JPH0238951A - Device and method for foreign matter detection - Google Patents

Device and method for foreign matter detection

Info

Publication number
JPH0238951A
JPH0238951A JP18840588A JP18840588A JPH0238951A JP H0238951 A JPH0238951 A JP H0238951A JP 18840588 A JP18840588 A JP 18840588A JP 18840588 A JP18840588 A JP 18840588A JP H0238951 A JPH0238951 A JP H0238951A
Authority
JP
Japan
Prior art keywords
light
sample
optical system
linear
illumination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18840588A
Other languages
Japanese (ja)
Other versions
JP2512093B2 (en
Inventor
Yukio Uto
幸雄 宇都
Hiroshi Morioka
洋 森岡
Yoshimasa Oshima
良正 大島
Mitsuyoshi Koizumi
小泉 光義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63188405A priority Critical patent/JP2512093B2/en
Publication of JPH0238951A publication Critical patent/JPH0238951A/en
Application granted granted Critical
Publication of JP2512093B2 publication Critical patent/JP2512093B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/94Investigating contamination, e.g. dust

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PURPOSE:To light the surface of a body to be measured linearly without providing any movable part and to shorten an inspection time by providing an oblique light optical system with a linear optical system. CONSTITUTION:The oblique lighting system 5a lights the surface of the sample 7 slantingly above 18 to form a linear spot 8. The detection system consisting of an image forming lens 9, a light shielding plate 10, and a detector 11 is provided vertically and the linear spot 8 and the light receiving surface of the detector 11 are in image formation relation by the image forming lens 9; if there is foreign matter in the linear spot 8, scattered light is generated and its image is projected on the detector 11 and detected. The sample 7 on a stage 12 is moved at equal speed by a motor 13 and a feed screw 14 and inspected. The electric signal 11a from the detector 11 is processed by a binarization circuit 15 and an arithmetic circuit 16 and when the foreign matter is detected, its coordinates are displayed on a foreign matter display part 17.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、露光装置に用いるマスクやレチクル等のガラ
ス基板、あるいはウェハ、プリント基板。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to glass substrates such as masks and reticles used in exposure apparatuses, wafers, and printed circuit boards.

磁気ディスク等の試料表面上の異物検出装置及び方f:
に関する。
Device and method for detecting foreign matter on the surface of a sample such as a magnetic disk etc. f:
Regarding.

〔従来の技術〕[Conventional technology]

従来、半導体ウェハ上の異物′4!ltX装置としては
デ・アール・オスワード:レーザスキャンテクニークフ
オエレクトロニツクマテイリアルス サーフェイス エ
バリエーンジン、シエ・オフ・エレクトロニクスマテイ
リアルス巣6巻第1号1974−1CDIIRIIO,
?Watd’、ALαzgr ScarLTgchni
qug j’or。
Conventionally, foreign matter '4! on a semiconductor wafer! As for the ltX device, De R Osward: Laser Scan Technique Photoelectronics Materials Surface Evalian Engine, Scieoff Electronics Materials Volume 6 No. 1 1974-1CDIIRIIO,
? Watd', ALαzgr ScarLTgchni
qug j'or.

Electronic Matgrialgz Stb
rfacg Eualbtion 、 I。
Electronic Matgrialgz Stb
rfacgEvaluation, I.

of E1gctron番cz MatgrLaltz
 、 Vol、5.Itl 1974−1)等かある。
of E1gctron number cz MatgrLaltz
, Vol. 5. Itl 1974-1) etc.

これらの原理を第16〜18図に示す。落射照明光学系
は、レーザ光源40.集光レンズ41,1光プリズム4
2.フィールドレンズ43. /4波長板44゜対物レ
ンズ45より成る。
These principles are shown in FIGS. 16-18. The epi-illumination optical system includes a laser light source 40. Condensing lens 41, 1 optical prism 4
2. Field lens 43. It consists of a /4 wavelength plate and a 44° objective lens 45.

検出光学系は遮光板47.結像レンズ48.検出器49
より成る。次に各部のa[を詳しく説明する。
The detection optical system includes a light shielding plate 47. Imaging lens 48. Detector 49
Consists of. Next, a[ of each part will be explained in detail.

藁17図において、レーザ光源40より出力されたレー
ザ光50はS偏光であり、偏光プリズム42を通過し、
フィールドレンズ43の絞り43cL内でレーザスポッ
ト50αとなる。フィールドレンズヲ通過したレーザ光
50は4tfIL長板44を通過し対物し/ズ45によ
り試料上46上にレーザスポット50cを形成する。
In Figure 17, laser light 50 output from the laser light source 40 is S-polarized light, passes through a polarizing prism 42,
A laser spot 50α is formed within the aperture 43cL of the field lens 43. The laser beam 50 that has passed through the field lens passes through a 4tfIL long plate 44 and forms a laser spot 50c on a sample 46 by an objective lens 45.

試料46上に異物が存在していない場合には試料表面か
らのレーザ反射光(0次回折元)50は再度対物レンズ
45./[長板44.フィールドレンズ43を通過し、
偏光プリズム42で100%反射した後、遮光板47の
遮光部47cLで遮光される。ここで、フィールドレン
ズ43は、絞り45αにおけるレーザ光50の広かり5
0kを遮光部47αに投影している。
When there is no foreign matter on the sample 46, the laser reflected light (source of 0th order diffraction) 50 from the sample surface is redirected to the objective lens 45. / [Long board 44. Passes through the field lens 43,
After being 100% reflected by the polarizing prism 42, the light is blocked by the light blocking portion 47cL of the light blocking plate 47. Here, the field lens 43 controls the width 5 of the laser beam 50 at the aperture 45α.
0k is projected onto the light shielding portion 47α.

Eft板47は例えば透明ガラス板上の中心部に不透体
を付けて遮光部47αを形成している。
The Eft plate 47 is formed by, for example, attaching an opaque material to the center of a transparent glass plate to form a light shielding part 47α.

ここで1/lL長板44をレーザ照明光50が通過し、
更にレーザ反射光50が通過すると、照明光50のS偏
光が反射光50ではP偏光KK化するので、偏光プリズ
ム42により反射光50は100チ反射される。
Here, the laser illumination light 50 passes through the 1/1L long plate 44,
Further, when the laser reflected light 50 passes through, the S-polarized light of the illumination light 50 becomes P-polarized KK in the reflected light 50, so that the reflected light 50 is reflected 100 times by the polarizing prism 42.

第18図に示すよ5に、試料46上に異物52が存在す
る場合には、照明光50が異物52を照射すると異物5
2からの散乱光(高次回折光)51が発生し、これは対
物レンズ45の絞り45α内の全面に広がり、前述した
反射t50と同一の光路を戻る。
As shown in FIG. 18, when a foreign object 52 is present on the sample 46, when the illumination light 50 irradiates the foreign object 52, the foreign object 52
Scattered light (higher-order diffracted light) 51 is generated from 2, spreads over the entire surface within the aperture 45α of the objective lens 45, and returns along the same optical path as the reflection t50 described above.

異物52は表面が微小な凹凸を呈しているので、散乱光
51の偏光成分はSとPの両方を含む。異物の散乱光5
1のP偏光成分51Aは偏光プリズム42で反射した後
、遮光板47の遮光部47αの外側の透明部を通過して
、結像レンズ48で検出器49上に集光されて検出され
るようになっていた。
Since the surface of the foreign object 52 has minute irregularities, the polarization components of the scattered light 51 include both S and P. Scattered light from foreign matter 5
After being reflected by the polarizing prism 42, the P-polarized light component 51A of 1 passes through the transparent part outside the light shielding part 47α of the light shielding plate 47, and is focused on the detector 49 by the imaging lens 48 so that it is detected. It had become.

他の公知例としては特開昭57−128854号が挙上
記従来技術は、以下の点について配慮がされておらず、
異物検査装置の性能に問題がありた。
Another known example is JP-A-57-128854. The above-mentioned conventional technology does not take into account the following points:
There was a problem with the performance of the foreign object inspection device.

1) 従来技術の機械的偏向器では、ミラーとミラー回
転軸の接合部に接漕剤を用いており、信頼性が低い、ミ
ラー自身の慣性モーメントにより、駆動信号に追従しな
い等の問題くついて配慮がされておらず、レーザ光束の
走査速度に限界があり、検査時間を短縮できなかった。
1) Conventional mechanical deflectors use a contact agent at the joint between the mirror and the mirror rotation axis, which causes problems such as low reliability and failure to follow drive signals due to the mirror's own moment of inertia. No consideration was given to this, and there was a limit to the scanning speed of the laser beam, making it impossible to shorten the inspection time.

2)フィールドレンズや対物レンズ内を通してレーザ光
を試料表面上に照射していたので、レンズの表面で反射
したわずかな迷光が、レンズ表面の湾曲により偏光方向
が直線から楕円偏光になり、遮光板の遮光部外側を通過
して検出器に遅し、異物検出のシWを低下させていた。
2) Since the laser beam was irradiated onto the sample surface through the field lens and objective lens, a small amount of stray light reflected on the lens surface changed its polarization direction from linear to elliptically polarized light due to the curvature of the lens surface, and the light shielding plate The foreign object passes through the outside of the light shielding part and is delayed to the detector, reducing the accuracy of foreign object detection.

3ン 照明光のレーザスポットは点状であるので試料上
を2次元的に走査する為に落射照明光学系の光路中にレ
ーザ走査手段C図省略)を設ける必要があり光学系の複
雑さを招いていた。
3. Since the laser spot of the illumination light is point-shaped, it is necessary to provide a laser scanning means C (figure omitted) in the optical path of the epi-illumination optical system in order to scan the sample two-dimensionally, which increases the complexity of the optical system. I was invited.

本発明の第1の目的は、上記問題を屏決し、異物検出時
間の短縮をはかるよ5KL、た異物検査方法及びその装
置である。
A first object of the present invention is to provide a method and apparatus for inspecting foreign matter that solves the above problems and shortens the time required to detect foreign matter.

本発明の第2の目的は、異物検出のSlN比を向上させ
るようにした異物検査方法及びその装置である。
A second object of the present invention is to provide a foreign object inspection method and apparatus that improve the SIN ratio for foreign object detection.

本発明の藁3の目的は、装置構成なm素化した上記M1
の目的は異物検出装置において、光源の像を線状忙集光
するレンズとこの層状光源像を被検査物表面上対して斜
上方向より拡大して投影するレンズを含む線状光学系を
備えた斜方照明光学系と、被検査物表面からの反射光を
一次元固体撮像素子上に結像する集光レンズと、被検査
物表面からの正反射光および被検査物表面上の回路パタ
ーンからの反射光を遮光する還元手段を備えた検出光学
系を用いることにより達成される。
The purpose of the straw 3 of the present invention is to obtain the above M1 which has been converted into a device configuration.
The purpose of this is to provide a foreign object detection device equipped with a linear optical system including a lens that condenses a light source image into a linear shape and a lens that magnifies and projects this layered light source image onto the surface of an object to be inspected from an obliquely upward direction. an oblique illumination optical system, a condenser lens that images the reflected light from the surface of the object to be inspected onto a one-dimensional solid-state image sensor, and a condenser lens that focuses the reflected light from the surface of the object to be inspected and the circuit pattern on the surface of the object to be inspected. This is achieved by using a detection optical system equipped with a reducing means that blocks reflected light from the

また上記Wc2及び藁5の目的は、異物検出装置におい
て、照明光、例えばレーザ光を集光レンズと円筒レンズ
等を用いた光学系で線状スポットにし、これをハーフミ
ラ−を用いて被検査物表面に上方から落射照明する。こ
の時、照明光が異物を検出するための結像レンズ内を通
過して被検査物表面を照明することがないように、ノ・
−7ミラーを結像レンズと被検査物の間に設置する。ま
た、被検査物表面の線状照明領域内からの反射光を結像
レンズと一次元固体撮像素子で検出し、被検査物表面か
らの照明光の正反射光および回路パターンからの反射光
を結像レンズと一次元固体撮像素子の間に設置した遮′
″/l、#Lで遮光し、異物散乱光のみを有効に検出す
ることにより達成される。
The purpose of Wc2 and straw 5 is to convert illumination light, such as laser light, into a linear spot using an optical system using a condensing lens and a cylindrical lens, and then use a half mirror to convert the illumination light, such as laser light, into a linear spot on the object to be inspected. Epi-illumination is applied to the surface from above. At this time, ensure that the illumination light does not pass through the imaging lens for detecting foreign objects and illuminate the surface of the object to be inspected.
-7 mirror is installed between the imaging lens and the object to be inspected. In addition, the reflected light from within the linear illumination area on the surface of the object to be inspected is detected using an imaging lens and a one-dimensional solid-state image sensor, and the specular reflection light of the illumination light from the surface of the object to be inspected and the reflected light from the circuit pattern are detected. A shield placed between the imaging lens and the one-dimensional solid-state image sensor
This is achieved by blocking light with ``/l, #L and effectively detecting only the light scattered by foreign objects.

また本発明は、異物検査装置において、線状光学系を有
する斜方照明光学系と、氷状光学系を有する落射照明光
学系の2方式を用い、試料からの反射光を一次元固体撮
像素子上Kl像する集光レンズと、試料からの正反射光
や試料上の回路パターンからの反射光を遮光する遮光光
学系を有する検出光学系を組み込むことにある。
In addition, the present invention uses two systems, an oblique illumination optical system having a linear optical system and an epi-illumination optical system having an icy optical system, in a foreign matter inspection apparatus, and uses two systems to direct reflected light from a sample to a one-dimensional solid-state image sensor. The purpose of the present invention is to incorporate a detection optical system having a condensing lens that performs an upper Kl image, and a light-shielding optical system that blocks specularly reflected light from a sample and light reflected from a circuit pattern on the sample.

〔作用〕[Effect]

異物検出装置において、照明光を集光レンズ、円筒レン
ズ等を用いた光学系で線状スポットにする。また結像レ
ンズと被検査物との間に設置したハーフミラ−で被検査
物表面に落射照明する。これ罠より、M像レンズ表面で
の照明光の反射がなくなり、一次元撮像素子上に迷光が
達しないので、異物検出のs7yが大幅に向上し、また
、ガルバノミラ−等のIJA元器を用いたスポット走査
に比べ、検査時間の短縮や異物の安定検出が行える。
In a foreign object detection device, illumination light is converted into a linear spot by an optical system using a condenser lens, a cylindrical lens, etc. In addition, epi-illumination is applied to the surface of the object to be inspected using a half mirror installed between the imaging lens and the object to be inspected. This trap eliminates the reflection of illumination light on the M-image lens surface and prevents stray light from reaching the one-dimensional image sensor, greatly improving the s7y of foreign object detection. Compared to conventional spot scanning, inspection time can be shortened and foreign objects can be detected stably.

また異′jIIIJ横出装置において、斜方照明光学系
に線状光学系を設けることにより、光源の像は被検査物
表面上で線状光束となる。これKより、ガルバノミラ−
等の偏向器を用いてスポツ)ltY行うことなく被検査
物表面上での細状照明か案机でき、検査時間の短縮が行
える。
In addition, in the horizontal extraction device, by providing a linear optical system in the oblique illumination optical system, the image of the light source becomes a linear light beam on the surface of the object to be inspected. From this K, galvano mirror
By using a deflector such as the above, it is possible to direct illumination in a narrow pattern on the surface of the object to be inspected without performing spot-on inspection, and the inspection time can be shortened.

また異物検量装kにおいて、 1)斜方照明光学系の中に線状光学系を取り入れ。In addition, in the foreign matter calibration device k, 1) Incorporate a linear optical system into the oblique illumination optical system.

ることにより、光源からの元は試料上で線状になる。そ
れによって、スポット走査、すなわち、。
As a result, the light from the light source becomes linear on the sample. Thereby, spot scanning, ie.

バルバノミラー等の偏向器を用いる必要がな(なるので
、振動の影響を受けにくく、また、検査時間の短縮を図
れる。
There is no need to use a deflector such as a valvanometer mirror, so it is less susceptible to vibrations and inspection time can be shortened.

2) 落射照明光学系を付加することにより、試料から
の反射光の主成分は検出光字系に入り、SN比は斜方照
明と比較して大幅に向上する。
2) By adding an epi-illumination optical system, the main component of the reflected light from the sample enters the detection optical system, and the S/N ratio is significantly improved compared to oblique illumination.

また、照射光の焦点位置く対する試料の検出方向の集魚
深度は、第11図1b+に示すようにN11図(α)K
示す斜方照明と比較して大きくなるので。
In addition, the fishing depth in the detection direction of the sample with respect to the focal position of the irradiation light is shown in Figure 11 (α)K as shown in Figure 11 1b+.
Because it is larger compared to the oblique lighting shown.

プリント基板等の平坦度の低い基板上の異物検出が可能
となる。
It is possible to detect foreign substances on substrates with low flatness such as printed circuit boards.

〔笑施例〕[LOL example]

以下、本発明の一実施例を説明する。 An embodiment of the present invention will be described below.

i@1図は、本発明による異v!J検出装置の概要構成
を示している。ここで、試料7は回路パターンを含むマ
スクやレチクル等のガラス基板やクエハあるいはプリン
ト基板、Mi気ディスクであるものとする。
Figure i@1 shows the difference v! according to the present invention. The general configuration of the J detection device is shown. Here, the sample 7 is assumed to be a glass substrate such as a mask or reticle containing a circuit pattern, a wafer or a printed circuit board, or a Mi disk.

斜方照明系5aは、光源1.来光レンズ21円筒レンズ
5.照明レンズ4より取り、試料70表面を斜上方18
(θ=10〜80度)より照明し、試料表面Km状スポ
ット8を形成する。一方、この線状スポット8の垂直方
向には、M像レンズ9.遮光板10.検出器11から成
る検出系が配置されており、試料7の表面の線状スポッ
ト8と検出器11の受光面は結像レンズ9によって結像
関係になっている。これにより、線状スポット8内く存
在する異物C図示せず)が照明光により散乱光を発生し
、その像が検出器11上に投影されて検出される様くな
りている。ここで用いている検出器11は例えばCOD
 、フォトダイオードプレイ等の自己走査蓄積形の一次
元固体撮像素子である。
The oblique illumination system 5a includes light sources 1. Coming lens 21 cylindrical lens 5. Take it from the illumination lens 4 and point the surface of the sample 70 diagonally upward 18
(θ=10 to 80 degrees) to form a Km-shaped spot 8 on the sample surface. On the other hand, in the vertical direction of this linear spot 8, an M image lens 9. Light shielding plate 10. A detection system consisting of a detector 11 is arranged, and a linear spot 8 on the surface of the sample 7 and the light receiving surface of the detector 11 are in an imaging relationship by an imaging lens 9. As a result, a foreign object C (not shown) existing within the linear spot 8 generates scattered light due to the illumination light, and its image is projected onto the detector 11 and detected. The detector 11 used here is, for example, a COD
, a self-scanning accumulation type one-dimensional solid-state image sensor such as a photodiode play.

試料7はステージ12上に固定し、モータ16と送りネ
ジ14によりてX方向に等速移動して検査される。検量
中、検出器11からの電気信号11αは211m化回路
15.演算回路16で随時、処理され異物検出の際は、
検出信号が異物表示部17に送られ、異物位置の座標が
記憶される。これにより、検査終了後の試料7上の異物
発生位置の表示、確認も可能である。
The sample 7 is fixed on a stage 12 and moved at a constant speed in the X direction by a motor 16 and a feed screw 14 for inspection. During calibration, the electrical signal 11α from the detector 11 is sent to the 211m conversion circuit 15. Processed at any time by the arithmetic circuit 16, when detecting foreign matter,
The detection signal is sent to the foreign object display section 17, and the coordinates of the foreign object position are stored. Thereby, it is also possible to display and confirm the position of foreign matter on the sample 7 after the inspection is completed.

次に第2図、第5図により、照明系と検出系の構成につ
いて述べる。まず、第2図により照明熱を説明する。
Next, the configurations of the illumination system and detection system will be described with reference to FIGS. 2 and 5. First, illumination heat will be explained with reference to FIG.

光源1は、例えば集光性の浚れたレーザ光23を発振し
、レーザ光23は集光レンズ2を通過後、平行光束にな
り、円筒レンズ3を経てE点(円筒レンズの焦点位置)
で艇状スポット23αとなる0更に照明レンズ4を通過
後、試料7表面上KM状スポット8を形成する。E点と
試料7表面は共に照明レンズ4の焦点位置になっている
The light source 1 oscillates, for example, a condensing laser beam 23, and after passing through the condensing lens 2, the laser beam 23 becomes a parallel beam of light, passes through the cylindrical lens 3, and reaches point E (focal position of the cylindrical lens).
After passing through the illumination lens 4, a KM-shaped spot 8 is formed on the surface of the sample 7. Point E and the surface of the sample 7 are both at the focal point of the illumination lens 4.

一方、第5因に示す検出系では、試料7表面での照明光
の正反射光24は結像レンズ9を通過後、1点(結像レ
ンズの焦点位置)で再度、線状スポット24αになるが
、これは遮光板10で遮光され、検出器10の受光面に
は到達しない様釦なっている。
On the other hand, in the detection system shown in the fifth factor, the specularly reflected light 24 of the illumination light on the surface of the sample 7 passes through the imaging lens 9 and then forms a linear spot 24α again at one point (focal position of the imaging lens). However, the light is blocked by the light shielding plate 10 and the button is designed so that the light does not reach the light receiving surface of the detector 10.

また、試料7表面上の回路パターンのエツジからの反射
、光(回折光)も遮光板10で遮光されるが、異物の散
乱光は遮光板10の遮光部の周囲を通過して検出器10
の受光面に到達し検出される。
In addition, reflected light (diffraction light) from the edges of the circuit pattern on the surface of the sample 7 is also blocked by the light shielding plate 10, but the light scattered by foreign objects passes around the light shielding part of the light shielding plate 10 and is detected by the detector 10.
reaches the light receiving surface and is detected.

第4図に、試料7上の回路パターン例を示し、第5図に
遮光板10の形状を示す。第5因の(α)は試料上に回
路パターンが存在しない試料7の表面の検査に用い、試
料表面からの照明光の正反射光を遮光する機能を有する
。また、第4図の回路ノ(ターン25 、26 Kは第
5図(blの形状の遮光板を用い、コーナ部が傾斜して
いる回路パターンには第5図(clの形状の遮光板を用
いる。いずれにせよ、これら数種の形状の遮光板を用い
る場合、例として第6図に示すように、ターレット21
にそれぞれの形状の遮光板10を設置し、ターレット2
1に回転機構な備えて、回転することにより切替えるこ
とも考えられる。また、随時遮光板の形状変更が必要な
場合は、あらかじめメモリしである遮光パターン形状を
液晶ンヤツタ等を用いて高速作動することも考えられる
FIG. 4 shows an example of the circuit pattern on the sample 7, and FIG. 5 shows the shape of the light shielding plate 10. The fifth factor (α) is used for inspecting the surface of the sample 7 on which no circuit pattern exists, and has the function of blocking specularly reflected light of illumination light from the sample surface. In addition, for the circuit patterns in Figure 4 (turns 25 and 26 K, use a light shielding plate in the shape of Figure 5 (bl), and for circuit patterns with inclined corners, use a light shielding plate in the shape of Figure 5 (CL). In any case, when using these several shapes of light shielding plates, for example, as shown in FIG. 6, the turret 21
A light shielding plate 10 of each shape is installed on the turret 2.
It is also possible to provide a rotation mechanism in 1 and switch by rotating. Furthermore, if it is necessary to change the shape of the light-shielding plate at any time, it may be possible to memorize the shape of the light-shielding pattern in advance and operate it at high speed using a liquid crystal printer or the like.

第7l−)に示す様に試料7αが矩形の場合は、試料7
αをxy方向にジグザグ送りを行う。同図(Alの様に
試料7bが円形の場合は、線状スポット8の長手方向を
試料7bの半径方向に一致させて試料7bをθ方向に螺
旋状送りを行う。また、試料70両面を同時に検査を行
う場合には、第8図のように同様の異物検出装置29を
試料7の両面*に2組設置すればよい。
If sample 7α is rectangular as shown in No. 7l-), sample 7
Zigzag feed α in the x and y directions. In the same figure (when the sample 7b is circular like Al, the sample 7b is spirally fed in the θ direction with the longitudinal direction of the linear spot 8 aligned with the radial direction of the sample 7b. Also, both sides of the sample 70 are If the inspections are to be performed simultaneously, two sets of similar foreign object detection devices 29 may be installed on both surfaces* of the sample 7, as shown in FIG.

以上説明した様K、本実施例によれば、ガラスマスクや
8気ディスク等表面上に存在する微小異物の安定検出が
可能となる。
As described above, according to this embodiment, it is possible to stably detect microscopic foreign objects present on the surface of a glass mask, 8-air disk, etc.

次に、添付図面を参照しながら本発明の別の一実施例に
ついて説明する。
Next, another embodiment of the present invention will be described with reference to the accompanying drawings.

まず、第9図により本発明による異物検出装置の概要構
成について説明する。試料7は回路パターンを含むマス
クやレチクル等のガラス基板やウェハ、あるいはプリン
ト基板、8気ディスクであるものとする。
First, a general configuration of a foreign object detection device according to the present invention will be explained with reference to FIG. The sample 7 is assumed to be a glass substrate such as a mask or reticle containing a circuit pattern, a wafer, a printed circuit board, or an 8-chip disk.

落射照明系5bは、光源、集光レンズ22円筒レンズ3
.照明レンズ4.ハーフミラ−6より成り、試料7の表
面を上方19より照明し、試料表面[il状スポット8
を形成する。一方、この趣状スポット8の上方向には、
結像レンズ9.遮光板10.検出器11から成る検出系
が配置されており、試料7表面の線状スポット8と検出
器11の受光面は結像レンズ9によって結像関係になっ
ている。これにより、線状スポット8内に存在する異物
(図示せず)が照明光により散乱光を発し、その像が検
出器11に投影されて、検出されるものである。
The epi-illumination system 5b includes a light source, a condensing lens 22, and a cylindrical lens 3.
.. Lighting lens 4. It consists of a half mirror 6, illuminates the surface of the sample 7 from above 19, and illuminates the sample surface [il-shaped spot 8].
form. On the other hand, above this patterned spot 8,
Imaging lens 9. Light shielding plate 10. A detection system consisting of a detector 11 is arranged, and the linear spot 8 on the surface of the sample 7 and the light receiving surface of the detector 11 are in an imaging relationship by an imaging lens 9. As a result, a foreign object (not shown) present within the linear spot 8 emits scattered light due to the illumination light, and its image is projected onto the detector 11 and detected.

検出器11は例えばCOD、フォトダイオードプレイ等
の自己走査蓄積形の一次元固体熾儂素子である。
The detector 11 is, for example, a one-dimensional solid-state solid-state device of a self-scanning accumulation type, such as a COD or a photodiode play.

試料7はステージ12上に固定し、モータ15と送りネ
ジ14によりてX方向に等速移動して検査されるが、検
査の間、検出器11からの信号11αは2値化回路15
.演算回路16で随時、処理され、異物を検出した場合
には、信号が異物表示部17に送られ、異物位置の座標
が記憶され、検査終了後に異物のマツピング表示も可能
である。
The sample 7 is fixed on the stage 12 and moved at a constant speed in the X direction by the motor 15 and the feed screw 14 for inspection. During the inspection, the signal 11α from the detector 11 is transmitted to the binarization circuit 15.
.. It is processed by the arithmetic circuit 16 as needed, and when a foreign object is detected, a signal is sent to the foreign object display section 17, the coordinates of the foreign object position are stored, and mapping of the foreign object can be displayed after the inspection is completed.

第10図に落射照明系の部分構成を示す。落射照明・検
出系では第10図(α)のようにノ’−7ミラー6が結
像レンズ9の上4111に設置した場合、試料7表面を
照明光AまたはCで照明すると結像レンズ9のレンズ表
面での反射光BまたはDが発生し、これが検出系への迷
光となってしまうので、本発明では、第10図(hIK
よる結像レンズ9の下側にハーフミラ−6を設置して試
料7の落射照明を行うようにしている。第11図、第5
図を用いて照明系と検出系を詳細に説明する。まず第1
1図により照明系を説明する。
FIG. 10 shows a partial configuration of the epi-illumination system. In the epi-illumination/detection system, when the No'-7 mirror 6 is installed above the imaging lens 9 as shown in FIG. 10 (α), when the surface of the sample 7 is illuminated with illumination light A or C, the imaging lens 9 Reflected light B or D is generated on the lens surface and becomes stray light to the detection system.
A half mirror 6 is installed below the imaging lens 9 to provide epi-illumination of the sample 7. Figure 11, 5
The illumination system and detection system will be explained in detail using figures. First of all
The illumination system will be explained with reference to FIG.

光源1は1例えば集光性の良いレーザ光23を発損し、
集光レンズ2で平行光束になり、円筒レンズ3を通過後
、E点C円筒レンズの焦点位置)で線状スポット23α
になる。更に照明レンズ4.ハーフミラ−6を経て試料
7表面上VC庫状スポットを形成する。E点と試料表面
は共に照明レンズ4の焦点位置になっている。−万検出
系では試料7表面での反射[24は結像レンズ9を通過
後、F点(M像レンズの焦点位置)で再度、線状スポッ
ト24αになるが、これは、遮光板10により遮光され
、。
The light source 1 emits, for example, a laser beam 23 with good convergence,
It becomes a parallel light beam at the condenser lens 2, passes through the cylindrical lens 3, and forms a linear spot 23α at point E (focal position of the cylindrical lens).
become. Furthermore, the illumination lens 4. A VC spot is formed on the surface of the sample 7 through the half mirror 6. Point E and the sample surface are both at the focal point of the illumination lens 4. - In the detection system, the reflection on the surface of the sample 7 [24 passes through the imaging lens 9 and becomes a linear spot 24α again at point F (focal position of the M image lens), but this is caused by the light shielding plate 10. It is shaded.

検出器10の受光面には達しない。また、パターンから
の反射光(回折光)も遮光板10で遮光されるが、異物
の散乱光は遮光板10の遮光部の外側を通通し検出器1
01C検出される。
It does not reach the light receiving surface of the detector 10. Further, reflected light (diffraction light) from the pattern is also blocked by the light shielding plate 10, but scattered light from foreign objects passes through the outside of the light shielding part of the light shielding plate 10 and is detected by the detector 1.
01C detected.

第4図に、試料7上の回路パターン例を示し、第5図に
遮光板10の形状を示す。第5図の(αlは試料上に回
路パターンが存在しない試料7の表面の検査に用い、試
料表面からの照明光の正反射光を遮光する機能を有する
。また、第4因の回路パターン25 、26には第5図
(blの形状の遮光板を用い、コーナ部が傾斜している
回路パターン忙は第5図[CIの形状の遮光板を用いる
。いずれくせよ、これら数種の形状の遮光板を用いる場
合、例として第6図に示すように、ターレット21にそ
れぞれの形状の遮光板10を設置し、ターレット21に
回転機構を備えて、回転することだより切替えることも
考えられる。また、随時遮光板の形状変更が必要な場合
は、あらかじめメモリしである遮光パターン形状を液晶
シャッタ等を用いて高速作動することも考えられる。
FIG. 4 shows an example of the circuit pattern on the sample 7, and FIG. 5 shows the shape of the light shielding plate 10. (αl in FIG. 5 is used to inspect the surface of the sample 7 where no circuit pattern exists on the sample, and has the function of blocking specularly reflected light of the illumination light from the sample surface. Also, the circuit pattern 25 which is the fourth factor) , 26 uses a light-shielding plate in the shape of FIG. When using a light shielding plate, for example, as shown in FIG. 6, it is also possible to install light shielding plates 10 of each shape on the turret 21, and provide the turret 21 with a rotation mechanism so that the light can be switched by rotating. Furthermore, if it is necessary to change the shape of the light-shielding plate at any time, it may be possible to use a liquid crystal shutter or the like to operate the light-shielding pattern shape stored in advance at high speed.

第7図(α1に示す様に試料7αが矩形の場合は、試料
7αをxy方向にジグザグ送りを行う。四回φ)の様に
試料7bが円形の場合は、線状スポット8の長手方向を
試料7bの半径方向に一致させて試料7bをθ方向に螺
旋状送りを行5゜また、試、l!7の両面を同時に検査
を行う場合には、第8図のように同様の異物検出装置2
9を試料7の両面側に2組設置すれはよい。
When the sample 7α is rectangular as shown in FIG. 7 (α1), the sample 7α is fed in a zigzag manner in the is aligned with the radial direction of the sample 7b, and the sample 7b is spirally fed in the θ direction by 5°. When inspecting both sides of the object 7 at the same time, a similar foreign object detection device 2 is used as shown in Fig. 8.
It is advisable to install two sets of 9 on both sides of the sample 7.

以上説明した様に、本実施例によれば、ガラスマスクや
磁気ディスク等表面上に存在する微小異物の安定検出が
可能となる。
As explained above, according to this embodiment, it is possible to stably detect minute foreign particles present on the surface of a glass mask, magnetic disk, etc.

また、本発明の他の一実施例を第12図により説明する
。まず、落射照明検出系5bにおいては、光源1から出
た元は、線状光学系20.ハーフミラ−6を通って試料
7上を線状8に照明する。試料7からの反射光は、バー
7ミラー6を通り、集光レンズ2によって一次元固体達
像索子11上に結像する。一次元固体M!1偉累子11
からの信号は、二値化回路15.演算回路16を経て異
物表示部17に表示される。また、斜方照明検出糸5α
においては、光源1から出た光は、線状光学系20を経
て、試料7上を線状8に照明する。試料7からの反射光
は、落射照明検出系と同様、ハーフミラ−6、集光レン
ズ9.一次元固体撮像素子11の検出光学系を通りて、
異物表示部17に表示する。なお1本実施例では、融状
光学系20として、シリンドリカルレンズ3を用いてい
る。また、光源1とし【半導体レーザな用いている。さ
らに、検出光学系の集光しンズ9と一次元固体撮像累子
11の間には、遮光光学系10を設けてあり、その位置
は、集光レンズ9のフーリエ変換面に相当する。
Another embodiment of the present invention will be explained with reference to FIG. First, in the epi-illumination detection system 5b, the light source 1 emitted from the linear optical system 20. A sample 7 is illuminated in a linear form 8 through a half mirror 6. The reflected light from the sample 7 passes through the bar 7 mirror 6 and is imaged onto the one-dimensional solid imaging probe 11 by the condenser lens 2. One-dimensional solid M! 1 Yoshiko 11
The signal from the binarization circuit 15. It is displayed on the foreign object display section 17 via the arithmetic circuit 16. In addition, the oblique illumination detection thread 5α
In this case, light emitted from a light source 1 passes through a linear optical system 20 and illuminates a sample 7 in a linear form 8 . Similar to the epi-illumination detection system, the reflected light from the sample 7 is transmitted through a half mirror 6, a condensing lens 9. Passing through the detection optical system of the one-dimensional solid-state image sensor 11,
It is displayed on the foreign object display section 17. Note that in this embodiment, the cylindrical lens 3 is used as the fused optical system 20. In addition, a semiconductor laser is used as the light source 1. Furthermore, a light-shielding optical system 10 is provided between the condensing lens 9 of the detection optical system and the one-dimensional solid-state imaging element 11, and its position corresponds to the Fourier transform surface of the condensing lens 9.

第4図に試料7上の回路パターンを示す。また、wJs
図に遮光光学系10における遮光板の形状を示す。第5
図(α)の遮光板は落射照明検出系を使用する時のみ必
要とし、試料7上に回路パターンがな(異物のみ存在し
ている場合で、試料7からの正反射光を遮光し、異物か
らの散乱光のみを通過させようとするものである。
FIG. 4 shows the circuit pattern on sample 7. Also, wJs
The figure shows the shape of the light shielding plate in the light shielding optical system 10. Fifth
The light-shielding plate shown in Figure (α) is required only when using the epi-illumination detection system, and it blocks the specularly reflected light from the sample 7 when there is no circuit pattern on the sample 7 (only foreign matter is present). The purpose is to allow only the scattered light from to pass through.

第5図φ)の遮光板は、第4図に示す試料7上の25及
び26のような回路パターンからの散乱光を遮光するの
に用い、第5図(C1の遮光板は、第4図に示す試料7
上の27及び28のような回路パターンからの散乱光を
遮光するのに用いる。したがって、これらの遮光板は、
使用する照明検出光学系と試料上の回路パターンの形状
により任意に選択できるようKなっている。
The light-shielding plate shown in FIG. Sample 7 shown in the figure
It is used to block scattered light from circuit patterns such as 27 and 28 above. Therefore, these light shielding plates are
K can be arbitrarily selected depending on the illumination detection optical system used and the shape of the circuit pattern on the sample.

第10図に落射照明検出系の部分is成図を示す。FIG. 10 shows a partial IS diagram of the epi-illumination detection system.

落射照ツ検出系では、第10図(αlのようにバー7ミ
ラー6が集光レンズ9の上側にある場合が考えられる。
In the epi-illumination detection system, a case can be considered in which the bar 7 mirror 6 is located above the condenser lens 9 as shown in FIG. 10 (al).

しかし、X方向から試料7を照射しB方向に検出する場
合も、C方向から試料7を照射しD方向に検出する場合
も、集光レンズ9からの反射光22〈よる迷光を伴なう
。したがって、照明にょる迷光をなくすために本発明装
置では、第10図+A+に示すようにハーフミラ−6は
集光レンズ9の下9tlK配置している。
However, in both cases where the sample 7 is irradiated from the X direction and detected in the B direction, and when the sample 7 is irradiated from the C direction and detected in the D direction, the reflected light 22 from the condenser lens 9 is accompanied by stray light. . Therefore, in order to eliminate stray light caused by illumination, in the apparatus of the present invention, the half mirror 6 is placed 9tlK below the condenser lens 9, as shown in FIG. 10+A+.

第14図に練状走査方法の説明図を示す。試料7上忙照
明された初秋8の光の長手方向(X方向)の幅αは、X
方向の検査範囲に相当する。したがって、試料7上の検
査領域の全てを検査するためには試料7のY方向移動の
みでよい。ゆえ忙、検時間が従来に較べ大幅に減少する
FIG. 14 shows an explanatory diagram of the dough scanning method. The width α in the longitudinal direction (X direction) of the light of early autumn 8 illuminated on sample 7 is
Corresponds to the inspection range in the direction. Therefore, in order to inspect the entire inspection area on the sample 7, it is only necessary to move the sample 7 in the Y direction. Therefore, the inspection time is significantly reduced compared to the conventional method.

第15図に本発明装置の使用手順のフローチャートを示
す。試料7上の回路パターンの有無及び試料7の平坦度
により照明検出系を選択し、試料7上の回路パターンの
形状により遮光板を選択するよ5になっている。
FIG. 15 shows a flowchart of the procedure for using the device of the present invention. 5, the illumination detection system is selected depending on the presence or absence of a circuit pattern on the sample 7 and the flatness of the sample 7, and the light shielding plate is selected depending on the shape of the circuit pattern on the sample 7.

以上より本実施例によれば、高精度の異物検出が可能と
なる。
As described above, according to this embodiment, highly accurate foreign object detection is possible.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば照明系に可動部を設け
ることな(被検査物表面上を安定した緘状照明が行える
ので、照明光の服属に応じて、次元固体撮像素子の走査
速度も速くできるので樅査時間が大幅に短縮できる効果
をもち、また、光源として半導体レーザを用いることに
より、検査装置全体の小形化が図れる。
As described above, according to the present invention, it is possible to perform stable strip-like illumination on the surface of the object to be inspected without providing any movable parts in the illumination system. This has the effect of significantly shortening the inspection time since the inspection can be carried out quickly, and by using a semiconductor laser as the light source, the entire inspection apparatus can be made smaller.

また落射照明系を結像レンズと被検査物との間に設置し
て、被検置物表面を照明する構成にしたことにより、M
像レンズのレンズ表面での照明光の反射による迷光の問
題を解次した。これにより、異物検出のS/Hの大幅向
上、異物の安定検出、検査時間の短縮等、多大な効果が
ある。
In addition, by installing an epi-illumination system between the imaging lens and the object to be inspected to illuminate the surface of the object to be inspected, M
The problem of stray light caused by reflection of illumination light on the lens surface of the image lens was solved. This has great effects, such as greatly improving the S/H of foreign object detection, stably detecting foreign objects, and shortening inspection time.

また本発明によれば、 1〉 試料上を機状走査照明ができるので、試料上全面
を短時間で異物検量ができる。
Further, according to the present invention, as follows: 1> Since the sample can be illuminated mechanically, the entire surface of the sample can be quantified for foreign matter in a short time.

2) 斜方照明光学系と落射照明元学系の2万式を、試
料の性買(平坦度1回路パターン有無等ンにより、任意
に選択でき、高SN及び高弁別比(回路パターンの出力
値に対する異物の出力値)で異物を検出できる。
2) 20,000 types of oblique illumination optical system and epi-illumination optical system can be selected arbitrarily depending on the characteristics of the sample (flatness, presence or absence of circuit pattern, etc.), high SN and high discrimination ratio (circuit pattern output The foreign object can be detected using the output value of the foreign object relative to the foreign object value.

S)光源として半導体レーザを用いているので、集光性
が良く、ボインティングスタビリテイ〔照射位置安定性
)も艮いため、高ff[の異物検出が可能であり、また
、半導体レーザはコンパクトであるので、異物検査装置
のコンパクト化が図れる。
S) Since a semiconductor laser is used as a light source, it has good light focusing ability and excellent pointing stability (irradiation position stability), making it possible to detect foreign objects with high f[ff]. Therefore, the foreign matter inspection device can be made more compact.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す装置の斜視図、第2図は
照明系の配rItIi5!明図、あ3図は検出系の配置
説明図、第4図は試料上の回路パターン図、第5図は還
元板の形状−1第6図は遮光板交換法の一例を示す図、
第7図は試料の送り方向を示す図、第8図は試料両面の
同時検量方法の説明図、第9凶は本発明の別の一実九例
を示す装置の斜視図、第10図は落射照明・検出系の部
分構成図、第11図は照明系のtf−a説明図、第12
図は本発明の別の一実施例を示す装置の斜視図、第13
図は照明光のスポット位置と試料との関係を示すF!f
r面図、第14図は縁状定歪法の説明図、第15図は本
発明の使用方法のフローチャートを示す図、藁16図は
従来の検出光学系の樽成を示す斜視図、第17図は従来
の検出光学系での試料からの反射光を示す光路図、第1
8図は従来の検出光学系での異物からの散乱光を示す光
路図である。 1・・・光源       2・・・集光レンズ5・・
・円筒レンズ    4・・・照明レンズ5・・・斜方
照明系    6・・・))−7ミラー7・・・試料 
      8・・・細状スポット9・・・結像レンズ
    10・・・還元板11・・・検出器     
 15・・・2 m化回路16・・・演算回路    
 17・・・異物表示部第 2 口 1  図 q (α) 乃 図 (b) ワ 図 猶 巳 図 (C) ら 図 )O 図 (α) <b) 、a、+2 回 図 5  )3  コ (α) ワ (b) 回 只 一 届 回 一丁 1ら 回 宋 画
FIG. 1 is a perspective view of an apparatus showing an embodiment of the present invention, and FIG. 2 is an arrangement of the illumination system. Figure 3 is an explanatory diagram of the arrangement of the detection system, Figure 4 is a diagram of the circuit pattern on the sample, Figure 5 is the shape of the reduction plate-1, Figure 6 is a diagram showing an example of the light shielding plate replacement method,
Fig. 7 is a diagram showing the feeding direction of the sample, Fig. 8 is an explanatory diagram of the simultaneous calibration method for both sides of the sample, Fig. 9 is a perspective view of the apparatus showing another example of the present invention, and Fig. 10 is A partial configuration diagram of the epi-illumination/detection system, Fig. 11 is a tf-a explanatory diagram of the illumination system, Fig. 12
Figure 13 is a perspective view of an apparatus showing another embodiment of the present invention.
The figure shows the relationship between the spot position of the illumination light and the sample. f
FIG. 14 is an explanatory diagram of the edge constant strain method, FIG. 15 is a flowchart of the method of use of the present invention, and FIG. 16 is a perspective view showing the structure of a conventional detection optical system. Figure 17 is an optical path diagram showing reflected light from a sample in a conventional detection optical system.
FIG. 8 is an optical path diagram showing scattered light from a foreign object in a conventional detection optical system. 1... Light source 2... Condensing lens 5...
・Cylindrical lens 4...Illumination lens 5...Oblique illumination system 6...))-7 Mirror 7...Sample
8... Thin spot 9... Imaging lens 10... Reduction plate 11... Detector
15...2 m conversion circuit 16... arithmetic circuit
17...Foreign object display section 2nd port 1 Figure q (α) - Figure (b) Figure (C) Ra figure) O Figure (α) <b) , a, +2 times Figure 5) 3 (α) Wa (b) Kaisong Dynasty painting

Claims (1)

【特許請求の範囲】 1、光源と、試料に線状照明を行う線状集光光学系と、
上記試料からの上記線状照明領域の反射光を結像させる
結像レンズと、少なくとも上記試料からの上記線状照明
領域の正反射光は遮光する遮光手段と、上記遮光手段を
通過した反射光を検出する撮像素子とから成り試料表面
に付着する異物を検出することを特徴とする異物検出装
置。 2、上記試料と上記結像レンズとの間に、上記線状集光
光学素子からの照明光を反射させ、上記試料からの反射
光を通過させるハーフミラーを設けたことを特徴とする
請求項1記載の異物検査装置。 3、上記遮光手段が、異なる遮光パターンを形成でき、
切替られる手段から成ることを特徴とする請求項1記載
の異物検出装置。 4、光源から光を発し、線状集光光学系により試料に線
状照明を行い、結像レンズにより上記試料からの上記線
状照明領域の反射光を結像させ、遮光手段により少なく
とも上記試料からの上記線状照明領域の正反射光を遮光
し、撮像素子により上記遮光手段を通過した反射光を検
出して試料表面に付着する異物を検出することを特徴と
する異物検出方法。 5、上記試料と上記結像レンズとの間に設けたハーフミ
ラーにより、上記線状集光光学素子からの照明光を反射
させ、上記試料からの反射光を通過させることを特徴と
する請求項4記載の異物検査方法。 6、光源から光を発し、線状集光光学系によりパターン
を有する試料に線状照明を行い、結像レンズにより上記
試料からの上記線状照明領域の反射光を結像させ、遮光
手段により上記線状照明領域の上記試料表面からの正反
射光及び試料表面のパターンからの反射光を遮光し、撮
像素子により上記遮光手段を通過した反射光を検出して
パターンを有する試料表面に付着する異物を検出するこ
とを特徴とする異物検出方法。 7、光源と線状光学系とを有する落射照明光学系と、光
源と線状光学系とを有する斜方照明光学系と、一次元固
体撮像素子と試料からの反射光を該一次元固体撮像素子
上に結像する集光レンズと遮光光学系とを有する検出光
学系と、上記一次元固体撮像素子から得られる信号を演
算して異物を検出する演算手段とを備え付けたことを特
徴とする異物検査装置。 8、上記落射照明光学系からの光を上記集光レンズと試
料との間の光路に入れて試料上へ照明するように構成し
たことを特徴とする請求項7記載の異物検査装置。 9、上記検出光学系の遮光光学系は、上記落射照明光学
系によって生じる試料面からの正反射光を遮光する、あ
るいは、試料上の様々なパターンからの散乱光をパター
ンに応じて遮光する遮光板を有し、任意に変えられるこ
とを特徴とする請求項7項記載の異物検査装置。 10、上記落射照明光学系と斜方照明光学系の光源とし
て、半導体レーザを用いることを特徴とする請求項7記
載の異物検査装置。
[Claims] 1. A light source, a linear condensing optical system that linearly illuminates a sample,
an imaging lens for forming an image of the light reflected from the linear illumination area from the sample; a light shielding means for blocking at least the regularly reflected light from the sample for the linear illumination area; and reflected light that has passed through the light shielding means. What is claimed is: 1. A foreign matter detection device comprising: an image sensor for detecting foreign matter attached to a sample surface; 2. Claim characterized in that a half mirror is provided between the sample and the imaging lens to reflect the illumination light from the linear condensing optical element and to pass the reflected light from the sample. 1. The foreign substance inspection device according to 1. 3. The light blocking means can form different light blocking patterns;
2. The foreign object detection device according to claim 1, further comprising switching means. 4. Emit light from a light source, perform linear illumination on the sample using a linear focusing optical system, form an image of the reflected light from the linear illumination area from the sample using an imaging lens, and use a light shielding means to illuminate at least the sample. A method for detecting foreign matter, characterized in that specularly reflected light from the linear illumination area is blocked, and the reflected light that has passed through the light blocking means is detected by an image sensor to detect foreign matter adhering to a sample surface. 5. A half mirror provided between the sample and the imaging lens reflects the illumination light from the linear condensing optical element and allows the reflected light from the sample to pass through. 4. Foreign substance inspection method described in 4. 6. Emit light from a light source, perform linear illumination on a sample having a pattern using a linear condensing optical system, form an image of the reflected light of the linear illumination area from the sample using an imaging lens, and use a light shielding means to The specularly reflected light from the sample surface in the linear illumination area and the reflected light from the pattern on the sample surface are blocked, and the reflected light that has passed through the light blocking means is detected by an image sensor and is attached to the sample surface having the pattern. A foreign object detection method characterized by detecting a foreign object. 7. An epi-illumination optical system having a light source and a linear optical system; an oblique illumination optical system having a light source and a linear optical system; It is characterized by being equipped with a detection optical system having a condensing lens that forms an image on the element and a light-shielding optical system, and a calculation means that calculates a signal obtained from the one-dimensional solid-state image sensor to detect a foreign object. Foreign matter inspection equipment. 8. The foreign matter inspection apparatus according to claim 7, wherein the light from the epi-illumination optical system is configured to enter an optical path between the condenser lens and the sample and illuminate the sample. 9. The light shielding optical system of the detection optical system is a light shielding system that blocks specularly reflected light from the sample surface generated by the epi-illumination optical system, or blocks scattered light from various patterns on the sample depending on the pattern. 8. The foreign matter inspection device according to claim 7, further comprising a plate that can be changed arbitrarily. 10. The foreign matter inspection apparatus according to claim 7, wherein a semiconductor laser is used as a light source for the epi-illumination optical system and the oblique illumination optical system.
JP63188405A 1988-07-29 1988-07-29 Foreign object detection device and method Expired - Lifetime JP2512093B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63188405A JP2512093B2 (en) 1988-07-29 1988-07-29 Foreign object detection device and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63188405A JP2512093B2 (en) 1988-07-29 1988-07-29 Foreign object detection device and method

Publications (2)

Publication Number Publication Date
JPH0238951A true JPH0238951A (en) 1990-02-08
JP2512093B2 JP2512093B2 (en) 1996-07-03

Family

ID=16223072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63188405A Expired - Lifetime JP2512093B2 (en) 1988-07-29 1988-07-29 Foreign object detection device and method

Country Status (1)

Country Link
JP (1) JP2512093B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005300553A (en) * 1998-07-28 2005-10-27 Hitachi Ltd Defect inspection device and method
JP2006058224A (en) * 2004-08-23 2006-03-02 Mitsutoyo Corp Measuring instrument
JP2006330007A (en) * 1998-07-28 2006-12-07 Hitachi Ltd Defect inspection device and its method
US7177020B2 (en) 1991-04-02 2007-02-13 Renesas Technology Corp. Method and apparatus for analyzing the state of generation of foreign particles in semiconductor fabrication process
JP2007529878A (en) * 2004-03-18 2007-10-25 アクセリス テクノロジーズ インコーポレーテッド In situ monitoring of rotating disk ion implanter
US7443496B2 (en) 1991-04-02 2008-10-28 Hitachi, Ltd. Apparatus and method for testing defects
JP2009513984A (en) * 2005-10-31 2009-04-02 ザ・ボーイング・カンパニー Apparatus and method for inspecting a composite structure for defects
JP2009106778A (en) * 2008-12-24 2009-05-21 Nishikawa Living Inc Bedding cover and bedclothes using this bedding cover
JP2013145145A (en) * 2012-01-13 2013-07-25 Hst Vision Corp Observation device
WO2014050292A1 (en) * 2012-09-28 2014-04-03 株式会社日立ハイテクノロジーズ Defect inspection device and defect inspection method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS576460A (en) * 1980-06-13 1982-01-13 Mitsubishi Electric Corp Digital signal recording and reproducing device
JPS57131039A (en) * 1981-02-07 1982-08-13 Olympus Optical Co Ltd Defect detector
JPS60198436A (en) * 1984-03-23 1985-10-07 Hitachi Electronics Eng Co Ltd Surface inspecting device using laser light
JPS61288143A (en) * 1985-06-17 1986-12-18 Toshiba Corp Surface inspecting device
JPH01217243A (en) * 1988-02-26 1989-08-30 Hitachi Ltd Method and apparatus for detecting foreign matter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS576460A (en) * 1980-06-13 1982-01-13 Mitsubishi Electric Corp Digital signal recording and reproducing device
JPS57131039A (en) * 1981-02-07 1982-08-13 Olympus Optical Co Ltd Defect detector
JPS60198436A (en) * 1984-03-23 1985-10-07 Hitachi Electronics Eng Co Ltd Surface inspecting device using laser light
JPS61288143A (en) * 1985-06-17 1986-12-18 Toshiba Corp Surface inspecting device
JPH01217243A (en) * 1988-02-26 1989-08-30 Hitachi Ltd Method and apparatus for detecting foreign matter

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7692779B2 (en) 1991-04-02 2010-04-06 Hitachi, Ltd. Apparatus and method for testing defects
US7940383B2 (en) 1991-04-02 2011-05-10 Hitachi, Ltd. Method of detecting defects on an object
US7639350B2 (en) 1991-04-02 2009-12-29 Hitachi, Ltd Apparatus and method for testing defects
US7177020B2 (en) 1991-04-02 2007-02-13 Renesas Technology Corp. Method and apparatus for analyzing the state of generation of foreign particles in semiconductor fabrication process
US7443496B2 (en) 1991-04-02 2008-10-28 Hitachi, Ltd. Apparatus and method for testing defects
JP2006330007A (en) * 1998-07-28 2006-12-07 Hitachi Ltd Defect inspection device and its method
JP2005300553A (en) * 1998-07-28 2005-10-27 Hitachi Ltd Defect inspection device and method
JP2007529878A (en) * 2004-03-18 2007-10-25 アクセリス テクノロジーズ インコーポレーテッド In situ monitoring of rotating disk ion implanter
JP2006058224A (en) * 2004-08-23 2006-03-02 Mitsutoyo Corp Measuring instrument
JP2009513984A (en) * 2005-10-31 2009-04-02 ザ・ボーイング・カンパニー Apparatus and method for inspecting a composite structure for defects
JP2009106778A (en) * 2008-12-24 2009-05-21 Nishikawa Living Inc Bedding cover and bedclothes using this bedding cover
JP2013145145A (en) * 2012-01-13 2013-07-25 Hst Vision Corp Observation device
WO2014050292A1 (en) * 2012-09-28 2014-04-03 株式会社日立ハイテクノロジーズ Defect inspection device and defect inspection method
JP2014070930A (en) * 2012-09-28 2014-04-21 Hitachi High-Technologies Corp Defect inspection device, and defect inspection method
US9523648B2 (en) 2012-09-28 2016-12-20 Hitachi High-Technologies Corporation Defect inspection device and defect inspection method

Also Published As

Publication number Publication date
JP2512093B2 (en) 1996-07-03

Similar Documents

Publication Publication Date Title
US4669875A (en) Foreign particle detecting method and apparatus
US5539514A (en) Foreign particle inspection apparatus and method with front and back illumination
JP2796316B2 (en) Defect or foreign matter inspection method and apparatus
JP5303217B2 (en) Defect inspection method and defect inspection apparatus
KR920007196B1 (en) Method and apparatus for detecting foreign matter
JPH0915163A (en) Method and equipment for inspecting foreign substance
US5861952A (en) Optical inspection method and apparatus including intensity modulation of a light beam and detection of light scattered at an inspection position
KR20190027390A (en) Surface defect inspection using large particle monitoring and laser power control
JPH075115A (en) Surface condition inspection apparatus
JPH0238951A (en) Device and method for foreign matter detection
USRE33991E (en) Foreign particle detecting method and apparatus
JP5276833B2 (en) Defect inspection method and defect inspection apparatus
JPS5982727A (en) Method and apparatus for detecting foreign matter
JP2007107960A (en) Flaw inspection device
JPH10282007A (en) Defect inspection method of foreign matter and apparatus therefor
JPH0682381A (en) Foreign matter inspection device
JP2506725B2 (en) Pattern defect inspection system
JP2011180145A (en) Flaw inspection device
JPH06258237A (en) Defect inspection device
EP0598582B1 (en) Inspection method and apparatus
JP3020546B2 (en) Foreign matter inspection device
JPH0334577B2 (en)
JP2947916B2 (en) Surface condition inspection device
JPH0961367A (en) Defect inspecting device
JPS636442A (en) Method and device for foreign matter inspection

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080416

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 13