JPH023931A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH023931A
JPH023931A JP15288388A JP15288388A JPH023931A JP H023931 A JPH023931 A JP H023931A JP 15288388 A JP15288388 A JP 15288388A JP 15288388 A JP15288388 A JP 15288388A JP H023931 A JPH023931 A JP H023931A
Authority
JP
Japan
Prior art keywords
collector
type
base
single crystal
emitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15288388A
Other languages
Japanese (ja)
Inventor
Toshihiro Sugii
寿博 杉井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP15288388A priority Critical patent/JPH023931A/en
Publication of JPH023931A publication Critical patent/JPH023931A/en
Pending legal-status Critical Current

Links

Landscapes

  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To realize the high speed operation of a bipolar transistor by using single crystal beta-SiC of low permetivity and large saturation speed as a collector material, and shortening the collector charging time and the collector transit time. CONSTITUTION:On a P-type Si substrate having a specified impurity concentration, an N-type single crystal beta-SiC layer whose impurity concentration is larger than that of the substrate 1 as the collector is formed by epitaxial growth, wherein SiHCl and C3H3 are used as source, and PH3 is introduced for N-type doping. On the N-type single crystal beta-SiC layer 2, a P-type Si layer 3 as the base is formed by epitaxial growth. On the layer 3, an SiO2 film 4 is formed in a specified thickness. An emitter part is opened in the film 4, As is ion implanted, and an N-type impurity region as the emitter is formed. Finally, after a contact part for base and collector is opened, an Al film is formed and etched, thereby forming a collector electrode 6, an emitter electrode 7 and a base electrode 8.

Description

【発明の詳細な説明】 ((既  要〕 バイポーラトランジスタに関し、 動作速度の高速化を目的とし、 バイポーラトランジスタのコレクタ材料に単結晶β−S
iCを用いることを含み構成する。
[Detailed Description of the Invention] ((Already required) Regarding bipolar transistors, for the purpose of increasing the operating speed, single crystal β-S is used as the collector material of bipolar transistors.
This includes the use of iC.

[産業上の利用分野] 本発明は、バイポーラトランジスタに関する。[Industrial application field] The present invention relates to bipolar transistors.

〔従来の技術〕[Conventional technology]

近年の情報化社会に伴い、半導体装置の高速化が望まれ
ている。従って、今後、゛F−導体素子の動作速度の高
速化が大きな課題である。
BACKGROUND ART With the recent information society, there is a desire for faster semiconductor devices. Therefore, increasing the operating speed of F-conductor elements will be a major issue in the future.

バイポーラトランジスタにおいて、その動作時間はエミ
ッタ充電時間τ。、ヘース走行時間τ5コレクタ充電時
間τ。およびコレクタ走行時間τ。・を用いて、 τ = τ 8 + τ 、−ト τ 。+ τ ゎと
表される。従って、エミッタ充電時間で、、ヘース走行
時間τ5.コレクタ充電時間τ。およびコレクタ走行時
間τどの短縮がバイポーラトランジスタの高速化につな
がる。
In a bipolar transistor, its operating time is the emitter charging time τ. , Höss running time τ5 collector charging time τ. and collector transit time τ.・Using τ = τ 8 + τ , - τ . It is expressed as + τ ゎ. Therefore, with the emitter charging time, the Heiss transit time τ5. Collector charging time τ. and collector transit time τ, which reduction leads to faster bipolar transistors.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

現在、バイポーラトランジスタはコレクタ、ヘース、エ
ミンタの各部材にシリコンを用いたSiバイポーラトラ
ンジスタが主流である。
Currently, the mainstream bipolar transistor is a Si bipolar transistor in which silicon is used for each of the collector, heath, and emitter members.

バイポーラトランジスタにおいて、コレクタ充電時間τ
。は、コレクタ抵抗rcとコレクタ・ベース間容量Cc
を用いて、 τc ” r c ce と表される。従って、reまたはCcを小さくすればコ
レクタ充電時間は短縮されるのであるが、rlを低減す
るためにコレクタ濃度を上げると、逆にCcは増加して
しまい、コレクタ充電時間τゎの短縮にはならない。
In a bipolar transistor, the collector charging time τ
. is the collector resistance rc and the collector-base capacitance Cc
It is expressed as τc ” r c ce using Therefore, the collector charging time τゎ cannot be shortened.

一方、コレクタ走行時間τどは、コレクタ・ベース間空
乏層幅Wと飽和速度υ2を用いて、τ、−=W/2υ。
On the other hand, the collector transit time τ is calculated using the collector-base depletion layer width W and the saturation speed υ2, τ, -=W/2υ.

と表される。しかし、飽和速度υ、はシリコンに固有の
量で変更不可能であり、またコレクタ・ベース間空乏層
幅Wはコレクタ・ベース間耐圧ど関係しているので、あ
まり小さくすることはできない。従って、コレクタ走行
時間を短縮することは難しい。
It is expressed as However, the saturation speed υ is inherent to silicon and cannot be changed, and the width W of the collector-base depletion layer is related to the breakdown voltage between the collector and base, so it cannot be made very small. Therefore, it is difficult to shorten the collector running time.

結局、Siバイポーラトランジスタにおいてコレクタ充
電時間とコレクタ走行時間の短縮を図ることは難しい。
After all, it is difficult to shorten the collector charging time and collector running time in a Si bipolar transistor.

そこで本発明は、コレクタ材料を選択することいよりコ
レクタ充電時間およびコレクタ走行時間の短縮を図り、
バイポーラトランジスタの動作速度の高速化を目的とす
る。
Therefore, the present invention aims to shorten the collector charging time and collector running time by selecting the collector material.
The aim is to increase the operating speed of bipolar transistors.

〔課題を解決するための手段〕[Means to solve the problem]

前記目的は、バイポーラトランジスタのコレクタ材料に
単結晶β−5iCを用いることを特徴とする半導体装置
により達成される。
The above object is achieved by a semiconductor device characterized in that single crystal β-5iC is used as a collector material of a bipolar transistor.

(作 用) 本発明では、バイポーラトランジスタのコレクタ材ネ4
としてSiに比べて低誘電率かつ飽和速度の大きい単結
晶β−5iCを用いる。
(Function) In the present invention, the collector material of the bipolar transistor
Single crystal β-5iC, which has a lower dielectric constant and a higher saturation speed than Si, is used as the material.

−Cに、バイポーラトランジスタにおいてコレクタ充電
時間【Cは、 rc =r c Cc (rc  :コレクタ抵抗5 Cc :コレクタ・ベース間容量) と表される。このときコレクタ・ベース間の空乏層はコ
レクタ側にあるので、コレクタ・ベース間容量Ccは単
結晶β−SiCの比誘電率に比例し、単結晶β−5iO
比誘電率はSiのそれに比べて低いので、コレクタ・ベ
ース間容1tCcは小さくなり、従ってコレクタ充電時
間τ。が短くなる。ちなみにSiの比誘電率は11.8
であり、単結晶β−5tCのそれは9.7であるから、
本発明によりコレクタ充電時間τゎは87%に減少する
-C is the collector charging time in a bipolar transistor [C is expressed as rc = r c Cc (rc: collector resistance 5 Cc: collector-base capacitance). At this time, since the collector-base depletion layer is on the collector side, the collector-base capacitance Cc is proportional to the dielectric constant of single crystal β-SiC, and
Since the dielectric constant is lower than that of Si, the collector-base capacitance 1tCc becomes small, and therefore the collector charging time τ. becomes shorter. By the way, the dielectric constant of Si is 11.8.
and that of single crystal β-5tC is 9.7, so
According to the present invention, the collector charging time τゎ is reduced to 87%.

また、コレクタ走行時間τ。°は、 τゎ・−W/2υ。Also, the collector running time τ. ° is τゎ・−W/2υ.

(υi:11i!和速廣。(υi: 11i! Kazuya Hiro.

W:コレクタ・ベース間空乏層幅) と表され、単結晶β−5iCの飽和速度υ8はSiのそ
れに比べて大きいので、コレクタ走行時間τ。
W: Collector-base depletion layer width) Since the saturation speed υ8 of single crystal β-5iC is larger than that of Si, the collector transit time τ.

は短縮される。ちなみに81の飽和速度υ、は1×10
’ (cm / see )であり、単結晶β−SiC
のそれは2.5 X 10’ (cm / sec )
であるから、本発明によりコレクタ走行時間τ、・は4
0%に減少する。
is shortened. By the way, the saturation speed υ of 81 is 1×10
' (cm/see), and single crystal β-SiC
It is 2.5 X 10' (cm/sec)
Therefore, according to the present invention, the collector running time τ,・is 4
Reduced to 0%.

このように本発明では、コレクタに単結晶β−5iCを
用いるので、コレクタ充電時間τ。およびコレクタ走行
時間τどが短縮される。
As described above, in the present invention, since single crystal β-5iC is used for the collector, the collector charging time τ is short. Also, the collector travel time τ is shortened.

〔実施例〕〔Example〕

第1図は、本発明の実施例に係るバイポーラトランジス
タの製造工程説明図であり、同図(e)が完成図である
。図において、1はp型Si基板、2はコレクタとして
のn型車結晶β−SiC層、3はベースとしてのp型S
i[,4は5i02膜、5はエミッタとしてのn型不純
物拡散領域、6はコレクタ電極、7はエミッタ電極、8
はベース電極である。
FIG. 1 is an explanatory diagram of the manufacturing process of a bipolar transistor according to an embodiment of the present invention, and FIG. 1(e) is a completed diagram. In the figure, 1 is a p-type Si substrate, 2 is an n-type wheel crystal β-SiC layer as a collector, and 3 is a p-type S as a base.
i[, 4 is a 5i02 film, 5 is an n-type impurity diffusion region as an emitter, 6 is a collector electrode, 7 is an emitter electrode, 8
is the base electrode.

次に図に従って、製造工程を説明する。Next, the manufacturing process will be explained according to the drawings.

まず、 不純物濃度I XIO” (/cm’)のp型
Si基板1の上にコレクタとしてのn型車結晶β−5i
C層2(不純物1afflxlO’θ(/cm”)、 
 膜厚的500nm )をエピタキシャル成長により形
成する(同図(a))。このときのエピタキシャル成長
は、ソースガスとして5iH(”j3およびC、11、
を用い、さらにn型にドーピングするためP113を導
入して行う。
First, an n-type wheel crystal β-5i as a collector is placed on a p-type Si substrate 1 with an impurity concentration of IXIO''(/cm').
C layer 2 (impurity 1afflxlO'θ(/cm"),
A film with a thickness of 500 nm) is formed by epitaxial growth (FIG. 4(a)). The epitaxial growth at this time uses 5iH ("j3 and C, 11,
P113 is further introduced for n-type doping.

次に、n型車結晶β−5iC層2の上にベースとしての
p型Sit何3(不純物濃度5 XIO” (/cm’
)膜yf150nm )をエピタキシャル成長で形成す
る(同図(b))。
Next, on the n-type wheel crystal β-5iC layer 2, a p-type Si layer 3 (impurity concentration 5
) A film yf150nm) is formed by epitaxial growth (FIG. 2(b)).

続イテ、P 型sii 3 ノ上6:S:OJ’J 4
を膜厚50(1nm程度形成する(同図(c)。
Continued, P type sii 3 Noue 6:S:OJ'J 4
is formed to a film thickness of about 50 nm (about 1 nm) (FIG. 3(c)).

さらに、SiO□1漠4にエミンタ部を開口し、ヒ素を
エネルギー80k e V、  2 XIO” (7c
m”) ノドーズ量でイオン注入し、エミッタとしての
n型不純物拡散領域5を形成する(同図(d))。
Furthermore, an emitter was opened in the SiO
m'') ion implantation is performed at a dose of 1.5 m to form an n-type impurity diffusion region 5 as an emitter (FIG. 3(d)).

最後に、S’+Ot膜4にベースおよびコレクタ用のコ
ンタクト部を開口した後、Allを形成しエンチングし
てコレクタ電極6.エミッタ電極7およびベース電極8
を形成すると、本発明の実施例に係るバイポーラトラン
ジスタが形成される(同図(e))。
Finally, after opening contact portions for the base and collector in the S'+Ot film 4, All is formed and etched to form the collector electrode 6. Emitter electrode 7 and base electrode 8
By forming , a bipolar transistor according to an embodiment of the present invention is formed (FIG. 3(e)).

このようにして形成されるバイポーラトランジスタは、
コレクタ材料に従来のSiに代えて、低誘電率かつ飽和
速度の大きいn型車結晶β−SiC層2を用いるので、
コレクタ充電時間およびコレクタ走行時間が短縮される
The bipolar transistor formed in this way is
Since the collector material is an n-type wheel crystal β-SiC layer 2 with a low dielectric constant and high saturation speed, instead of conventional Si,
Collector charging time and collector running time are reduced.

なお、コレクタ充電時間はコレクタ材料の比誘電率に比
例し、Siの比誘電率は11.8、n型車結晶β−Si
CJi2のそれは9.7であるから、 コレクタ充電時
間は87%に減少する。
Note that the collector charging time is proportional to the dielectric constant of the collector material, and the dielectric constant of Si is 11.8, and the dielectric constant of Si is 11.8.
Since that of CJi2 is 9.7, the collector charging time is reduced to 87%.

また、コレクタ走行時間はコレクタ材料の飽和速度の逆
比例し、Siの飽和速度はl XIO’ (cm/5e
c) 、n型車結晶β−s;cj12のそれは2.5X
10’Ccm/sec )であるから、コレクタ走行時
間は40%に減少する。
In addition, the collector transit time is inversely proportional to the saturation speed of the collector material, and the saturation speed of Si is l XIO' (cm/5e
c), N type car crystal β-s; that of cj12 is 2.5X
10'Ccm/sec), the collector running time is reduced to 40%.

このように本発明によれば、コレクタ材料に低誘電率か
つ飽和速度の大きいn型車結晶β−5iC層2を用いる
ことにより、コレクタ充電時間τゎおよびコレクタ走行
時間τゎ°が短縮されるので、バイポーラトランジスタ
の動作が高速化される。
As described above, according to the present invention, by using the n-type wheel crystal β-5iC layer 2 with a low dielectric constant and high saturation speed as the collector material, the collector charging time τゎ and the collector running time τゎ° are shortened. Therefore, the operation speed of the bipolar transistor is increased.

従って、半導体装置のより一層の高速化に効果がある。Therefore, it is effective in further increasing the speed of the semiconductor device.

[発明の効果] 本発明によれば、コレクタ材料に低誘電率かつ飽和速度
の大きい単結晶β−5iC−を用いることにより、コレ
クタ充電時間τゎおよびコレクタ走行時間τ。°が短縮
されるので、バイポーラトランジスタの動作が高速化さ
れる。従って、半導体装置のより一層の高速化に効果が
ある。
[Effects of the Invention] According to the present invention, by using single crystal β-5iC-, which has a low dielectric constant and a high saturation speed, as the collector material, the collector charging time τゎ and the collector running time τ can be reduced. Since the time is shortened, the operation of the bipolar transistor becomes faster. Therefore, it is effective in further increasing the speed of the semiconductor device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の実施例に係るバイポーラトランジス
タの製造工程説明図である。 (符号の説明) 1 ・・・ p 型Si基奢反、 2・・・n型車結晶β−5iC層、 3・・・p型Si層、 4・・・5iOz膜、 5・・・n型不純物拡散領域、 6・・・コレクタ電極、 7・・・エミッタ電極、 8・・・ベース電極。
FIG. 1 is an explanatory diagram of the manufacturing process of a bipolar transistor according to an embodiment of the present invention. (Explanation of symbols) 1...p-type Si base film, 2...n-type wheel crystal β-5iC layer, 3...p-type Si layer, 4...5iOz film, 5...n type impurity diffusion region, 6... collector electrode, 7... emitter electrode, 8... base electrode.

Claims (1)

【特許請求の範囲】[Claims] バイポーラトランジスタのコレクタ材料に単結晶β−S
iCを用いることを特徴とする半導体装置。
Single crystal β-S as collector material for bipolar transistors
A semiconductor device characterized by using an iC.
JP15288388A 1988-06-20 1988-06-20 Semiconductor device Pending JPH023931A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15288388A JPH023931A (en) 1988-06-20 1988-06-20 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15288388A JPH023931A (en) 1988-06-20 1988-06-20 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH023931A true JPH023931A (en) 1990-01-09

Family

ID=15550205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15288388A Pending JPH023931A (en) 1988-06-20 1988-06-20 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH023931A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0782098A (en) * 1993-06-30 1995-03-28 Agency Of Ind Science & Technol Silicon substrate having silicon carbide-embedded layer and its production
WO1999009585A1 (en) * 1997-08-13 1999-02-25 Matsushita Electric Industrial Co., Ltd. Semiconductor substrate and semiconductor device
US6870204B2 (en) * 2001-11-21 2005-03-22 Astralux, Inc. Heterojunction bipolar transistor containing at least one silicon carbide layer
JP2015115587A (en) * 2013-12-16 2015-06-22 新日本無線株式会社 Bipolar transistor and manufacturing method therefor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0782098A (en) * 1993-06-30 1995-03-28 Agency Of Ind Science & Technol Silicon substrate having silicon carbide-embedded layer and its production
JP2615406B2 (en) * 1993-06-30 1997-05-28 工業技術院長 Method for manufacturing silicon substrate having silicon carbide buried layer
WO1999009585A1 (en) * 1997-08-13 1999-02-25 Matsushita Electric Industrial Co., Ltd. Semiconductor substrate and semiconductor device
EP0971394A1 (en) * 1997-08-13 2000-01-12 Matsushita Electric Industrial Co., Ltd. Semiconductor substrate and semiconductor device
EP0971394A4 (en) * 1997-08-13 2000-01-12 Matsushita Electric Ind Co Ltd Semiconductor substrate and semiconductor device
US6870204B2 (en) * 2001-11-21 2005-03-22 Astralux, Inc. Heterojunction bipolar transistor containing at least one silicon carbide layer
US6893932B2 (en) 2001-11-21 2005-05-17 Astralux, Inc. Heterojunction bipolar transistor containing at least one silicon carbide layer
JP2015115587A (en) * 2013-12-16 2015-06-22 新日本無線株式会社 Bipolar transistor and manufacturing method therefor

Similar Documents

Publication Publication Date Title
US5985708A (en) Method of manufacturing vertical power device
JPH01264253A (en) Manufacture of semiconductor device
JPH0472633A (en) Manufacture of semiconductor device
JPH0778990A (en) High breakdown voltage semiconductor device
JPH023931A (en) Semiconductor device
JPS6081864A (en) Lateral type transistor
JP3197667B2 (en) Accumulation type polycrystalline silicon thin film transistor
JPS60144950A (en) Manufacture of semiconductor device
JP3105237B2 (en) Method for manufacturing DMOS type semiconductor device
JP3300530B2 (en) Method of manufacturing mesa-type semiconductor device
JPS637665A (en) Lateral p-n-p transistor
JPS6020571A (en) Semiconductor device
JPH0399439A (en) Manufacture of semiconductor device
KR0165377B1 (en) High voltage transistor and manufacturing thereof
JPS62137870A (en) Manufacture of mis transistor
JPS59182566A (en) Semiconductor device
JP2518373B2 (en) Bipolar transistor
JPH04112539A (en) Manufacture of semiconductor device
JPS62293768A (en) Lateral bipolar semiconductor device and manufacture of the same
JPH02252243A (en) Semiconductor device
JPH0332027A (en) Manufacture of semiconductor device
JPS62293674A (en) Bipolar semiconductor device and manufacture thereof
JPS6084873A (en) Semiconductor device
JPH04275432A (en) Semiconductor device
JPH04260375A (en) Manufacture of semiconductor device