JPH0375402A - Combustion control for fluidized bed furnace - Google Patents

Combustion control for fluidized bed furnace

Info

Publication number
JPH0375402A
JPH0375402A JP1212824A JP21282489A JPH0375402A JP H0375402 A JPH0375402 A JP H0375402A JP 1212824 A JP1212824 A JP 1212824A JP 21282489 A JP21282489 A JP 21282489A JP H0375402 A JPH0375402 A JP H0375402A
Authority
JP
Japan
Prior art keywords
furnace
combustion
output
oxygen concentration
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1212824A
Other languages
Japanese (ja)
Other versions
JPH0670481B2 (en
Inventor
Takeyuki Naito
内藤 剛行
Yoshiki Kuroda
黒田 芳喜
Masaaki Furukawa
正昭 古川
Yutaka Yoshida
裕 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP1212824A priority Critical patent/JPH0670481B2/en
Publication of JPH0375402A publication Critical patent/JPH0375402A/en
Publication of JPH0670481B2 publication Critical patent/JPH0670481B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Regulation And Control Of Combustion (AREA)
  • Incineration Of Waste (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)

Abstract

PURPOSE:To eliminate a delay in time and make it possible to reflect exactly the combustion quantity by providing a brightness detection sensor which detects the brightness in a furnace and correcting the outputs of said sensor by the output of an oxygen concentration meter and changing the volume of the air flow by obtaining more exact signal of state of combustion and in accordance to said signal. CONSTITUTION:In the upper section of the free board 12 of a furnace 10 with a fluidized bed a brightness detector 24 is provided which detects the brightness in the furnace, and in an exhaust gas route downstream of a gas cooling chamber 15 an exhaust gas oxygen concentration meter 23 is provided which detects the oxygen concentration in the exhaust gas. An output S1 of the exhaust gas oxygen concentration meter 23 and an output S2 of the brightness detector 24 are inputted to a calculator 25. The brightness detector 24 can detect relative changes in the state of combustion without delay, and the oxygen concentration in the exhaust gas that is detected by the exhaust gas oxygen concentration meter 23 can detect exactly the state of combustion in the furnace even though there is a delay. With this arrangement a calculator 25 corrects the output S2 of the brightness detector 24 by the output S1 of the exhaust gas oxygen concentration meter 23 and can output a signal of state of combustion which reflects more exact state of combustion as an output S3 to calculators 26, 27, and 28 respectively.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、流動床炉における燃焼制御方法に関するもの
で、特に炉内の燃焼状態(燃焼量)を時間遅れなく正確
に検出し、流動空気を制御し燃焼状態を略一定に維持す
る燃焼制御方法に関するものである。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a combustion control method in a fluidized bed furnace, and in particular, it is possible to accurately detect the combustion state (combustion amount) in the furnace without time delay, and to The present invention relates to a combustion control method that controls combustion conditions and maintains a substantially constant combustion state.

〔従来技術〕[Prior art]

流動床炉は、その燃焼特性が非常に優れており、都市ゴ
ミや産業廃棄物の焼却炉或いはボイラとして多く利用さ
れている。しかしながら、流動床炉は燃焼特性が優れて
いるため、ボイラとして均質な燃焼物を燃焼する上では
燃焼状態を略一定に維持を略一定に維持することは燃焼
炉程難しくはないが、都市ゴミ等その性質上連続した定
量供給が不可能な燃焼物をこの流動床炉に投入した場合
、燃焼物が素早く短時間で燃焼してしまうため、燃焼物
の投入量のバラツキはそのまま燃焼ガスの変動や、燃焼
ガス中の酸素濃度のバラツキにつながるという問題があ
り、排ガス対策や炉設備の空気系や排ガス系にも種々の
問題をもたらしていた。
Fluidized bed furnaces have very excellent combustion characteristics and are often used as incinerators or boilers for municipal garbage and industrial waste. However, fluidized bed furnaces have excellent combustion characteristics, so when burning homogeneous combustible materials as a boiler, it is not as difficult to maintain a nearly constant combustion state as with combustion furnaces, but municipal waste When a combustible material that cannot be continuously supplied in a constant quantity due to its nature is put into this fluidized bed furnace, the combustible material burns quickly and in a short time, so variations in the amount of combustible material input directly cause fluctuations in the combustion gas. This also leads to variations in the oxygen concentration in the combustion gas, which also causes various problems in exhaust gas countermeasures and the air system and exhaust gas system of furnace equipment.

そこで上記のように流動床炉に投入される燃焼物の量に
変動がある場合、瞬間的に大量の燃焼物が燃焼するのを
防止する対策として、本出願人が先に出願したPCT/
J P88100437号に開示された流動床炉におけ
る燃焼制御方法がある。この燃焼制御方法は炉内の燃焼
が活発の時は、流動床下部から送り込む、所謂流動空気
量を減少させ燃焼物のガス化を抑制し、燃焼が不活発の
時は流動空気を増加させ、燃焼物のガス化を活発化させ
るようにしたものである。これにより、炉内に投入され
る燃焼物の変動にかかわらず、炉内の燃焼状態を略一定
に維持できるようにしたものである。
Therefore, when there is a fluctuation in the amount of combustibles fed into the fluidized bed furnace as mentioned above, as a measure to prevent a large amount of combustibles from burning instantaneously, the present applicant has previously applied PCT/
There is a combustion control method in a fluidized bed furnace disclosed in JP88100437. This combustion control method reduces the amount of so-called fluidized air sent from the bottom of the fluidized bed when combustion in the furnace is active, suppressing the gasification of the combustion products, and increases the amount of fluidized air when combustion is inactive. This is designed to activate the gasification of combustion materials. This makes it possible to maintain a substantially constant combustion state within the furnace regardless of fluctuations in the combustible materials introduced into the furnace.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記炉内の燃焼状態により流動空気量を変化させる燃焼
制御方法において、炉内燃焼状態を一定に維持するとい
う機能が良く作用するか否かは、燃焼量又は燃焼物の供
給量の検出精度にかかっている。
In the above-mentioned combustion control method that changes the amount of flowing air depending on the combustion state in the furnace, whether the function of maintaining the combustion state in the furnace at a constant level works well or not depends on the detection accuracy of the combustion amount or the amount of combustible material supplied. It's on.

炉内の燃焼状態、即ち燃焼量検出方法として、排気ガス
中の酸素濃度を酸素濃度計で測定する方法がある。これ
は通常、排ガスが流動床炉を出て冷却された位置で検出
するため、その流路断面における局所的な差は少なく、
測定値の精度が高いものの、排ガスが測定点までに到達
するのに時間がかかり、時間遅れがあるため、上記燃焼
制御方法の有効な制御信号とはなりえない。
As a method for detecting the combustion state in the furnace, that is, the amount of combustion, there is a method of measuring the oxygen concentration in the exhaust gas with an oxygen concentration meter. This is usually detected at the location where the exhaust gas exits the fluidized bed furnace and is cooled, so local differences in the flow path cross section are small;
Although the measurement value is highly accurate, it takes time for the exhaust gas to reach the measurement point and there is a time delay, so it cannot be used as an effective control signal for the above combustion control method.

また、炉内の燃焼状態を炉内の明るさで検出する方法は
上記排ガス中の酸素濃度を測定するのと異なり、時間遅
れが全くない炉内の燃焼信号であるが、明るさと燃焼量
には相対的な比例関係はあるものの、燃焼物が都市ゴミ
等の場合、その性質上からみつきによる所謂1ドカ落ち
」により急激な燃焼をおこし、多量の煙等が発生し、燃
焼が盛んになったにもかかわらず、炉内が暗くなったり
して、燃焼が不活発であるという誤った信号を出力する
場合もあり、明るさだけでは正確な燃焼制御ができない
という問題があった。
In addition, unlike the method of measuring the oxygen concentration in the exhaust gas mentioned above, the method of detecting the combustion state in the furnace by the brightness inside the furnace is a combustion signal in the furnace with no time delay, but the brightness and the amount of combustion Although there is a relative proportional relationship, when the combustible material is municipal garbage, etc., due to its nature, the so-called 1 doka fall due to sticking causes rapid combustion, a large amount of smoke, etc. is generated, and combustion becomes active. Despite this, there are cases where the inside of the furnace becomes dark and a false signal indicating that combustion is inactive is output, making it impossible to accurately control combustion based on brightness alone.

同様に炉内に設置した酸素濃度計の信号は時間的遅れは
少ないものの、局部的なもので、設置場所によっては炉
内全体の酸素濃度を代表するものとならない。また、都
市ゴミ等の燃焼物の落下状態を工業用テレビカメラで観
測し、画像処理した信号や、燃焼物の落下重量は燃焼量
を事前に検出できるものではあるが、これらの信号単独
では精度のよい燃焼制御はできないという問題があった
Similarly, although the signal from the oxygen concentration meter installed inside the furnace has little time delay, it is local and may not be representative of the oxygen concentration in the entire furnace depending on the installation location. In addition, although the amount of combustion can be detected in advance by using signals obtained by observing the falling condition of combustible materials such as urban garbage using an industrial television camera and processing the image, as well as by using the weight of the combustible materials that have fallen, the accuracy of these signals alone is insufficient. The problem was that it was not possible to achieve good combustion control.

本発明は上述の点に鑑みてなされたもので、上記炉内の
燃焼状態により流動空気量を変化させて燃焼量を一定に
制御する燃焼制御方法において、この燃焼制御方法の燃
焼量を一定に維持させる機能を最高度に維持させるため
に、時間遅れがなく、且つ正確に燃焼量を反映する制御
信号を得、この制御信号により流動空気量を制御し、燃
焼状態を的確に制御する流動床炉における燃焼制御方法
を提供することを目的とする。
The present invention has been made in view of the above points, and includes a combustion control method that controls the combustion amount to a constant level by changing the amount of flowing air depending on the combustion state in the furnace. In order to maintain the maintenance function to the highest level, the fluidized bed obtains a control signal that accurately reflects the combustion amount without any time delay, and uses this control signal to control the amount of fluidized air to accurately control the combustion state. The purpose of this invention is to provide a combustion control method in a furnace.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決するため本発明は、流動床炉における燃
焼制御方法を下記の如く行なった。
In order to solve the above problems, the present invention provides a combustion control method in a fluidized bed furnace as follows.

流動床下部から送り込む空気により流動媒体を流動させ
ると共に、燃焼状態を検出し、該燃焼状態に応じて該流
動床下部から送り込む空気量を変化させ、炉内に投入さ
れる燃焼物の変動にかかわらず燃焼量を略一定に維持す
る流動床炉における燃焼制御方法において、排ガス中の
酸素濃度を測定する酸素濃度計を設け、炉内燃焼状態を
検出する手段として炉内の明るさを検出する明るさ検出
センサを設け、該検出センサの出力をこの酸素濃度計の
出力で補正し、より正確な燃焼状態信号を得、該燃焼状
態信号に応じて流動空気量を変化させることを特徴とす
る。
The fluidized medium is made to flow by air sent from the lower part of the fluidized bed, the combustion state is detected, and the amount of air sent from the lower part of the fluidized bed is changed according to the combustion state, regardless of fluctuations in the combustible material introduced into the furnace. In a combustion control method in a fluidized bed furnace that maintains the combustion amount at a substantially constant level, an oxygen concentration meter is installed to measure the oxygen concentration in the exhaust gas, and a brightness meter is installed to detect the brightness inside the furnace as a means of detecting the combustion state inside the furnace. The present invention is characterized in that a combustion state detection sensor is provided, the output of the detection sensor is corrected by the output of the oxygen concentration meter, a more accurate combustion state signal is obtained, and the amount of flowing air is changed in accordance with the combustion state signal.

また、前記炉内燃焼状態を検出する手段として、炉内に
酸素濃度検出センサを設け、該酸素濃炉内に投入される
燃焼物を観測する工業用テレビカメラを設け、該工業用
テレビカメラの画像処理信号を用いることを特徴とする
Further, as a means for detecting the combustion state in the furnace, an oxygen concentration detection sensor is provided in the furnace, and an industrial television camera is provided to observe the combustion material put into the oxygen enriched furnace. It is characterized by using image processing signals.

また、前記 炉内燃焼状態を検出する手段として、炉内
に投入される燃焼物の重量を測定する重量測定手段を設
け、該重量測定手段の出力を用いることを特徴とする。
Further, as the means for detecting the combustion state in the furnace, a weight measuring means for measuring the weight of the combustible material put into the furnace is provided, and the output of the weight measuring means is used.

また、前記炉内燃焼状態を検出する手段として、炉から
の排ガス流量を検出する排ガス流量検出センサを設け、
該排ガス流量検出センサの出力を用いることを特徴とす
る。
Further, as a means for detecting the combustion state in the furnace, an exhaust gas flow rate detection sensor for detecting the flow rate of exhaust gas from the furnace is provided,
The present invention is characterized in that the output of the exhaust gas flow rate detection sensor is used.

また、前記炉内燃焼状態を検出する手段として、炉内圧
力を検出する炉内圧力検出センサを設け、該炉内圧力検
出センサの出力を用いることを特徴とする。
Further, as the means for detecting the in-furnace combustion state, an in-furnace pressure detection sensor for detecting the in-furnace pressure is provided, and the output of the in-furnace pressure detection sensor is used.

また、前記炉内燃焼状態を検出する手段として、前記炉
内明るさ検出センサの出力、炉内酸素濃度検出センサの
出力、炉内に投入される燃焼物を観測する工業用テレビ
カメラの画像処理信号、燃焼物の重量を測定する重量測
定手段の出力、排ガス流量検出センサの出力及び炉内圧
力検出センサの出力のいずれか2以上を組み合わせて用
いることを特徴とする。
Further, as means for detecting the combustion state in the furnace, the output of the furnace brightness detection sensor, the output of the furnace oxygen concentration detection sensor, and image processing of an industrial television camera that observes the combustion material put into the furnace. It is characterized in that two or more of the following are used in combination: a signal, an output of a weight measuring means for measuring the weight of the combustion material, an output of an exhaust gas flow rate detection sensor, and an output of an in-furnace pressure detection sensor.

〔作用〕[Effect]

上記の如き流動床炉における燃焼制御方法では、炉内明
るさ検出センサの出力、炉内酸素濃度検出センサの出力
、炉内に投入される燃焼物を観測する工業用テレビカメ
ラの画像処理信号、燃焼物の重量を測定する重量測定手
段の出力、排ガス流量検出センサの出力及び炉内圧力検
出センサの出力が燃焼状態の相対的な変化を時間遅れな
く検出でき、また排ガス中の酸素濃度は時間的遅れはあ
るものの炉内の燃焼状態を正確に検出できる。
In the combustion control method in a fluidized bed furnace as described above, the output of the in-furnace brightness detection sensor, the output of the in-furnace oxygen concentration detection sensor, the image processing signal of an industrial television camera that observes the combustion material introduced into the furnace, The output of the weight measuring means that measures the weight of the combustion material, the output of the exhaust gas flow rate detection sensor, and the output of the furnace pressure detection sensor can detect relative changes in the combustion state without time delay, and the oxygen concentration in the exhaust gas can be detected over time. Although there is a delay, the combustion state inside the furnace can be accurately detected.

従って、この燃焼状態の相対的な変化を時間遅れなく検
出する信号と、時間遅れはあるが、炉内の燃焼状態を正
確に検出する信号を組合わせ、前者を後者で補正するこ
とにより、より正確な燃焼状態を反映する信号が得られ
、この信号により、流動空気量を変化させるから、炉内
の燃焼を的確に制御できる。
Therefore, by combining a signal that detects relative changes in the combustion state without any time delay and a signal that accurately detects the combustion state in the furnace, albeit with a time delay, and correcting the former with the latter, it is possible to Since a signal reflecting the accurate combustion state is obtained and the amount of flowing air is changed based on this signal, combustion in the furnace can be precisely controlled.

〔実施例〕〔Example〕

以下、本発明の実施例を図面に基づいて説明する。 Embodiments of the present invention will be described below based on the drawings.

第1図は、本発明に係る制御方法を適用する流動床焼却
炉を用いた焼却設備の概略構成を示す図である。同図に
おいて、10は流動床炉であり、該流動床炉10は流動
層11とフリーボード12を具備し、押込み送風機14
から送られる流動空気を流動層11の下部から押込むこ
とにより、流動媒体を流動させるようになっている。燃
焼物供給ホッパー13から都市ゴミ等の燃焼物を流動床
炉10内に投入すると、燃焼物は流動層11でガス化さ
れフリーボード12で燃焼する。そしてその排ガス仕ガ
ス冷却室15を通って空気予熱器16を通り、押込み送
風機14から送られる空気を予熱し、電気集塵機17に
入る。該電気集塵機17で粒子状物を除去された排ガス
は誘引送風機18により誘引され、煙突19より大気中
に放出される。
FIG. 1 is a diagram showing a schematic configuration of an incineration facility using a fluidized bed incinerator to which the control method according to the present invention is applied. In the same figure, 10 is a fluidized bed furnace, and the fluidized bed furnace 10 is equipped with a fluidized bed 11 and a freeboard 12, and a forced air blower 14.
The fluidized medium is made to flow by forcing fluidized air sent from the lower part of the fluidized bed 11. When combustible materials such as municipal waste are fed into the fluidized bed furnace 10 from the combustible material supply hopper 13, the combustible materials are gasified in the fluidized bed 11 and combusted in the freeboard 12. Then, the exhaust gas passes through the gas cooling chamber 15, passes through the air preheater 16, preheats the air sent from the forced air blower 14, and enters the electrostatic precipitator 17. The exhaust gas from which particulate matter has been removed by the electrostatic precipitator 17 is drawn by an induced draft fan 18 and discharged into the atmosphere from a chimney 19.

流動床炉10のフリーボード12上部には、ホトトラン
ジスター等を具備する炉内の明るさを検出する明るさ検
出計24が設けられており、ガス冷却室15の後流の排
ガス経路には排ガス中の酸素濃度を検出する排ガス酸素
濃度計23が設けられている。なお、排ガス酸素濃度計
23の設置位置は、ガス冷却室15の後流に限るもので
はない。該排ガス酸素濃度計23の出力SIと、明るさ
検出計24の出力SIは演算器25に入力される。明る
さ検出計24は後に詳述するように燃焼状態の相対的な
変化を時間遅れなく検出でき、排ガス酸素濃度計23で
検出される排ガス中の酸素濃度は時間的遅れはあるもの
の炉内の燃焼状態を正確に検出できるから、演算器25
は明るさ検出計24の出力S2を排ガス酸素濃度計23
の出力SIで補正し、より正確な燃焼状態を反映する燃
焼状態信号を出力S8として演算器26,27゜28に
それぞれ出力する。
A brightness detector 24 that detects the brightness inside the furnace is provided above the freeboard 12 of the fluidized bed furnace 10 and includes a phototransistor, etc. An exhaust gas oxygen concentration meter 23 is provided to detect the oxygen concentration in the exhaust gas. Note that the installation position of the exhaust gas oxygen concentration meter 23 is not limited to the downstream side of the gas cooling chamber 15. The output SI of the exhaust gas oxygen concentration meter 23 and the output SI of the brightness detector 24 are input to a calculator 25 . As will be detailed later, the brightness detector 24 can detect relative changes in the combustion state without any time delay, and the oxygen concentration in the exhaust gas detected by the exhaust gas oxygen concentration meter 23 can be detected with a time delay, but the oxygen concentration in the furnace Since the combustion state can be detected accurately, the computing unit 25
is the output S2 of the brightness detector 24 and the exhaust gas oxygen concentration meter 23.
A combustion state signal reflecting a more accurate combustion state is output as an output S8 to the computing units 26 and 27, respectively.

演算器26は演算器25の出力SIから、燃焼物供給ホ
ッパー13を駆動するモータ29を制御する制御信号S
4を算出し、モータ29に出力する。これにより、燃焼
物供給ホッパー13から流動床炉10に投入される燃焼
物の量が炉内の燃焼量により増減され、炉内の燃焼状態
が適正になるように燃焼物の供給量を制御させる。
The computing unit 26 generates a control signal S for controlling the motor 29 that drives the combustion material supply hopper 13 from the output SI of the computing unit 25.
4 is calculated and output to the motor 29. As a result, the amount of combustible material fed into the fluidized bed furnace 10 from the combustible material supply hopper 13 is increased or decreased depending on the combustion amount in the furnace, and the amount of combustible material supplied is controlled so that the combustion state in the furnace is appropriate. .

また、演算器27は演算器25の出力SIから二次空気
制御弁21を制御する制御信号SIを二次空気制御弁2
1に出力する。これにより、二次空気送風機から送られ
る二次空気は炉内の燃焼量に応じて増減され、排ガス中
の酸素濃度が適正な値になるように制御される。
Further, the computing unit 27 outputs a control signal SI for controlling the secondary air control valve 21 from the output SI of the computing unit 25 to the secondary air control valve 21.
Output to 1. Thereby, the secondary air sent from the secondary air blower is increased or decreased according to the amount of combustion in the furnace, and the oxygen concentration in the exhaust gas is controlled to an appropriate value.

また、演算器28は演算器25の出力SIからバイパス
制御弁20を制御する制御信号S、をバイパス制御弁2
0に出力する。これにより燃焼量に応じてバイパス制御
弁20が制御され、流動層11に押込む流動空気量が増
減される。即ち、燃焼量を正確に反映する演算器25の
出力SIにより、燃焼量が多い時は、流動空気量を減少
させ流動媒体の流動を不活発にし、焼却物のガス化を遅
くし、燃焼量が少ないときは、流動空気量を元に戻すか
或いは増加させ、流動媒体の流動を活発にし、焼却物の
ガス化を速くする。
Further, the computing unit 28 outputs a control signal S for controlling the bypass control valve 20 from the output SI of the computing unit 25 to the bypass control valve 2
Output to 0. Thereby, the bypass control valve 20 is controlled according to the combustion amount, and the amount of fluidized air forced into the fluidized bed 11 is increased or decreased. That is, when the combustion amount is large, the output SI of the computing unit 25 that accurately reflects the combustion amount is used to reduce the amount of flowing air and make the flow of the fluid medium inactive, slowing down the gasification of the incinerated material, and reducing the amount of combustion. When the amount of gas is low, the amount of fluidized air is returned to its original value or increased to make the flow of the fluidized medium more active, thereby speeding up the gasification of the incinerated material.

第2図は流動空気量を変化させないで、炉内の明るさ2
〔%〕と排ガス中の酸素濃度O3〔%〕の実測値を示す
図であり、第3図は第2図の時間300s〜800sの
間を拡大した図である。図から明らかなように、炉内の
明るさlは燃焼量により変動する。即ち、明るさ検出計
24の出力S1は燃焼量の相対的な変化を時間遅れなく
検出している。これに対して、排ガス中の酸素濃度Ol
はガス冷却室15の排出端まで到達するまでの時間遅れ
があり、その時間遅れは第3図から明らかなように30
秒程度である。また、この排ガス中の酸素濃度0.は流
動床炉10を出てガス冷却室15の後流で検出するため
、その流路断面における局所的な差は少なく、測定値の
精度が高く、時間的遅れはあるものの炉内の燃焼量を正
確に反映している。
Figure 2 shows that the brightness inside the furnace is 2 without changing the amount of flowing air.
[%] and the measured value of the oxygen concentration O3 [%] in the exhaust gas. FIG. 3 is an enlarged view of the period from 300 seconds to 800 seconds in FIG. 2. As is clear from the figure, the brightness l inside the furnace varies depending on the amount of combustion. That is, the output S1 of the brightness detector 24 detects a relative change in the amount of combustion without any time delay. On the other hand, the oxygen concentration in the exhaust gas
There is a time delay until the gas reaches the discharge end of the gas cooling chamber 15, and as is clear from Fig. 3, the time delay is 30 minutes.
It is about seconds. Also, the oxygen concentration in this exhaust gas is 0. Since it leaves the fluidized bed furnace 10 and is detected in the wake of the gas cooling chamber 15, there are few local differences in the cross section of the flow path, and the accuracy of the measured value is high.Although there is a time delay, the amount of combustion in the furnace is detected. accurately reflects.

そこで、本実施例では演算器25において、燃焼量の相
対的な変化を時間遅れなく表わす炉内の明るさ、即ち明
るさ検出計24の出力S1を、燃焼量を正確に表わす排
ガス中の酸素濃度O2、即ち排ガス酸素濃度計23の出
力SIで補正し、的確な燃焼制御ができる制御信号を演
算器25の出力SIとして得ている。
Therefore, in this embodiment, the computing unit 25 uses the brightness inside the furnace, which represents the relative change in the amount of combustion without any time delay, that is, the output S1 of the brightness detector 24, as the oxygen in the exhaust gas, which accurately represents the amount of combustion. By correcting the concentration O2, that is, the output SI of the exhaust gas oxygen concentration meter 23, a control signal that enables accurate combustion control is obtained as the output SI of the calculator 25.

第4図は演算器25の構成を示す図であり、排ガス酸素
濃度計23の出力SI(排ガス酸素濃度O2)は1次遅
れ関数31を通り、排ガス酸素濃度調節計32で酸素濃
度設定値と比較され、排ガス中の酸素濃度を設定値に維
持するように出力され、折れ線間数33を通って明るさ
検出計24の出力信号SI(明るさJ2)と共に掛算部
34に入力され、1次遅れ関数35を通り、折れ線間数
36を通って制御信号SIとして出力される。
FIG. 4 is a diagram showing the configuration of the arithmetic unit 25, in which the output SI (exhaust gas oxygen concentration O2) of the exhaust gas oxygen concentration meter 23 passes through a first-order lag function 31, and is determined by the exhaust gas oxygen concentration controller 32 as the oxygen concentration setting value. It is compared and outputted so as to maintain the oxygen concentration in the exhaust gas at the set value, and is inputted to the multiplication unit 34 along with the output signal SI (brightness J2) of the brightness detector 24 through the line interval number 33, and the primary The signal passes through a delay function 35, passes through a polygonal line interval 36, and is output as a control signal SI.

な状況を示すに過ぎないが、排ガス酸素濃度計23の出
力より約30秒早い信号となっている。そこで、排ガス
酸素濃度計23の出力それのみでは、燃焼制御はできな
いが、明るさ検出計24の出力S、で燃焼制御を行ない
、その結果を排ガス酸素濃度調節計32の出力を折線関
数33で係数とし、S、の補正をすることにより、明る
さ検出計24の出力S、のみで燃焼制御する場合の短所
を補うのである。
Although it only indicates a situation, the signal is about 30 seconds earlier than the output of the exhaust gas oxygen concentration meter 23. Therefore, combustion control cannot be performed using only the output of the exhaust gas oxygen concentration meter 23, but combustion control is performed using the output S of the brightness detector 24, and the output of the exhaust gas oxygen concentration controller 32 is converted into a polygonal line function 33. By correcting S as a coefficient, the disadvantages of controlling combustion using only the output S of the brightness detector 24 can be compensated for.

第5図は演算器25の他の構成を示す図であり、排ガス
酸素濃度計23の出力S、(排ガス酸素 濃度)及び明るさ検出計24の出力S2(明るさl)は
それぞれ1次遅れ関数41.42を通り、割算部43で
51’ / S ! ’が求められ、該S。
FIG. 5 is a diagram showing another configuration of the calculator 25, in which the output S of the exhaust gas oxygen concentration meter 23 (exhaust gas oxygen concentration) and the output S2 (brightness l) of the brightness detector 24 are each delayed by a first order. After passing through functions 41 and 42, the division unit 43 calculates 51'/S! ' is determined, and the S.

/S、′と前記出力S、が掛算部44に入力され、酸素
濃度調節計45を通って制御信号S、として出力される
/S,' and the output S are input to the multiplier 44, passed through the oxygen concentration controller 45, and output as the control signal S.

なお、上記実施例では、燃焼状態の相対的な変化を時間
遅れなく検出するものとして明るさ検出器24を用いる
例を示したが、燃焼状態の相対的な変化を時間遅れなく
検出する手段としてはそれ以外に下記のよう方法がある
Incidentally, in the above embodiment, an example is shown in which the brightness detector 24 is used as a means for detecting relative changes in the combustion state without time delay, but as a means for detecting relative changes in the combustion state without time delay. There are other methods as follows.

■炉内酸素濃度は、燃焼量(燃焼状態)に応じ、燃焼量
が多い時は炉内酸素濃度は低く、燃焼量が少ない時は炉
内酸素濃度は高いから、炉内酸素濃度を検出する炉内酸
素濃度検出センサを設けこの出力を利用する方法。
■The oxygen concentration inside the furnace depends on the amount of combustion (combustion state).When the amount of combustion is large, the oxygen concentration inside the furnace is low, and when the amount of combustion is small, the oxygen concentration inside the furnace is high, so the oxygen concentration inside the furnace is detected. A method of installing an in-furnace oxygen concentration detection sensor and using this output.

は燃焼量を反映することになるので、炉内に投入される
燃焼物を観測する工業用テレビカメラを設け、該工業用
テレビカメラの画像処理信号を利用する方法。
Since this reflects the amount of combustion, this method involves installing an industrial television camera to observe the combustion material being put into the furnace, and using the image processing signal from the industrial television camera.

■また、流動床炉においては、投入される燃焼物の重量
も燃焼量を反映することになるので、燃焼物の重量を測
定する重量測定手段を設け、該重量測定手段の出力を利
用する方法。
■In addition, in a fluidized bed furnace, the weight of the combustible material introduced also reflects the amount of combustion, so a method is to provide a weight measuring means for measuring the weight of the combustible material and use the output of the weight measuring means. .

■燃焼炉から排出される排ガス流量も燃焼量を反映する
ことになるので、排ガス流量を検出する排ガス流量検出
センサを設け、該排ガス流量検出センサの出力を利用す
る方法。
(2) Since the flow rate of exhaust gas discharged from the combustion furnace also reflects the amount of combustion, a method of providing an exhaust gas flow rate detection sensor for detecting the exhaust gas flow rate and utilizing the output of the exhaust gas flow rate detection sensor.

■また、炉内圧力は燃焼量が多いと燃焼ガス等が多くな
るから炉内圧力は高くなり、燃焼量が少ないと炉内圧力
は低くなるので、炉内圧力を検出する炉内圧力検出セン
サを設け、該炉内圧力検出センサの出力を用いる方法。
■In addition, when the amount of combustion is large, the amount of combustion gas increases, so the pressure inside the furnace is high, and when the amount of combustion is small, the pressure inside the furnace is low, so the furnace pressure detection sensor detects the inside pressure. A method in which the output of the in-furnace pressure detection sensor is used.

従って、上記■〜■を制御信号として燃焼制御を行ない
、排ガス酸素濃度計23の出力でその結果をフィードバ
ックするようにしてもよいことは当然である。
Therefore, it goes without saying that the combustion control may be performed using the above-mentioned signals 1 to 2 as control signals, and the results may be fed back as the output of the exhaust gas oxygen concentration meter 23.

また、上記■〜■の内、2以上を組合わせたものを制御
信号として燃焼制御を行ない、排ガス酸素濃度計23の
出力でその結果をフィードバックするようにしてもよい
Furthermore, combustion control may be performed using a combination of two or more of the above-mentioned items (1) to (2) as control signals, and the result may be fed back as the output of the exhaust gas oxygen concentration meter 23.

〔発明の効果〕〔Effect of the invention〕

以上、説明したように本発明によれば、炉内の燃焼状態
の相対的変化を時間の遅れなく検出する信号として、炉
内明るさ検出センサの出力、炉内酸素濃度検出センサの
出力、炉内に投入される燃焼物を観測する工業用テレビ
カメラの画像処理信号、燃焼物の重量を測定する重量測
定手段の出力、排ガス流量検出センサの出力、炉内圧力
検出センサの出力或いはこれら信号を2以上組み合わせ
たものを用い、燃焼の結果を時間遅れはあるものの正確
に検出できる信号として、排ガス中の検出酸素濃度を用
い、これらを組み合わて燃焼制御を行なうので、炉内の
燃焼を的確に制御できるという優れた効果が得られる。
As described above, according to the present invention, the output of the furnace brightness detection sensor, the output of the furnace oxygen concentration detection sensor, the furnace The image processing signal of an industrial television camera that observes the combustion material thrown into the furnace, the output of the weight measuring means that measures the weight of the combustion material, the output of the exhaust gas flow rate detection sensor, the output of the furnace pressure detection sensor, or these signals. By using a combination of two or more, the detected oxygen concentration in the exhaust gas is used as a signal that can accurately detect the combustion result, although there is a time delay. Combustion control is performed by combining these, so the combustion in the furnace can be controlled accurately. An excellent effect of controllability can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る制御方法を適用する流動床炉を用
いた焼却設備の概略構成を示す図、第2図は流動空気量
を変化させないで炉内の明るさ2〔%〕と排ガス中の酸
素濃度0!〔%〕を実測した結果を示す図、第3図は、
第2図の時間300s〜8008の間を拡大した図、第
4図は演算器の構成を示す図、第5図は演算器の他の構
成を示す図である。 図中、10・・・・流動床炉、11・・・・流動層、1
2・・・・フ填丁−ド、13・・・・燃焼物供給ホッパ
ー 14・・・・押込み送風機、15・・・・ガス冷却
室、16・・・・空気予熱器、17・・・・電気集塵機
、18・・・・誘引送風機、19・・・・煙突、20・
・・・バイパス制御弁、21・・・・二次空気制御弁、
22・・・・二次空気送風機、23・・・・排ガス酸素
濃度計、24・・・・明るさ検出器、25.26,27
.28・・・・演算器。
Figure 1 is a diagram showing the schematic configuration of an incinerator using a fluidized bed furnace to which the control method according to the present invention is applied, and Figure 2 shows the brightness inside the furnace of 2% and the exhaust gas without changing the amount of fluidized air. Oxygen concentration inside is 0! Figure 3 shows the results of actual measurement of [%].
2 is an enlarged view of the time period 300s to 8008, FIG. 4 is a diagram showing the configuration of the arithmetic unit, and FIG. 5 is a diagram showing another configuration of the arithmetic unit. In the figure, 10...Fluidized bed furnace, 11...Fluidized bed, 1
2... hood, 13... combustible material supply hopper, 14... forced blower, 15... gas cooling chamber, 16... air preheater, 17...・Electric dust collector, 18...Induced fan, 19...Chimney, 20...
... Bypass control valve, 21 ... Secondary air control valve,
22... Secondary air blower, 23... Exhaust gas oxygen concentration meter, 24... Brightness detector, 25.26, 27
.. 28... Arithmetic unit.

Claims (7)

【特許請求の範囲】[Claims] (1)流動床下部から送り込む空気により流動媒体を流
動させると共に、燃焼物の燃焼状態を検出し、該燃焼状
態に応じて該流動床下部から送り込む空気量を変化させ
、炉内に投入される燃焼物の変動にかかわらず燃焼量を
略一定に維持する流動床炉における燃焼制御方法におい
て、排ガス中の酸素濃度を測定する酸素濃度計を設け、
炉内燃焼状態を検出する手段として炉内の明るさを検出
する明るさ検出センサを設け、該検出センサの出力をこ
の酸素濃度計の出力で補正し、より正確な燃焼状態信号
を得、該燃焼状態信号に応じて流動空気量を変化させる
ことを特徴とする流動床炉における燃焼制御方法。
(1) The fluidized medium is made to flow by the air sent from the lower part of the fluidized bed, the combustion state of the combustion material is detected, and the amount of air sent from the lower part of the fluidized bed is changed according to the combustion state, and the air is introduced into the furnace. In a combustion control method in a fluidized bed furnace that maintains the combustion amount approximately constant regardless of fluctuations in the combustion materials, an oxygen concentration meter is installed to measure the oxygen concentration in the exhaust gas,
A brightness detection sensor that detects the brightness inside the furnace is provided as a means for detecting the combustion state in the furnace, and the output of the detection sensor is corrected by the output of this oxygen concentration meter to obtain a more accurate combustion state signal. A combustion control method in a fluidized bed furnace characterized by changing the amount of fluidized air according to a combustion state signal.
(2)前記炉内燃焼状態を検出する手段として、炉内に
酸素濃度検出センサを設け、該酸素濃度検出センサの出
力を用いることを特徴とする請求項(1)記載の流動床
炉における燃焼制御方法。
(2) Combustion in a fluidized bed furnace according to claim (1), wherein an oxygen concentration detection sensor is provided in the furnace and the output of the oxygen concentration detection sensor is used as the means for detecting the combustion state in the furnace. Control method.
(3)前記炉内燃焼状態を検出する手段として、炉内に
投入される燃焼物を観測する工業用テレビカメラを設け
、該工業用テレビカメラの画像処理信号を用いることを
特徴とする請求項(1)記載の流動床炉における燃焼制
御方法。
(3) As a means for detecting the combustion state in the furnace, an industrial television camera for observing the combustion material put into the furnace is provided, and an image processing signal of the industrial television camera is used. (1) Combustion control method in the fluidized bed furnace described.
(4)前記炉内燃焼状態を検出する手段として、炉内に
投入される燃焼物の重量を測定する重量測定手段を設け
、該重量測定手段の出力を用いることを特徴とする請求
項(1)記載の流動床炉における燃焼制御方法。
(4) As the means for detecting the combustion state in the furnace, a weight measuring means for measuring the weight of the combustion material put into the furnace is provided, and the output of the weight measuring means is used. ) Combustion control method in the fluidized bed furnace described.
(5)前記炉内燃焼状態を検出する手段として、炉から
の排ガス流量を検出する排ガス流量検出センサを設け、
該排ガス流量検出センサの出力を用いることを特徴とす
る請求項(1)記載の流動床炉における燃焼制御方法。
(5) As a means for detecting the combustion state in the furnace, an exhaust gas flow rate detection sensor for detecting the flow rate of exhaust gas from the furnace is provided,
The combustion control method in a fluidized bed furnace according to claim 1, characterized in that the output of the exhaust gas flow rate detection sensor is used.
(6)前記炉内燃焼状態を検出する手段として、炉内圧
力を検出する炉内圧力検出センサを設け、該炉内圧力検
出センサの出力を用いることを特徴とする請求項(1)
記載の流動床炉における燃焼制御方法。
(6) Claim (1) characterized in that the means for detecting the in-furnace combustion state is provided with an in-furnace pressure detection sensor for detecting in-furnace pressure, and the output of the in-furnace pressure detection sensor is used.
Combustion control method in the described fluidized bed furnace.
(7)前記炉内燃焼状態を検出する手段として、前記炉
内明るさ検出センサの出力、炉内酸素濃度検出センサの
出力、炉内に投入される燃焼物を観測する工業用テレビ
カメラの画像処理信号、燃焼物の重量を測定する重量測
定手段の出力、排ガス流量検出センサの出力及び炉内圧
力検出センサの出力のいずれか2以上を組み合わせて用
いることを特徴とする請求項(1)記載の流動床炉にお
ける燃焼制御方法。
(7) As a means for detecting the combustion state in the furnace, the output of the furnace brightness detection sensor, the output of the furnace oxygen concentration detection sensor, and the image of an industrial television camera that observes the combustion material put into the furnace Claim (1) characterized in that any two or more of the processing signal, the output of the weight measuring means for measuring the weight of the combustion material, the output of the exhaust gas flow rate detection sensor, and the output of the furnace pressure detection sensor are used in combination. combustion control method in a fluidized bed furnace.
JP1212824A 1989-08-18 1989-08-18 Combustion control method in fluidized bed furnace Expired - Lifetime JPH0670481B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1212824A JPH0670481B2 (en) 1989-08-18 1989-08-18 Combustion control method in fluidized bed furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1212824A JPH0670481B2 (en) 1989-08-18 1989-08-18 Combustion control method in fluidized bed furnace

Publications (2)

Publication Number Publication Date
JPH0375402A true JPH0375402A (en) 1991-03-29
JPH0670481B2 JPH0670481B2 (en) 1994-09-07

Family

ID=16628966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1212824A Expired - Lifetime JPH0670481B2 (en) 1989-08-18 1989-08-18 Combustion control method in fluidized bed furnace

Country Status (1)

Country Link
JP (1) JPH0670481B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993025849A1 (en) * 1992-06-12 1993-12-23 Ebara Corporation Method of controlling concentration of oxygen in combustion exhaust gas for combustion equipment
JPH0960842A (en) * 1995-08-22 1997-03-04 Ebara Corp Fluidized bed type incinerator having waste dropping amount operating means
WO2007055125A1 (en) * 2005-11-08 2007-05-18 Kobelco Eco-Solutions Co., Ltd. Secondary combustion method and unit in incineration system
JP2011169483A (en) * 2010-02-16 2011-09-01 Nippon Steel Corp Combustion device and control method for the same
CN116839060A (en) * 2023-09-01 2023-10-03 南京盛略科技有限公司 Method and system for detecting combustion in furnace

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101365298B1 (en) * 2011-11-25 2014-02-19 선큐컴파니리미티드 Monitoring and controling method and apparatus for furnace pressure of combuster

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5221829A (en) * 1975-08-11 1977-02-18 Fuji Photo Film Co Ltd Film reording and reproducing device of continuous feed
JPS6449818A (en) * 1987-08-20 1989-02-27 Kubota Ltd Combustion control method in incinerator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5221829A (en) * 1975-08-11 1977-02-18 Fuji Photo Film Co Ltd Film reording and reproducing device of continuous feed
JPS6449818A (en) * 1987-08-20 1989-02-27 Kubota Ltd Combustion control method in incinerator

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993025849A1 (en) * 1992-06-12 1993-12-23 Ebara Corporation Method of controlling concentration of oxygen in combustion exhaust gas for combustion equipment
JPH0960842A (en) * 1995-08-22 1997-03-04 Ebara Corp Fluidized bed type incinerator having waste dropping amount operating means
WO2007055125A1 (en) * 2005-11-08 2007-05-18 Kobelco Eco-Solutions Co., Ltd. Secondary combustion method and unit in incineration system
JP2011169483A (en) * 2010-02-16 2011-09-01 Nippon Steel Corp Combustion device and control method for the same
CN116839060A (en) * 2023-09-01 2023-10-03 南京盛略科技有限公司 Method and system for detecting combustion in furnace
CN116839060B (en) * 2023-09-01 2023-11-10 南京盛略科技有限公司 Method and system for detecting combustion in furnace

Also Published As

Publication number Publication date
JPH0670481B2 (en) 1994-09-07

Similar Documents

Publication Publication Date Title
CA2155618C (en) Method for regulating the furnace in incineration plants, in particular in refuse incineration plants
JP4292126B2 (en) Combustion information monitoring and control system for stoker-type waste incinerator
JPH0375402A (en) Combustion control for fluidized bed furnace
US5020451A (en) Fluidized-bed combustion furnace
JPH0634118A (en) Combustion controller of incinerator
JP2664909B2 (en) Operating method of refuse incineration equipment
JP2989367B2 (en) Combustion control method for waste incinerator
JPH0468533B2 (en)
JP3819458B2 (en) Waste supply measuring device and combustion control method using the same
JP2971421B2 (en) Combustion control method for fluidized bed incinerator
JP2003287213A (en) Burning control device for garbage incinerator
JPH025222Y2 (en)
JP2001355819A (en) Method and device for quantitatively supplying refuse
JPS6136611A (en) Combustion control of refuse incinerator
JPH0481688B2 (en)
JP2002221308A (en) Combustion control method and waste treatment equipment
KR100446491B1 (en) Method and device for automatically controlling combustion of incinerator without boiler equipment with temperature detecting apparatus
JP2762054B2 (en) Combustion control method for fluidized bed incinerator
JPH07111248B2 (en) Combustion control method in fluidized bed furnace
JPS60196512A (en) Method of incinerating waste
JPS62202926A (en) Method of automatically controlling combustion in incinerator
JPH1114027A (en) Method of controlling combustion of incinerator
JPH03255809A (en) Method for controlling fluidization in fluidized bed furnace
JP3717221B2 (en) Waste incinerator exhaust gas control system
JPS59183216A (en) Nox controller of combustion furnace

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term