for producing the same, and alkaline storage battery using the same
JP2967051B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
US3998658A (en) High voltage organic electrolyte batteries
JPH1160243A (en) Nickel hydroxide, lithium nickelate, their production and lithium ion secondary battery using the lithium nickelate
KR100638132B1 (en) Method for producing lithium manganate and lithium cell using said lithium manganate
JP2002216752A (en) Cobalt compound, method for manufacturing the same, positive electrode plate for alkaline storage battery using the same and alkaline storage battery
JP3057755B2 (en) Method for producing lithium manganese composite oxide and use thereof
JPH0644971A (en) Nonaqueous electrolyte lithium secondary battery
JP2599975B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP2553920B2 (en) Non-aqueous electrolyte secondary battery and method for producing positive electrode active material used therein
JPH07105232B2 (en) Non-aqueous electrolyte secondary battery and method for producing positive electrode active material used therein
JP4055269B2 (en) Manganese oxide and method for producing the same, lithium manganese composite oxide using manganese oxide, and method for producing the same
JP2517176B2 (en) Non-aqueous electrolyte secondary battery and method for producing positive electrode active material thereof
JP2646689B2 (en) Non-aqueous electrolyte secondary battery and method for producing positive electrode active material used therein
JPH10316432A (en) Production of nickel oxyhydroxide and nonaqueous electrolytic battery
JP2564175B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP4803867B2 (en) Method for producing lithium manganate for positive electrode of lithium battery
JP2000327340A (en) Lithium manganese compound oxide particulate composition and its production and utilization for lithium ion secondary battery
JP3079577B2 (en) Lithium-containing manganese dioxide, method for producing the same, and use thereof