JPH0240298B2 - - Google Patents

Info

Publication number
JPH0240298B2
JPH0240298B2 JP56169783A JP16978381A JPH0240298B2 JP H0240298 B2 JPH0240298 B2 JP H0240298B2 JP 56169783 A JP56169783 A JP 56169783A JP 16978381 A JP16978381 A JP 16978381A JP H0240298 B2 JPH0240298 B2 JP H0240298B2
Authority
JP
Japan
Prior art keywords
feed
day
fish
mucilage
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56169783A
Other languages
Japanese (ja)
Other versions
JPS5871847A (en
Inventor
Ryogo Uehara
Mitsuyasu Kawasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riken Vitamin Co Ltd
Original Assignee
Riken Vitamin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken Vitamin Co Ltd filed Critical Riken Vitamin Co Ltd
Priority to JP56169783A priority Critical patent/JPS5871847A/en
Publication of JPS5871847A publication Critical patent/JPS5871847A/en
Publication of JPH0240298B2 publication Critical patent/JPH0240298B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L41/00Branching pipes; Joining pipes to walls
    • F16L41/08Joining pipes to walls or pipes, the joined pipe axis being perpendicular to the plane of the wall or to the axis of another pipe

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Feed For Specific Animals (AREA)
  • Fodder In General (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は稚魚用配合飼料の製造法、更に詳しく
はクルマエビ、ガザミ、ヒラメ、マダイ、アユな
どのふ化直後からの初期配合飼料の製造法に関す
るものである。その目的とするところは、稚仔魚
の成長がよく、生残率が高く、しかも保存性がよ
く取扱い簡単な稚魚用配合飼料を提供することに
ある。 〔従来の技術および発明が解決すべき問題点〕 最近、魚貝類の人工種苗生産技術が発達し、ア
ユ、マダイ、クルマエビ、ヒラメなど各種有用魚
貝類の大量人工種苗生産が実施されて完全養殖が
行なわれている。 しかし、これらもふ化直後からの種苗である稚
仔魚の量産化いかんにかかつており、稚仔魚の成
長がよく、歩留(生残率)のよい健全な種苗の育
成に影響される。 現在、魚貝類の種苗生産において、初期飼料の
大部分は生きた動物プランクトンのシオミズツボ
ワムシ、アルテミア、その他の微細プランクトン
および甲殻類、またクロレラ、珪藻などのいわゆ
る生物飼料に依存している。 しかし、こられ生物初記飼料は大量確保が不安
定であり、培養には施設、経費、労力など管理面
で問題があるだけでなく、生産した生物飼料が栄
養的な欠陥から奇形や大量へい死をひき起す場合
も多い。また、魚貝類ミンチの撤餌、ねり餌など
も使われているが、これらを使用した場合、溶解
して水質の悪化などを招くことが多い。稚仔魚の
種苗の計画的量産のためには、培養生物飼料にか
わる稚仔魚用初期人工配合飼料の使用が望まれる
わけであるが、現在の人工配合飼料は生物飼料に
比較して、特に初期は成長、生残率、物性、摂餌
などの点で劣り問題がある。 一般の配合飼料は魚粉や小麦粉などを主原料と
した固形のペレツト、クランブル、フレーク或い
はマツシユであるが、稚仔魚用の初期飼料として
は20〜500μ程度の微細粒子とすることが必須条
件である。そのため、これら一般配合飼料を粉砕
して微粒子化したものなどが考えられるが、これ
らはその栄養成分や急速に溶出してしまい水質の
悪化を招くし、また適切な微細粒子に造粒化でき
ても水中での溶解性もしくは膨潤性に問題があ
る。また、粒子が硬すぎて摂餌性にも問題があ
る。 そのため、保形性を維持し栄養成分の溶出を防
止するためにマイクロカプセル化法などがこころ
みられるが、摂餌が悪かつたり、物性的に硬化さ
れすぎたり、消化吸収が不良であつたり、製造法
になどに欠点も多く問題が多い。 〔問題を解決するための手段〕 本発明者らは、これらを改良するため鋭意研究
の結果、後述の粘質物との反応性に富む水溶性蛋
白を含む稚魚用配合飼料として必要なる飼料原料
および栄養成分と、これに化学成分中硫酸基8%
以上含有の紅藻類粘質物を配合し、加水、必要に
応じてPH調整、カリウムイオンを添加してゲルさ
せた後乾燥、粉砕等調整した微細粒子の稚魚用配
合飼料は水中における保形性(不溶性)、分散沈
降性、摂餌性などにすぐれた特性を有することを
見出した。特に、水中において養分が溶出し難い
モイストペレツト様微粒子状を保ち、摂餌がよ
く、クルマエビ、ガザミ、ヒラメ、マダイ、アユ
などの生物飼育試験においても生物初期飼料に匹
敵するすぐれた成績を示すものである。 〔作用〕 紅藻類粘質物で、かつその化学成分中硫酸基を
8%以上含有の粘質物を配合してなるクルマエ
ビ、ガザミ、ヒラメ、マダイ、アユなどの稚魚用
配合飼料はその粘質物の蛋白質との反応性と、水
溶液にカリウムイオンを添加すると強力なゲルを
形成する特異な性質などのため、稚魚用配合飼料
としてすぐれた特徴を示すものである。即ち、水
中において難溶保形性で、ゲル様物質で包まれた
モイストペレツト様微粒子の摂餌しやすい物性は
これらの粘質物の配合によるものである。 本飼料を水に入れた場合、水と接した微粒子面
はもとのゲルに復元し、ゲルの母体の中に栄養成
分等が包まれた難溶保形性を保ち、クルマエビ、
ガザミ、ヒラメ、マダイ、アユなどの稚魚にとつ
て摂餌しやすい物性になることを見出したもであ
る。 紅藻類から抽出される粘質物で、その化学成分
中硫酸基8%以上含有するものを配合することを
特徴とするが、それの工業的に抽出生産されてい
るものには、フアーセレランとカラギーナンなど
がある。フアーセレランは硫酸基の含有量は8〜
16%で、紅藻類フルセリアから製造される多糖類
でデンマーク寒天とも呼ばれているものであり、
カラギーナンは硫酸基の含有量は20〜40%で、主
としてスギノリ料、ミリン料の紅藻類に存在する
多糖類で、一般にはカツパ、ラムダ、イオタの3
成分からなるといわれている。 これらの紅藻類粘質物と反応性のある水溶性蛋
白としては、卵アルブミン、ラクトアルブミン、
ラクトグロブリンなど、またこれらを含むミルク
蛋白製品などがあげられる。 紅藻類粘質物で、その化学成分中硫酸基を8%
以下含有のものでは、例えば寒天、フノリなどが
あるが、その粘質物は蛋白質との反応性はなく、
稚魚用配合飼料とした場合、水中における保形性
の点、摂餌に関する点、硬さなど物性の点で劣る
ものである。 本発明の稚魚用配合飼料の製造法は紅藻類粘質
物と反応性のある水溶性蛋白を含む稚魚として必
要なる各種飼料原料(微粉)および栄養成分を配
合し、水を加えてPHを調整し、約70℃以上に加
熱、次に紅藻類粘質物でその化学成分中硫酸基8
%以上含有の、例えばカラギーナン又はフアーセ
レランなどを加えて混合し、塩化カリウムを加え
てゲル化させた後、乾燥、粉砕などにより微粉
化、微粒子とする。蛋白質源としては、カゼイ
ン、ゼラチン、卵黄蛋白、卵アルブミン、ミルク
蛋白、魚粉、その他動植物性蛋白源が使用でき
る。 乾燥は真空凍結乾燥、噴霧乾燥、流動乾燥など
が考えられる。本法では溶剤、変性剤などを使用
する必要はない。本発明の稚魚用配合飼料の製造
法は紅藻類粘質物と水溶性蛋白質との反応性を利
用したもので、原料成分中に粘質物を入れこませ
水溶性蛋白と反応化して塩化カリウムによりゲル
化して固まらせた(bind)ものを粉砕等して、
500μ以下の各サイズに微粉化したクルマエビ、
ガザミ、ヒラメ、マダイ、アユなどのマイクロバ
イジング(microbinding)飼料である。 紅藻類粘質物の飼料への配合量は、粘質物の種
類、濃度、硫酸基含量または蛋白質の種類、PHな
どにより異なるが、大凡配合飼料原料に対して1
〜10%の量であればよい。なお、他の高分子物質
を併用配合してもよく、特にローカストビンガム
は相乗的効果がある。 紅藻類粘質物と反応性を有する水溶性蛋白の配
合飼料原料に対する量は特に限定されるものでは
ないが5〜75%の範囲で自由に使用し得る。 〔実施例および発明の効果〕 以下、実施例、試験例によつて本発明を説明す
る。 実施例 1 スキムミルク52%、卵黄粉末10%、卵アルブミ
ン20%、アミノ酸混合物5%、大豆レシチン15
%、タラ肝油5.5%、ビタミン混合5%、ミネラ
ル混合1%の混合物に4倍の水を加えPHを7.0に
調整し、撹拌しながら75℃以上に加熱、硫酸基25
%含有のカラギーナンを原料混合物の8%宛加
え、塩化カリウムを4%添加処理して冷却後凍結
乾燥し、粉砕砕して500μ以下のサイズに微粉化
して、クルマエビ、ガザミ、ヒラメなどの稚魚用
配合飼料を得た。 実施例 2 カゼイン35%、卵アルブミン15%、シヨ糖10
%、グルコース5.5%、澱粉4%、脂質8%、ミ
ネラル混合8.5%、ビタミン混合3.2%、アミノ酸
混合物3.4%、卵黄レシチン1%、コレステロー
ル0.5%、セルロース5.9%の混合物に対して硫酸
基28%含有のカラギーナンを3.5%宛加え、実施
例1と同様の処理をして、クルマエビ、ガザミ、
ヒラメなどの稚魚用配合飼料を得た。 実施例 3 イカミール22.6%、魚粉12%、卵黄粉末15.5
%、ラクトアルブミン10%、カツオエキス末9.2
%、アサリエキス末10.7%、アミノ酸混合物4
%、ビタミン混合5%、ミネラル混合5%、脂質
6%の混合物に加水、PHを6.8〜7.0に調整し、70
℃以上に加熱、硫酸基16%含有のフアーセレラン
を原料混合物の7%宛加え、塩化カリウムを5%
宛添加調整して、噴霧乾燥し、マダイの稚魚用配
合飼料を得た。 実施例 4 カゼイン35%、卵アルブミン17%、ゼラチン9
%、デキストリン8%、アミノ酸混合物8%、ビ
タミン混合6%、ミネラル混合8%、脂質9%の
混合物に対して硫酸基12%含有のフアーセレラン
を8%宛加え、実施例1と同様の処理をしてアユ
の稚魚用配合飼料を得た。 試験例 1 30水槽にゾエア1期幼生クルマエビを300尾
ずつ放養し、実施例1の稚魚用配合飼料を1日1
幼生当りは0.16mg投与して8日間飼育し、生物飼
料のキートセラス3万細胞/mlとアルテミア15個
体/1幼生1日を投与したものと比較試験した。 生物飼料と本発明飼料は何れもゾエア(1〜3
期)、ミシス(1〜3期)と変態成長し、8日で
ポストラーバに成長し、生残率は対象生物飼料が
87%で本発明飼料も85%と高い値を示した。 また、同様に実施例2の精製配合飼料を0.16
mg/1幼生・日投与し、8日間でポストラーバに
成長し、生残率は90%であつた。 試験例 2 500パンライト水槽にゾエア1期幼生のガザ
ミを10000尾ずつ収容し、各各区ともゾエア1期
〜4期はワムシ133個体/1幼生・日を投与し、
ゾエア2期〜メガロパ期にワムシと併用して実施
例1の稚魚用配合飼料0.455mg/1幼生・日を投
与し10日間飼育して、同様に対照の生物飼料区
(ワムシ400個体/1幼生・日、アルテミア60個
体/1幼生・日、アサリ1.7mg/1幼生・日)お
よび同様にナイロン・タンパク皮膜でカプセル化
して飼料(注)と比較試験した。生残率を表1に
示す。
[Industrial Field of Application] The present invention relates to a method for producing a compound feed for young fish, and more particularly to a method for producing an initial compound feed for shrimp, snail, flounder, red sea bream, sweetfish, etc. immediately after hatching. The purpose is to provide a compound feed for young fish that allows the young fish to grow well, has a high survival rate, has good storage stability, and is easy to handle. [Problems to be solved by conventional technology and inventions] Recently, artificial seedling production technology for fish and shellfish has been developed, and mass artificial seedling production of various useful fish and shellfish such as sweetfish, red sea bream, prawn, and flounder has been carried out, and complete aquaculture has become possible. It is being done. However, mass production of young fish, which are seedlings immediately after hatching, is currently underway, and the growth of these young fish is influenced by the development of healthy seedlings with good yield (survival rate). Currently, most of the initial feed for fish and shellfish seedling production relies on so-called biological feed such as living zooplankton, such as the rotifer, Artemia, other microplankton, and crustaceans, as well as chlorella and diatoms. However, it is unstable to secure large quantities of these biological feeds, and culturing is not only problematic in terms of management such as facilities, costs, and labor, but also the biological feeds produced are malformed and die in large numbers due to nutritional defects. It often causes. In addition, minced fish and shellfish baits and paste baits are also used, but when these are used, they often dissolve and cause deterioration of water quality. For planned mass production of juvenile fish seedlings, it is desirable to use an initial artificial compound feed for juvenile fish in place of cultured biological feed. has problems in terms of growth, survival rate, physical properties, feeding, etc. General compound feeds are solid pellets, crumbles, flakes, or mash made from fishmeal, wheat flour, etc., but as an initial feed for young fish, it is essential to use fine particles of about 20 to 500μ in size. . For this reason, it is conceivable to pulverize these general compound feeds into fine particles, but these will cause the nutritional components to be rapidly leached out, leading to deterioration of water quality, and it is difficult to granulate them into appropriate fine particles. There are also problems with solubility or swelling in water. In addition, the particles are too hard, causing problems in feeding. Therefore, attempts are being made to use microencapsulation methods to maintain shape retention and prevent the elution of nutritional components, but these methods may result in poor feeding, excessive hardening, or poor digestion and absorption. There are many drawbacks and problems in the manufacturing method. [Means for solving the problem] As a result of intensive research in order to improve these, the present inventors have developed feed materials necessary for a compound feed for young fish containing water-soluble proteins that are highly reactive with mucilage, which will be described later. Nutrient ingredients and 8% sulfate group in chemical ingredients
A compound feed for young fish containing fine particles containing red algae slime containing the above ingredients, adding water, adjusting the pH as necessary, adding potassium ions to form a gel, drying, pulverizing, etc., has good shape retention in water ( It has been found that it has excellent properties such as insolubility), dispersion and sedimentation, and feeding ability. In particular, it maintains a moist pellet-like particulate form that makes it difficult for nutrients to be leached out in water, making it easy to feed, and shows excellent results comparable to biological initial feed in biological breeding tests such as prawns, rockfish, flounder, red sea bream, and sweetfish. It is something. [Action] Compounded feed for young fish such as prawns, sea breams, flounders, red sea breams, sweetfish, etc., which is made of red algae mucilage and contains 8% or more of sulfate groups in its chemical components, is made from the protein content of the mucilage. It exhibits excellent characteristics as a mixed feed for young fish due to its reactivity with water and its unique property of forming a strong gel when potassium ions are added to an aqueous solution. That is, the physical properties of the moist pellet-like microparticles, which are difficult to dissolve in water and are wrapped in a gel-like substance and are easy to feed, are due to the combination of these mucilage substances. When this feed is placed in water, the particulate surface that comes into contact with water returns to its original gel state, maintaining its shape-retaining properties with nutritional components wrapped in the gel matrix.
It was discovered that the material has physical properties that make it easier for young fish such as sea bass, flounder, red sea bream, and sweetfish to feed on it. It is a slimy substance extracted from red algae, which is characterized by containing 8% or more of sulfate groups among its chemical components, and those that are industrially extracted and produced include fur-celleran and carrageenan. There is. The content of sulfate groups in Faseleran is 8~
It is a polysaccharide produced from the red alga Furcellia and is also called Danish agar.
Carrageenan is a polysaccharide with a sulfate group content of 20 to 40% and is mainly found in red algae such as Suginori and Mirin, and generally contains three types: Katsupa, Lambda, and Iota.
It is said to consist of ingredients. Water-soluble proteins that are reactive with these red algal mucilages include egg albumin, lactalbumin,
Examples include lactoglobulin and milk protein products containing these. A red algae slime with 8% sulfate groups in its chemical composition.
Examples of substances containing the following include agar and funori, but their mucilage has no reactivity with proteins;
When used as a compound feed for young fish, it is inferior in terms of shape retention in water, feeding, and physical properties such as hardness. The method for producing the compound feed for young fish of the present invention involves blending various feed ingredients (fine powder) and nutritional components necessary for young fish, including water-soluble proteins that are reactive with red algae mucilage, and adjusting the pH by adding water. , heated to about 70℃ or higher, and then heated to red algae mucilage to remove 8 sulfate groups in its chemical components.
% or more of carrageenan or fur-cerelan, etc. is added and mixed, potassium chloride is added to form a gel, and the mixture is pulverized into fine particles by drying, pulverization, etc. As the protein source, casein, gelatin, egg yolk protein, egg albumin, milk protein, fish meal, and other animal and vegetable protein sources can be used. Possible drying methods include vacuum freeze drying, spray drying, and fluidized drying. This method does not require the use of solvents, modifiers, etc. The method for producing the compound feed for young fish of the present invention utilizes the reactivity of red algae mucilage and water-soluble protein.The mucilage is incorporated into the raw ingredients, reacts with the water-soluble protein, and gels with potassium chloride. The binded material is crushed, etc.
Prawns pulverized into various sizes of 500μ or less,
It is a microbinding feed for crabs, flounder, red sea bream, sweetfish, etc. The amount of red algae mucilage to be added to feed varies depending on the type of mucilage, concentration, sulfate group content or type of protein, pH, etc., but approximately 1 ml per mixed feed ingredient.
An amount of ~10% is sufficient. Note that other polymeric substances may be used in combination, and locust Bingham in particular has a synergistic effect. The amount of water-soluble protein that is reactive with red algae slime relative to the mixed feed material is not particularly limited, but can be freely used within the range of 5 to 75%. [Examples and Effects of the Invention] The present invention will be explained below with reference to Examples and Test Examples. Example 1 Skim milk 52%, egg yolk powder 10%, egg albumin 20%, amino acid mixture 5%, soy lecithin 15
%, cod liver oil 5.5%, vitamin mixture 5%, mineral mixture 1%, add 4 times as much water to adjust the pH to 7.0, heat to 75℃ or higher while stirring, sulfate group 25
% carrageenan is added to the raw material mixture to 8%, potassium chloride is added to 4%, cooled, freeze-dried, and crushed to a size of less than 500μ for use in frying shrimp, crab shrimp, flounder, etc. A mixed feed was obtained. Example 2 Casein 35%, egg albumin 15%, sucrose 10%
%, glucose 5.5%, starch 4%, fat 8%, mineral mixture 8.5%, vitamin mixture 3.2%, amino acid mixture 3.4%, egg yolk lecithin 1%, cholesterol 0.5%, cellulose 5.9% mixture with 28% sulfate groups. Add carrageenan to 3.5% and process in the same manner as in Example 1 to prepare shrimp, gazami,
A mixed feed for young fish such as flounder was obtained. Example 3 Squid meal 22.6%, fish meal 12%, egg yolk powder 15.5%
%, lactalbumin 10%, bonito extract powder 9.2
%, clam extract powder 10.7%, amino acid mixture 4
%, vitamin mixture 5%, mineral mixture 5%, lipid 6% mixture, add water, adjust pH to 6.8-7.0, 70
Heat to above ℃, add 7% of the raw material mixture containing 16% of sulfate groups, and add 5% of potassium chloride.
The feed was adjusted and spray-dried to obtain a compound feed for young red sea bream. Example 4 Casein 35%, egg albumin 17%, gelatin 9
%, 8% dextrin, 8% amino acid mixture, 6% vitamin mixture, 8% mineral mixture, and 9% lipid, to which 8% fur-celleran containing 12% sulfate group was added and treated in the same manner as in Example 1. A compound feed for juvenile sweetfish was obtained. Test Example 1 300 Zoea 1st stage larvae of Kuruma Prawns were stocked in 30 aquariums, and the mixed feed for fry of Example 1 was fed once a day.
0.16 mg per larva was administered and reared for 8 days, and a comparison test was conducted with biological feed containing 30,000 cells/ml of Chietoceras and 15 Artemia individuals/larva per day. Both the biological feed and the feed of the present invention contain zoea (1 to 3
Stage), Mysis (stages 1 to 3), and grow into postlarva in 8 days.
The feed of the present invention also showed a high value of 85%. Similarly, the purified mixed feed of Example 2 was added to 0.16
mg/1 larva/day, the larvae grew into postlarvae in 8 days, and the survival rate was 90%. Test Example 2 10,000 zoea 1st stage larval rotifers were housed in a 500 panlite aquarium, and 133 rotifers/1 larva/day were administered to each zone for the 1st to 4th stages of zoea.
From the Zoea 2nd stage to the Megalopa stage, 0.455 mg/1 larva/day of the mixed feed for fry of Example 1 was administered in combination with rotifers, and reared for 10 days. 20 days, Artemia 60 individuals/1 larva/day, clams 1.7 mg/1 larva/day) and similarly encapsulated with a nylon protein film and compared with feed (Note). The survival rate is shown in Table 1.

【表】 試験例 3 30水槽に3.3mmのヒラメ稚魚を1500尾ずつ収
容し、ワムシ100個体/尾・日を投与し、7日目
から実施例1の稚魚用配合飼料1.5mg/尾・日と
併用投与する区と7日目から実施例1の飼料1.8
mg/尾・日に切りかえる区で14日間飼育して、対
象のワムシの区と比較試験した。結果を表2−1
に示す。
[Table] Test Example 3 1500 3.3mm flounder fry were housed in 30 aquariums, 100 rotifers/fish/day were administered, and from the 7th day, 1.5mg/fish/fish/day of the mixed feed for fry of Example 1 was administered. Feed 1.8 of Example 1 from day 7 to the group administered in combination with
The animals were reared for 14 days in a group that was switched to mg/tail/day, and compared with the target rotifer group. Table 2-1 shows the results.
Shown below.

【表】 また、同様に3.3mmのヒラメ稚魚に実施例1の
飼料1.8mg/尾・日を単独投与して14日間飼育し、
対象のワムシ100個体/尾・日のものおよびツエ
イン(Zein)コーテイングの配合飼料1.8mg/
尾・日のものと比較試験した。結果は表2−2に
示す。
[Table] Similarly, 1.8 mg of the feed of Example 1 was administered to juvenile flounder fish per tail per day for 14 days.
100 target rotifers/1.8mg of tail/day and Zein coated feed/
A comparison test was conducted with those of Obi and Hibi. The results are shown in Table 2-2.

【表】 試験例 4 100パンライト水槽にワムシ200個体/尾・日
投与の10日令マダイ稚魚を1000尾ずつ収容し、実
施例3のマダイの稚魚用配合飼料1.25mg/尾・日
を26日令まで16日間投与し、対照の生物飼料およ
びナイロン・タンパク被膜飼料1.25mg/尾・日の
ものと比較試験した。 結果は表3に示す。
[Table] Test Example 4 1000 10-day-old red sea bream fry fed with 200 rotifers/tail/day were housed in 100 panlite aquariums, and 1.25 mg/tail/day of compound feed for young red sea bream from Example 3 was added to the tank for 26 days. The animals were administered for 16 days up to the age of 16 days and compared with a control biological feed and a nylon protein-coated feed of 1.25 mg/day. The results are shown in Table 3.

【表】 試験例 5 500パンライト水槽に7mmのアユ稚魚を2000
尾ずつ収容し、ワムシ200個体/尾・日を投与し、
10日目から実施例4のアユの稚魚用配合飼料1.45
mg/尾・日と併用する区と、10日目から実施例4
の飼料2.20mg/尾・日に切りかえる区で30日間飼
育して、対照のワムシ150個体/尾・日及びアル
テミア30個体/尾尾・日の、生餌併用の区と比較
試験した。表4に示す。
[Table] Test example 5 2000 7mm sweetfish fry in a 500 panlite aquarium
Each tail was housed, and 200 rotifers/tail/day were administered.
From the 10th day, the compound feed for juvenile sweetfish of Example 4 1.45
Example 4 from the 10th day and the group used in combination with mg/tail/day
The rats were reared for 30 days on a diet of 2.20 mg/day of rotifers and compared with the control plots of 150 rotifers/day and 30 Artemia/day of live feed. It is shown in Table 4.

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 紅藻類粘質物と反応性のある水溶性蛋白を含
む稚魚用栄養成分に水を加えて、70℃以上に加熱
し、紅藻類粘質物でかつその化学成分中硫酸基8
%以上含有の粘質物を配合し、塩化カリウムを添
加してゲル化せしめた後、乾燥粉末化することを
特徴とする稚魚用配合飼料の製造法。
1 Add water to the nutritional ingredients for young fish containing water-soluble proteins that are reactive with red algae mucilage, heat to 70℃ or higher, and prepare red algae mucilage with 8 sulfate groups in its chemical components.
A method for producing a compound feed for young fish, which comprises blending a mucilage with a content of % or more, gelling it by adding potassium chloride, and then drying and powdering it.
JP56169783A 1981-10-23 1981-10-23 Blended feed for fry Granted JPS5871847A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56169783A JPS5871847A (en) 1981-10-23 1981-10-23 Blended feed for fry

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56169783A JPS5871847A (en) 1981-10-23 1981-10-23 Blended feed for fry

Publications (2)

Publication Number Publication Date
JPS5871847A JPS5871847A (en) 1983-04-28
JPH0240298B2 true JPH0240298B2 (en) 1990-09-11

Family

ID=15892783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56169783A Granted JPS5871847A (en) 1981-10-23 1981-10-23 Blended feed for fry

Country Status (1)

Country Link
JP (1) JPS5871847A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62138149A (en) * 1985-12-13 1987-06-20 Three Bond Co Ltd Feed for feeding glass eel and production thereof
JPH07106123B2 (en) * 1988-12-23 1995-11-15 日本水産株式会社 Yellowtail fish feed
CN103704521B (en) * 2013-12-20 2016-03-09 大连赛姆生物工程技术有限公司 A kind of ox autonomous-ingestiontype type plant-source composite efficacy nourishment and preparation method thereof
CN103704520B (en) * 2013-12-20 2016-03-16 大连赛姆生物工程技术有限公司 A kind of duck autonomous-ingestiontype type plant-source composite efficacy nourishment and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52117792A (en) * 1976-03-26 1977-10-03 Nihon Nosan Kogyo Initial feed for fish culture
JPS5398287A (en) * 1977-01-27 1978-08-28 Masaji Kimura Method for producing synthetic feed for sericulture culture etc
JPS55104863A (en) * 1979-02-06 1980-08-11 Unilever Nv Feedstuff for brzeding small animal and method
JPS55118354A (en) * 1979-03-02 1980-09-11 Nisshin Kasei Kogyo Kk Preparation of feed for pisciculture
JPS5692747A (en) * 1979-12-24 1981-07-27 Hayashikane Sangyo Kk Production of artificial feed

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52117792A (en) * 1976-03-26 1977-10-03 Nihon Nosan Kogyo Initial feed for fish culture
JPS5398287A (en) * 1977-01-27 1978-08-28 Masaji Kimura Method for producing synthetic feed for sericulture culture etc
JPS55104863A (en) * 1979-02-06 1980-08-11 Unilever Nv Feedstuff for brzeding small animal and method
JPS55118354A (en) * 1979-03-02 1980-09-11 Nisshin Kasei Kogyo Kk Preparation of feed for pisciculture
JPS5692747A (en) * 1979-12-24 1981-07-27 Hayashikane Sangyo Kk Production of artificial feed

Also Published As

Publication number Publication date
JPS5871847A (en) 1983-04-28

Similar Documents

Publication Publication Date Title
JP5096656B2 (en) Marine lipid composition for aquatic feeding
Langdon et al. Progress in the development of artificial diets for bivalve filter feeders
JP2003519498A (en) Method for culturing a DHA-rich bait for aquatic organisms
JPS633764A (en) Feed for seeding production
Langdon et al. Microparticulate feeds for marine suspension-feeders
Mukhopadhyay et al. Applied nutrition in freshwater prawn, Macrobrachium rosenbergii, culture
CN111567676B (en) Special nutrition enhancer for parent fish of cold water fish and use method thereof
EP0292052A2 (en) Fish feed, procedure for producing same, and feeding method
JPS6345184B2 (en)
CN109329654A (en) Alternative bait of bay scallop kind shellfish and preparation method thereof
US3733204A (en) Method of feeding chitinous meal to crustacea
JP2002529062A (en) Synthetic granular bait for larvae of larvae or other marine organisms, and method of producing initial bait
JPH0240298B2 (en)
CN102485020B (en) Soft feed for babylonia areolata parent mature stage and preparation method thereof
JPH0851937A (en) Feed for cultured shrimp and method for culturing shrimp
JPS6211058A (en) Feed for aquatic and its production
JPH0530923A (en) Initial blend feed for culturing fishes
JPH06237706A (en) Method for growing juvenile bivalve using fine particle of artificial feed
JP2003519500A (en) Rearing aquatic organisms using high DHA-containing prey
Pierce et al. Applications of a new radiotracer method for investigating prawn (Macrobrachium rosenbergii) ecology and digestive physiology
EP1569524B1 (en) Fish feed
JP2004041105A (en) Feed for fish and shellfish
JP3327974B2 (en) Disease resistant feed for crustaceans
JPH05292896A (en) Artificial formula feed
JP2943786B2 (en) Additive for crustacean aquaculture powder feed and feed for crustacean aquaculture