JPH0240414A - Method and device for diagnosing combustion condition - Google Patents

Method and device for diagnosing combustion condition

Info

Publication number
JPH0240414A
JPH0240414A JP19243788A JP19243788A JPH0240414A JP H0240414 A JPH0240414 A JP H0240414A JP 19243788 A JP19243788 A JP 19243788A JP 19243788 A JP19243788 A JP 19243788A JP H0240414 A JPH0240414 A JP H0240414A
Authority
JP
Japan
Prior art keywords
exhaust gas
image
flame
state quantity
processor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19243788A
Other languages
Japanese (ja)
Other versions
JP2724839B2 (en
Inventor
Mitsuyo Nishikawa
西川 光世
Junzo Kawakami
川上 潤三
Hiroshi Matsumoto
弘 松本
Naganobu Honda
本田 永信
Hisanori Miyagaki
宮垣 久典
Toru Kimura
亨 木村
Motoyoshi Sasaki
佐々木 基好
Kenjiro Takahashi
健二郎 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Electric Power Co Inc
Hitachi Ltd
Original Assignee
Tohoku Electric Power Co Inc
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Electric Power Co Inc, Hitachi Ltd filed Critical Tohoku Electric Power Co Inc
Priority to JP63192437A priority Critical patent/JP2724839B2/en
Publication of JPH0240414A publication Critical patent/JPH0240414A/en
Application granted granted Critical
Publication of JP2724839B2 publication Critical patent/JP2724839B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To grasp a combustion state with accuracy by allowing a model factor which estimates a combustion state based on a characteristic value of a flame image to store an influence affected by the change in said combustion state as knowledge, and revising said model factor one by one based on said change. CONSTITUTION:Flames at the root of a burner 1 are measured as an image with an image fiber 3 so that they may be taken into an ITV camera 4. The flame image thus taken in is stored in a flame memory 6 by way of an A/D converter 5. A processor 7 extracts a characteristic value of flames. The ingredient of the exhaust gas is estimated by an estimation model which uses the characteristic value from the relation-ship between the aforesaid characteristic value and the exhaust gas. Since the exhaust gas ingredient changes markedly with combustion conditions, an AI processor 8 is adapted to revise and change the estimation model so that a highly accurate estimation model may be obtained constantly.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、燃焼状態診断方法および装置に係わり、特に
大規模プラントに好適な知識分離形燃焼状態診断方法及
び装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method and apparatus for diagnosing combustion conditions, and particularly to a knowledge-separated combustion condition diagnosis method and apparatus suitable for large-scale plants.

〔従来の技術〕[Conventional technology]

ボイラ運転中の燃焼ガスの中に含まれている物質、特に
有害物質である窒素酸化物(以下NOxと称す)等には
規制値が設けられており、その生成量を規制値以下に守
って運転する。
Regulation values have been set for substances contained in the combustion gas during boiler operation, especially the harmful substances nitrogen oxides (hereinafter referred to as NOx), and the amount produced must be kept below the regulation values. drive.

一方、ボイラの燃焼効率は、常時最大に保って運転する
ことが望ましい。そして、燃焼効率を算出する上で目安
となるのが排ガス中の未燃焼分である。排ガス中の未燃
焼分が多くなる程燃焼効率は低下し、同じ出力を得るに
も燃焼消l&量が増大する。しかし、従来、未燃焼分の
検出には長時間を要することから、運転中の燃焼効率の
把握は経験と勘に頼らざるを得ない状態であった。
On the other hand, it is desirable that the combustion efficiency of the boiler is always maintained at its maximum during operation. The unburned portion of the exhaust gas serves as a guideline for calculating combustion efficiency. As the amount of unburned matter in the exhaust gas increases, the combustion efficiency decreases, and the amount of combustion slaked increases to obtain the same output. However, conventionally, it has taken a long time to detect unburned components, so understanding combustion efficiency during operation has had to rely on experience and intuition.

最近、燃料としてガス・石油に変わり石炭の利用が進み
つつあり、ボイラにおいても微粉炭、CWM (石炭/
水スラリ)、COM (石炭/油スラリ)5等に変換さ
れつつある。
Recently, the use of coal has been increasing in place of gas and oil as fuel, and the use of pulverized coal and CWM (coal/
water slurry), COM (coal/oil slurry)5, etc.

特に、石炭を燃料とする場合、それ自体に含まれている
窒素分が燃焼により全てNOxに転換するため、その生
成量は2oOO〜3000pP!Ilと多大なものにな
る。さらに、燃焼速度がガス・油に比べて極めて遅いこ
とから、火炉温度の低下を伴い、灰中の未燃分含有量も
増える傾向にあり、問題となっていた。
In particular, when coal is used as fuel, all of the nitrogen contained in coal is converted into NOx through combustion, so the amount produced is 2oOO~3000pP! It will become a huge thing. Furthermore, since the combustion speed is extremely slow compared to gas and oil, the furnace temperature decreases and the unburned content in the ash tends to increase, which has been a problem.

一方、ボイラ運転時の燃焼状態を知る方法として、(1
)火炎を検出するためバーナ・ノズル部に取付けられた
フレーム・デテクタ、(2)排ガスに含まれる成分を検
出するため排ガス出口或いは煙道に取り付けられた検出
器、(3)火炉内の情報を得るため火炉上部に防爆機構
を施して取り付けられたITVカメラ、等があった。第
2図に示すこのような検出端は、(1)についてはバナ
の着火あるいは消火を検出するためのものであり、(2
)については環境規制で定められている制限値を超えて
いるか否かを検出するために取り付けられている。(3
)のITVカメラは火炉全体の燃焼状態を監視するため
のものである。
On the other hand, as a method of knowing the combustion state during boiler operation, (1
) Flame detector attached to the burner nozzle to detect the flame, (2) Detector attached to the exhaust gas outlet or flue to detect components contained in the exhaust gas, (3) Information inside the furnace. There was an ITV camera installed with an explosion-proof mechanism on the top of the furnace to obtain information. Such a detection end shown in Fig. 2 is for detecting the ignition or extinguishment of a banana for (1), and for (2)
) is installed to detect whether or not the limit value set by environmental regulations is exceeded. (3
) ITV camera is used to monitor the combustion status of the entire furnace.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、従来から取り付けられているこのような装置類
は次の欠点を有していた。
However, such conventionally installed devices have the following drawbacks.

(1)  フレーム・デテクタは、バーナ出口での火炎
の「着火」、「消火」を検出する装置で、火炎が消えて
いるのにもかかわらず別のバーナの火炎をとらえて「着
火」と誤った出力をする可能性があり、その判断は運転
員にゆだねられている。これは、基本的にフレーム・デ
テクタがバーナ出口でのON(着火)、OFF (消火
)信号しか出力できないためである。
(1) A flame detector is a device that detects ``ignition'' or ``extinguishment'' of a flame at the exit of a burner.It detects the flame of another burner even though the flame is extinguished and mistakenly detects it as ``ignition''. This decision is left to the operator. This is because the flame detector can basically only output ON (ignition) and OFF (extinguishing) signals at the burner outlet.

(2)排ガス成分の検出器は、分析に数十秒から数分を
必要とし、その分析値の実時間性に問題があると共に、
1点での検出のためその成分の実効値がわからないこと
から火炉での燃焼状態を知る上での手掛りとなるのに過
ぎなかった。
(2) Exhaust gas component detectors require tens of seconds to several minutes for analysis, and there is a problem with the real-time performance of the analysis values.
Because the detection was performed at one point, the effective value of the component was not known, so it was only a clue to the state of combustion in the furnace.

(3)火炉上部に取り付けられたITVカメラは。(3) The ITV camera attached to the top of the furnace.

対向バーナから火炎を撮影しているが、火炎が渦巻いた
状態で映っているため、燃焼状態の判断には運転員の経
験と勘に頼らざるを得なかった。さらにITVカメラの
取り付けに際しては、安全対策として防爆機構が不可欠
であり、そのメンテナンス等は困難な作業であった。
Flames were photographed from the opposing burners, but the images showed the flames swirling, so operators had no choice but to rely on their experience and intuition to judge the combustion state. Furthermore, when installing an ITV camera, an explosion-proof mechanism is essential as a safety measure, and its maintenance is difficult work.

本発明の目的は、火炎画像の特徴量を用いて燃焼状態を
推定するモデル係数が燃焼条件の変化によって受ける影
響を知識として記憶しておき、該知識を用いてモデル係
数を逐次修正して燃焼状態を推定する方法とその装置を
提供することにある。
An object of the present invention is to memorize the influence of changes in combustion conditions on model coefficients for estimating the combustion state using feature quantities of flame images as knowledge, and to sequentially modify the model coefficients using this knowledge to improve combustion efficiency. An object of the present invention is to provide a method and device for estimating a state.

〔課題を解決するための手段〕[Means to solve the problem]

上記問題は、火炎を画像として計測し、該画像を画像処
理して該火炎の特徴量を演算し、該特徴量と予め記憶し
た推定用演算条件より前記火炎の排ガス状態量を推定し
、あわせて該火炎の排ガス状態量を計測し、前記推定排
ガス状fi量と前記計測排ガス量との差を算出し、該差
と予め記憶している排ガス状態量の演算条件との関係に
ついての知識に基づき前記推定用演算条件を修正し、該
修正した推定用演算条件と前記特徴量より火炎の排ガス
状態量を診断することにより、または、火炎を画像とし
て捕らえ該画像を所定位置まで導く手段と、該手段に捕
らえられた前記画像を撮影する撮影機と、該撮影機で撮
影された前記画像をアナログ・デジタル変換するアナロ
グ・デジタル変換器と該変換器で変換された前記画像を
記憶するフレームメモリと、該フレームメモリの記憶す
る前記画像を画像処理して特徴量を演算し、予め記憶し
た推定用演算条件より前記火炎の排ガス状態量を推定す
るプロセッサと、前記火炎の排ガス状態量を計測する排
ガス計測装置と、該プロセッサの推定した推定排ガス状
態量と該排ガス計測装置の計測した計測排ガス状態量と
の差を算出し、該差を予め記憶している排ガス状態量の
演算条件との関係についての知識に基づき前記推定用演
算条件を修正する知識用プロセッサと、該修正された推
定用演算条件を前記プロセッサに伝達する手段と。
The above problem can be solved by measuring the flame as an image, processing the image to calculate the feature quantity of the flame, estimating the exhaust gas state quantity of the flame from the feature quantity and pre-stored estimation calculation conditions, and then measure the exhaust gas state quantity of the flame, calculate the difference between the estimated exhaust gas state fi amount and the measured exhaust gas amount, and obtain knowledge about the relationship between the difference and the pre-stored calculation conditions of the exhaust gas state quantity. correcting the estimation calculation conditions based on the estimation calculation conditions and diagnosing the flame exhaust gas state quantity from the modified estimation calculation conditions and the feature amount, or capturing the flame as an image and guiding the image to a predetermined position; a camera for photographing the image captured by the camera; an analog-to-digital converter for converting the image captured by the camera from analog to digital; and a frame memory for storing the image converted by the converter. a processor that performs image processing on the image stored in the frame memory to calculate a feature quantity and estimates the exhaust gas state quantity of the flame from pre-stored estimation calculation conditions; and a processor that measures the exhaust gas state quantity of the flame. A relationship between an exhaust gas measuring device and a calculation condition for an exhaust gas state amount in which a difference between an estimated exhaust gas state amount estimated by the processor and a measured exhaust gas state amount measured by the exhaust gas measuring device is stored in advance. a knowledge processor for modifying the estimation calculation conditions based on knowledge about the estimation calculation conditions; and means for transmitting the modified estimation calculation conditions to the processor.

該知識用プロセッサの出力を表示する表示装置とを備え
ることにより解決される。
The present invention is solved by providing a display device for displaying the output of the knowledge processor.

〔作用〕[Effect]

火炎の画像より特徴量を算出し、該特徴量とあらかじめ
記憶しである推定用演算条件より算出した前記火炎の推
定排ガス状態量と該火炎の排ガスを計測した計測排ガス
状態量との差を算出し、該差と予め記憶している排ガス
状態量の演算条件との関係についての知識に基づき前記
推定用演算条件を修正し、該修正した推定用演算条件と
前記特徴量より火炎の排ガス状態量を推定する。
A feature quantity is calculated from an image of the flame, and a difference is calculated between the estimated exhaust gas state quantity of the flame calculated from the feature quantity and pre-stored estimation calculation conditions and the measured exhaust gas state quantity obtained by measuring the exhaust gas of the flame. Then, the estimation calculation conditions are modified based on the knowledge of the relationship between the difference and the pre-stored calculation conditions for the exhaust gas state quantity, and the flame exhaust gas state quantity is determined from the modified estimation calculation conditions and the feature quantity. Estimate.

〔実施例〕〔Example〕

本発明の一実施例を第1図、第3図〜第6図を用いて説
明する。
An embodiment of the present invention will be described with reference to FIGS. 1 and 3 to 6.

発電用ボイラでは、第1図に示すように、各段バーナ1
から燃料と共に空気が火炉12に投入され、火炉12で
燃焼することにより発生した熱は伝熱管13に供給され
、排ガスは図示していない煙突から大気中に放出される
。このようなボイラでは、バーナ1根元部の火炎の状態
は、その下流を含めて燃焼状態を大きく左右することが
経験的に知られている。
In a power generation boiler, as shown in Figure 1, each stage burner 1
Air is introduced into the furnace 12 along with fuel from the furnace 12, and the heat generated by combustion in the furnace 12 is supplied to the heat transfer tubes 13, and exhaust gas is released into the atmosphere from a chimney (not shown). In such a boiler, it is empirically known that the state of the flame at the base of the burner 1 greatly influences the combustion state, including the state downstream thereof.

第1図は実施例の全体を示すブロック図で、本実施例の
装置は、バーナ1根元部の火炎を保護管2で保護された
イメージファイバ3を用いて画像として計測し、炉外に
設置したITVカメラ4に取り込む。取り込んだ火炎画
像をA/D変換器5によりA/D変−換してフレームメ
モリ6に格納し、プロセッサ7 (7i(i=1,2,
3.・・・・・・))を用いて画像処理して火炎の特徴
量を抽出する。この特徴量と排ガス(NOx、未燃分等
)の相関性に着目し、特徴量を用いた推定モデルによっ
て排ガス成分を推定する。
FIG. 1 is a block diagram showing the entire embodiment. The device of this embodiment measures the flame at the base of the burner 1 as an image using an image fiber 3 protected by a protective tube 2, and is installed outside the furnace. captured on ITV camera 4. The captured flame image is A/D converted by the A/D converter 5, stored in the frame memory 6, and then processed by the processor 7 (7i (i=1, 2,
3. ...))) to perform image processing and extract the flame features. Focusing on the correlation between this feature amount and exhaust gas (NOx, unburned gas, etc.), exhaust gas components are estimated using an estimation model using the feature amount.

しかし、排ガス成分は、負荷、炭種、燃料形態(微粉炭
、CWM (石炭/水スラリ)5等)により大きく変わ
る。そこでAI用プロセッサ8を用いて推定モデルを修
正・変更することにより、常に高精度の推定結果を得る
However, the exhaust gas components vary greatly depending on the load, coal type, and fuel type (pulverized coal, CWM (coal/water slurry)5, etc.). Therefore, by correcting and changing the estimation model using the AI processor 8, highly accurate estimation results are always obtained.

フレームメモリ6に取り込まれた火炎画像は、プロセッ
サ7で第3図に示す処理を実行する。
The flame image captured in the frame memory 6 is subjected to the processing shown in FIG. 3 by the processor 7.

画像入力処理7aは、火炎の有無の判断1画像の平均化
処理、等により、火炎の安定性のチエツク及平均化(例
えば(1)式)を図る。
The image input processing 7a attempts to check and average the stability of the flame (for example, equation (1)) by averaging one image for determining the presence or absence of flame.

ここに X;入力画像の平均 X;瞬時入力画像 N;平均化サンプル数 画像前処理7bは、座標変換(イメージファイバ3の捩
れ等による火炎画像の回転、画像の切り出しによる座標
の平行移動等の補正を施すこと)、ノイズ除去(火炎画
像に含まれているノイズ成分を除去すること)、等によ
り火炎画像を前処理する。
Here, X: average of input images The flame image is preprocessed by performing correction (correction), noise removal (removal of noise components included in the flame image), and the like.

次に、画像処理7cには半閾値処理(濃淡画像において
次の(2)式を用いて処理する)、エツジ処理1等を施
こす。
Next, in the image processing 7c, half-threshold processing (processing using the following equation (2) on a grayscale image), edge processing 1, etc. are performed.

ここに X(i、j);座標b*j)の位置の濃度Xth  ;
半間値化制限値 特徴量抽出処理7dは、面積計算、重心計算、周囲長計
算、距離計算、等を用いて画像から特徴量を抽出する。
Here, the concentration Xth at the position of X(i, j); coordinates b*j);
The semi-valued limit value feature amount extraction process 7d extracts feature amounts from the image using area calculation, center of gravity calculation, perimeter calculation, distance calculation, and the like.

排ガス推定処理7eは、抽出した特徴量を用いて(3)
式により排ガス状態量を推定する。1例として、NOx
 (窒素酸化物)推定量pNOxについて示す。
The exhaust gas estimation process 7e uses the extracted feature quantities to perform (3)
The exhaust gas state quantity is estimated using the formula. As an example, NOx
(Nitrogen oxides) The estimated amount pNOx is shown below.

ここに K 1. K2. k、、 k2. ”’−=k n 
;係数火炎の特微量 lN0X;NOx推定指標 A;火炎の広がり B;火炎の着火性 C;火炎の温度 (または火炎の輝度) D7火炎の長さ このようにして得られた徘ガス推定量をAI用プロセッ
サ8に回線を通して伝送する。
Here K1. K2. k,, k2. ”'-=k n
; coefficient flame characteristic quantity lNOX; NOx estimation index A; flame spread B; flame ignitability C; flame temperature (or flame brightness) D7 flame length It is transmitted to the AI processor 8 through a line.

以上のプロセッサ7の処理をフローで示したものが第4
図である。
The process flow of the processor 7 described above is shown in the fourth section.
It is a diagram.

伝送された排ガス推定量は、AI用プロセッサ8で次の
ように処理される。処理の1例として、NOx推定量p
 N Oxについて第5図に示す。
The transmitted estimated amount of exhaust gas is processed by the AI processor 8 as follows. As an example of processing, NOx estimated amount p
FIG. 5 shows NOx.

(1)排ガス分析結果の取り込み 定常状態時のC○(−酸化炭素) 、 02(酸素)、
N0x(この値をaNOxとする)、等の排ガス状態量
を検出端10により検出し、PIlo(プロセス人・出
力11if)11を介してAI用プロセッサ8に取り込
む。
(1) Incorporating exhaust gas analysis results C○ (-carbon oxide), 02 (oxygen), in steady state
Exhaust gas state quantities such as NOx (this value is referred to as aNOx) are detected by the detection end 10 and taken into the AI processor 8 via the PIlo (process person/output 11if) 11.

(2)  プロセッサ71の推定結果の取り込みプロセ
ッサ71 (1”It 2y 3+’;プロセッサ7の
数)で推定した結果(p No xとする)を回線を通
してAI用プロセッサ8に取り込む。
(2) Taking in the estimation result of the processor 71 The result (denoted as p No x) estimated by the processor 71 (1"It 2y 3+'; the number of processors 7) is taken into the AI processor 8 through a line.

(3)  aNOxとpNOxの差を判断する(4)式
を用いてaNOxとp N Oxの差dN○Xを求め、
その差が予め設定しておいた制限範囲内に入っているか
否かを調べる。
(3) Determine the difference between aNOx and pNOx Use equation (4) to find the difference dN○X between aNOx and pNOx,
It is checked whether the difference is within a preset limit range.

dNOx=aNOx−pNOx    −(4)LL≦
dNOx≦ULであるか ここに LL;下限値 UL;下限値 dNOx;偏差 LL>dNOxの場合にはpNO*が制限範囲を超えて
実際のNOx以上に大きな値を推定している。また、d
NOx>ULの場合には、PN○Xが制限範囲以下に推
定されていることから、推論部で推定モデルを修正・変
更する。
dNOx=aNOx−pNOx−(4)LL≦
If dNOx≦UL, where LL; lower limit value UL; lower limit value dNOx; deviation LL>dNOx, pNO* exceeds the limit range and is estimated to be larger than the actual NOx. Also, d
In the case of NOx>UL, since PN○X is estimated to be below the limit range, the inference section corrects/changes the estimation model.

(4)推論(推定モデルの修正・変更)推論部では、第
6図に示す燃焼時の火炎画像及びその特微量、定数、等
とNOx (=a No x)及び未燃分などとの関係
を知識データベースに記憶しておく。
(4) Inference (correction/change of estimation model) In the inference section, the relationship between the flame image during combustion shown in Fig. 6, its characteristic quantities, constants, etc., and NOx (= a No x), unburned matter, etc. is stored in the knowledge database.

例えば、d N OxがULよりも大きくなった場合、
第6図の知識から炭種が変更され、変更後の炭種が前の
炭種に比べて燃料比が高くなったため、と推論されその
場合には、推定モデルの係数に1゜K2を各々(K工+
Δによ)、 (K2+Δに、)に修正すればよいとの結
果が得られる。
For example, if d N Ox becomes larger than UL,
Based on the knowledge in Figure 6, it can be inferred that the coal type was changed and the fuel ratio of the changed coal type was higher than that of the previous coal type. (K engineering +
The result is that it is only necessary to correct it to Δ) and (K2+Δ).

さらに、バーナ・パターン、負荷、02微粉粒度、等が
燃焼条件の変化に大きく係わり、通常運転時にはそれら
と火炎との関係は次の第1表に示すものであることがわ
かった。
Furthermore, it was found that the burner pattern, load, 02 fine particle size, etc. are greatly affected by changes in combustion conditions, and the relationship between these and the flame during normal operation is as shown in Table 1 below.

すなわち1例えば0□割合が変化すると(5)式に示す
ようになる。
That is, when the ratio of 1, for example, 0□ changes, it becomes as shown in equation (5).

Q2の割合が大のとき 第1表 (k□〜に4:係列 このような関係を第6図と同様に知識データ・ベースと
して記憶しておくことにより、新しい知見の追加などを
容易にすると共に、より詳細な推論が可能となる。
When the ratio of Q2 is large, Table 1 (k □ ~ to 4: Coordination) By storing such relationships as a knowledge database as in Figure 6, it is easy to add new knowledge. At the same time, more detailed inference becomes possible.

(5)  プロセッサ7iへの伝送 推論部の結論をプロセッサ71へ伝送し、推論モデルを
修正・変更する。
(5) Transmission to processor 7i The conclusion of the inference section is transmitted to processor 71, and the inference model is corrected/changed.

(6)表示出力 推論部の結論、a N Oxとp N Oxとの差を表
示する。このとき、推論過程についても合せて表示すれ
ば、さらに理解が容易になる。
(6) Display Output The conclusion of the inference section, the difference between a N Ox and p N Ox, is displayed. At this time, if the inference process is also displayed, it will be easier to understand.

(7)  終了 全てのプロセッサ71について終了したか否かを判断す
る。
(7) Termination It is determined whether all processors 71 have been terminated.

以上1本実施例によれば、推定モデルを知識を用いて逐
次修正あるいは変更することにより、ボイラ運転時の燃
焼状態を良好に判断できる。
According to this embodiment, the combustion state during boiler operation can be determined satisfactorily by sequentially correcting or changing the estimation model using knowledge.

また、基本的には本実施例のように推定用と推論用にプ
ロセッサを分離する必要はないが、同じ知識を複数の推
定用プロセッサが利用できることから負荷が軽減できる
と共に個々のプロセッサに知識を入れる必要が無く拡張
が容易で安価に構成できる。
Additionally, although there is basically no need to separate processors for estimation and inference as in this embodiment, the same knowledge can be used by multiple estimation processors, reducing the load and providing knowledge to each processor. It is easy to expand and can be configured at low cost since there is no need to install it.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、火炎の画像より排ガス状態を推定し、
この推定と排ガス状態の計測結果を比較して、その差の
生じる理由をあらかじめ記憶している知識に基づき判断
して、排ガス状態推定条件を修正して排ガス状態を精度
よく推定することにより燃焼状態を精確に把握できるの
で、経験の少い運転具でもボイラ等の燃焼装置を効率よ
く運転できる。
According to the present invention, the exhaust gas condition is estimated from the flame image,
Compare this estimation with the measured results of the exhaust gas condition, judge the reason for the difference based on pre-memorized knowledge, modify the exhaust gas condition estimation conditions, and accurately estimate the exhaust gas condition to determine the combustion condition. Since it is possible to accurately grasp the situation, even operators with little experience can operate combustion equipment such as boilers efficiently.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すブロック図、第2図は
従来の燃焼状態計測監視装置を示す概念図、第3図はプ
ロセッサの内部処理を示すブロック図、第4図はプロセ
ッサの内部処理を示すフロー図、第5図はAI用プロセ
ッサの内部処理を示すフロー図°、第6図は知識につい
ての1例を示す図である。 1・・・バーナ、3・・・イメージファイバ、4・・I
TVカメラ、5・・・A/D変換器、6・・・フレーム
メモリ、7・・・プロセッサ、8・・AI用プロセッサ
。 第2=
Fig. 1 is a block diagram showing an embodiment of the present invention, Fig. 2 is a conceptual diagram showing a conventional combustion state measurement and monitoring device, Fig. 3 is a block diagram showing internal processing of the processor, and Fig. 4 is a block diagram showing the internal processing of the processor. FIG. 5 is a flowchart showing internal processing of the AI processor, and FIG. 6 is a diagram showing an example of knowledge. 1...Burner, 3...Image fiber, 4...I
TV camera, 5... A/D converter, 6... Frame memory, 7... Processor, 8... AI processor. 2nd =

Claims (2)

【特許請求の範囲】[Claims] (1)火災を画像として計測し、該画像を画像処理して
該火炎の特徴量を演算し、該特徴量と予め記憶した推定
用演算条件より前記火炎の排ガス状態量を推定し、あわ
せて該火炎の排ガス状態量を計測し、前記推定排ガス状
態量と前記計測排ガス状態量との差を算出し、該差と予
め記憶している排ガス状態量の演算条件との関係につい
ての知識に基づき前記推定用演算条件を修正し、該修正
した推定用演算条件と前記特徴量より火炎の排ガス状態
量を診断することを特徴とする燃焼状態診断方法。
(1) Measure the fire as an image, process the image to calculate the feature quantity of the flame, estimate the exhaust gas state quantity of the flame from the feature quantity and pre-stored estimation calculation conditions, and Measure the exhaust gas state quantity of the flame, calculate the difference between the estimated exhaust gas state quantity and the measured exhaust gas state quantity, and based on knowledge of the relationship between the difference and the pre-stored calculation conditions of the exhaust gas state quantity. A method for diagnosing a combustion state, comprising: modifying the calculation conditions for estimation, and diagnosing the state quantity of flame exhaust gas from the modified calculation conditions for estimation and the feature quantity.
(2)火炎を画像として捕らえ該画像を所定位置まで導
く手段と、該手段に捕らえられた前記画像を撮影する撮
影機と、該撮影機で撮影された前記画像をアナログ・デ
ジタル変換するアナログ・デジタル変換器と、該変換器
で変換された前記画像を記憶するフレームメモリと、該
フレームメモリの記憶する前記画像を画像処理して特徴
量を演算し、予め記憶した推定用演算条件より前記火災
の排ガス状態量を推定するプロセッサと、前記火災の排
ガス状態量を計測する排ガス計測装置と、該プロセッサ
の推定した推定排ガス状態量と該排ガス計測装置の計測
した計測排ガス状態量との差を算出し、該差と予め記憶
している排ガス状態量の演算条件との関係についての知
識に基づき前記推定用演算条件を修正する知識用プロセ
ッサと、該修正された推定用演算条件を前記プロセッサ
に伝達する手段と、該知識用プロセッサの出力を表示す
る表示装置と、を備えたことを特徴とする燃焼状態診断
装置。
(2) means for capturing the flame as an image and guiding the image to a predetermined position; a camera for photographing the image captured by the means; and an analog camera for converting the image photographed by the camera from analog to digital. a digital converter; a frame memory that stores the image converted by the converter; and a frame memory that performs image processing on the image stored in the frame memory, calculates a feature amount, and calculates a feature value based on pre-stored estimation calculation conditions. a processor that estimates the exhaust gas state quantity of the fire, an exhaust gas measuring device that measures the exhaust gas state quantity of the fire, and calculates a difference between the estimated exhaust gas state quantity estimated by the processor and the measured exhaust gas state quantity measured by the exhaust gas measuring device. a knowledge processor that corrects the estimation calculation condition based on knowledge of the relationship between the difference and a pre-stored calculation condition of the exhaust gas state quantity; and transmits the modified estimation calculation condition to the processor. A combustion state diagnosing device comprising: a means for diagnosing a combustion state; and a display device for displaying an output of the knowledge processor.
JP63192437A 1988-08-01 1988-08-01 Combustion state diagnosis method and apparatus Expired - Lifetime JP2724839B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63192437A JP2724839B2 (en) 1988-08-01 1988-08-01 Combustion state diagnosis method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63192437A JP2724839B2 (en) 1988-08-01 1988-08-01 Combustion state diagnosis method and apparatus

Publications (2)

Publication Number Publication Date
JPH0240414A true JPH0240414A (en) 1990-02-09
JP2724839B2 JP2724839B2 (en) 1998-03-09

Family

ID=16291290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63192437A Expired - Lifetime JP2724839B2 (en) 1988-08-01 1988-08-01 Combustion state diagnosis method and apparatus

Country Status (1)

Country Link
JP (1) JP2724839B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010133677A (en) * 2008-12-08 2010-06-17 Ueno Shoten:Kk Wood stove diagnosing system and wood stove diagnosing program
JP2019036889A (en) * 2017-08-18 2019-03-07 三菱重工業株式会社 Image processing apparatus and image processing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59137717A (en) * 1983-01-28 1984-08-07 Hitachi Ltd Control system for thermal power plant
JPS6193311A (en) * 1984-10-15 1986-05-12 Hitachi Ltd Monitoring method of combustion state and device thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59137717A (en) * 1983-01-28 1984-08-07 Hitachi Ltd Control system for thermal power plant
JPS6193311A (en) * 1984-10-15 1986-05-12 Hitachi Ltd Monitoring method of combustion state and device thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010133677A (en) * 2008-12-08 2010-06-17 Ueno Shoten:Kk Wood stove diagnosing system and wood stove diagnosing program
JP2019036889A (en) * 2017-08-18 2019-03-07 三菱重工業株式会社 Image processing apparatus and image processing method

Also Published As

Publication number Publication date
JP2724839B2 (en) 1998-03-09

Similar Documents

Publication Publication Date Title
EP2292974A2 (en) Oxyfuel boiler and control method for oxyfuel boiler
JPH0316564B2 (en)
CN107152695A (en) The heating furnace visualization combustion control system and control method detected based on many reference amounts
JP5996762B1 (en) Waste combustion control method and combustion control apparatus to which the method is applied
JPH0650177B2 (en) Multi-burner combustion condition monitoring method
CN110306017B (en) Annealing furnace proportion control type burner air-fuel ratio control method and system
CN105509890A (en) On-line infrared measurement apparatus for hearth flue-gas temperature
JP2014234981A (en) Combustion management system in combustion furnace and combustion control system of combustion furnace
JPH0240414A (en) Method and device for diagnosing combustion condition
US6551094B2 (en) Method and device for determining a soot charge in a combustion chamber
US5392312A (en) Method and device for regulating the combustion air flow rate of a flue rate gas collection device of a metallurgical reactor, corresponding collection device and metallurgical reactor
CN102288632B (en) Method for measuring ignition point of wind powder mixture in coal burning boiler
JP3466555B2 (en) Combustion control method and device for refuse incineration plant
JPH05288303A (en) Boiler stained state estimation device
US20210356126A1 (en) Burner flame stabilization method and system
JPS6287725A (en) Diagnosis method for burning condition
JPH05280703A (en) Boiller scale estimating device
JPH0375402A (en) Combustion control for fluidized bed furnace
JPH0833196B2 (en) Burner combustion controller
Butcher Performance control strategies for oil-fired residential heating systems
JP3547296B2 (en) Abnormality detection method of exhaust gas sensor and refuse incinerator
JP3140540B2 (en) Boiler flame detector
JP2759473B2 (en) Method and apparatus for monitoring and controlling combustion state
JP2753839B2 (en) Method for monitoring and controlling combustion state
JP2710778B2 (en) Combustion state monitoring device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071205

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081205

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081205

Year of fee payment: 11