JPH0237177A - Variable displacement swash plate type compressor - Google Patents

Variable displacement swash plate type compressor

Info

Publication number
JPH0237177A
JPH0237177A JP63188641A JP18864188A JPH0237177A JP H0237177 A JPH0237177 A JP H0237177A JP 63188641 A JP63188641 A JP 63188641A JP 18864188 A JP18864188 A JP 18864188A JP H0237177 A JPH0237177 A JP H0237177A
Authority
JP
Japan
Prior art keywords
swash plate
guide
displacement
pressure
curve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63188641A
Other languages
Japanese (ja)
Other versions
JP2600310B2 (en
Inventor
Masahiro Kawaguchi
真広 川口
Hisao Kobayashi
久雄 小林
Masayuki Tanigawa
谷川 正行
Isao Tsuzuki
都築 功
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyoda Automatic Loom Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Automatic Loom Works Ltd filed Critical Toyoda Automatic Loom Works Ltd
Priority to JP63188641A priority Critical patent/JP2600310B2/en
Publication of JPH0237177A publication Critical patent/JPH0237177A/en
Application granted granted Critical
Publication of JP2600310B2 publication Critical patent/JP2600310B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/10Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders
    • F04B27/1036Component parts, details, e.g. sealings, lubrication
    • F04B27/1054Actuating elements
    • F04B27/1072Pivot mechanisms

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

PURPOSE:To make improvements in displacement variable controllability at the whole area of a compression ratio by specifying a guide curve of a guide hole in making a displacement position of a guide pin in the axial direction of a turning shaft of its variable, while installing a compensating spring for energizing it in the swash plate angle decrement direction. CONSTITUTION:As a guide curve S of a guide hole 5a making a displacement position of a guide pin 9b on the axial direction of a turning shaft of its variable, it is monotonically increased to displacement of the guide pin in the swash plate angle increment direction, and it has an inflection point changing from negative to positive in the midway, while such a curve as reducing control pressure linearly to a circular arc in a negative monotonic area and the displacement of the guide pin in the swash plate angle increment direction at a specified compression ratio is made so as to have it in the monotonic increment area. In addition, there is provided with a compensating spring 30 for energizing a sliding control body in the swash plate inclination decrement direction and pulling up the control pressure and compensating it.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は両頭ピストンを備えた可変容量型斜板式圧縮機
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a variable displacement swash plate compressor equipped with a double-ended piston.

[従来の技術] 特開昭58−162782号公報に開示されている両頭
ピストン式圧縮機では斜板が回転軸と一体的に回転可能
かつ前後に揺動可能に支持されており、この斜板の傾角
が冷房負荷を反映する吸入圧情報に基づいて制御される
ようになっている。
[Prior Art] In a double-headed piston type compressor disclosed in Japanese Patent Application Laid-Open No. 58-162782, a swash plate is supported so as to be rotatable integrally with a rotating shaft and swingable back and forth. The inclination angle of the air conditioner is controlled based on suction pressure information that reflects the cooling load.

しかしながら、斜板の揺動中心が回転軸上の固定位置に
設定されているため、両頭ピストンの圧縮行程上死点が
前後側圧縮室のいずれにおいても斜板傾角に応じて変動
し、斜板傾角が零個に近い小容量側の圧縮作用領域では
実質的な圧縮及び吐出を行なうことができない。
However, since the center of oscillation of the swash plate is set at a fixed position on the rotation axis, the top dead center of the compression stroke of the double-ended piston fluctuates depending on the inclination angle of the swash plate in both the front and rear compression chambers. Substantial compression and discharge cannot be performed in the compression action area on the small volume side where the inclination angle is close to zero.

本願出願人はこの欠点を改良した圧縮機を特願昭62−
298630号で出願している。この圧縮機における斜
板の揺動中心は両頭ピストンを収容するシリンダブロッ
クのシリンダボアと対応する回転軸の半径方向位置に設
定されており、これにより両頭ピストンの一側のシリン
ダボアにおける圧縮行程上死点が定位置に規定され、斜
板傾角が零個に近い小容量側の圧縮作用領域でも実質的
な圧縮及び吐出が行われる。
The applicant of the present application filed a patent application in 1983 for a compressor that improved this drawback.
It has been filed under No. 298630. The center of swing of the swash plate in this compressor is set at the radial position of the rotating shaft that corresponds to the cylinder bore of the cylinder block that houses the double-headed piston, so that the top dead center of the compression stroke in the cylinder bore on one side of the double-headed piston is defined at a fixed position, and substantial compression and discharge are performed even in the compression action area on the small capacity side where the swash plate inclination angle is close to zero.

斜板傾角は吐出圧領域又は吸入圧領域に切換接続される
制御王室の容積を変える摺動制御体及び斜板を介して前
後側シリンダボア内の圧力による斜板揺動力と制御圧室
内の圧力との対抗により制御されるようになっており、
摺動制御体は回転軸上に摺動可能に支持されている。こ
の圧力対抗により揺動する斜板が回転軸に付与する作用
力は斜板側のガイドピンを介して回転軸側の直線状のガ
イド孔に受は止められ、ガイドピンとガイド孔とのガイ
ド関係により斜板傾角が制御されるようになっている。
The swash plate inclination is determined by the swash plate rocking force due to the pressure in the front and rear cylinder bores and the pressure in the control pressure chamber via the sliding control body that changes the volume of the control chamber connected to the discharge pressure area or the suction pressure area and the swash plate. It is controlled by the opposition of
The sliding control body is slidably supported on the rotating shaft. The force exerted on the rotating shaft by the swash plate, which oscillates due to this pressure opposition, is received by the linear guide hole on the rotating shaft side via the guide pin on the swash plate side, and the guide relationship between the guide pin and the guide hole is The swash plate inclination angle is controlled by.

[発明が解決しようとする課題] 特願昭62−298630号に開示される直線状のガイ
ド孔では最大容量側での制御圧力の単調増大をもたらす
ことができず、この領域では補正ばねを用いて制御圧力
の引き上げ方向への補正を行なう必要がある。しかも、
吐出圧と吸入圧との比で表される特定の圧縮比では最小
容量側の制御圧力が吸入圧を下回り、吸入圧以下とはな
り得ない冷媒ガス圧を用いて行われる制御が最小容量側
で不能となるため、最小容量側での制御圧の引き上げ補
正も必要となる。最小容量側の制御圧の引き上げ補正を
行なう補正ばねを用いれば最大容量側の制御圧の引き上
げ量が大きくなり、最大容量側の制御圧が吐出圧を越え
てしまうおそれがある。
[Problems to be Solved by the Invention] The linear guide hole disclosed in Japanese Patent Application No. 62-298630 cannot monotonically increase the control pressure on the maximum capacity side, and a correction spring is used in this region. Therefore, it is necessary to correct the control pressure in the upward direction. Moreover,
At a specific compression ratio expressed as the ratio of discharge pressure to suction pressure, the control pressure on the minimum capacity side is lower than the suction pressure, and the control performed using the refrigerant gas pressure, which cannot be lower than the suction pressure, is on the minimum capacity side. Since this becomes impossible, it is also necessary to raise the control pressure on the minimum capacity side. If a correction spring is used to correct the increase in the control pressure on the minimum capacity side, the amount of increase in the control pressure on the maximum capacity side will increase, and there is a risk that the control pressure on the maximum capacity side will exceed the discharge pressure.

制御圧が吐出圧を越えれば、吐出圧以上とはなり得ない
冷媒ガス圧を用いて行われる制御が最大吐出側で逆に制
御不能となる。
If the control pressure exceeds the discharge pressure, the control performed using the refrigerant gas pressure, which cannot exceed the discharge pressure, becomes uncontrollable on the maximum discharge side.

本発明は、両頭ピストンを収容する一方のシリンダボア
における圧縮行程上死点を定位置とする可変容量型圧縮
機の容量可変制御性を向上することを目的とするもので
ある゛。
An object of the present invention is to improve the capacity variable controllability of a variable capacity compressor in which the compression stroke top dead center of one cylinder bore housing a double-ended piston is set at a fixed position.

[課題を解決するための手段] そのために本発明では、冷媒ガス圧縮により生じる斜板
揺動力と制御圧室内の圧力とを斜板及び摺動制御体を介
して対抗させ、この対抗により揺動される斜板側にはガ
イドピンを取り付けると共に、回転軸側には前記ガイド
ピンとガイド関係を持つガイド孔を設け、回転軸の軸線
方向への前記ガイドピンの変位位置を変数とするガイド
孔のガイド曲線として、斜板傾角増大方向へのガイドピ
ンの変位に対して単調に増大し、かつ途中で負から正へ
変わる変曲点を持つと共に、負の単調増大領域に円弧、
特定の圧縮比では斜板傾角増大方向へのガイドピンの変
位に対して線型的に制御圧力を減少する曲線を正の単調
増大領域に持つ曲線とし、さらに斜板傾角減少方向へ摺
動制御体を付勢して制御圧を引き上げ補正するための補
正ばねを設けた。
[Means for Solving the Problems] To achieve this, in the present invention, the swash plate rocking force generated by refrigerant gas compression and the pressure in the control pressure chamber are opposed to each other via the swash plate and the sliding control body, and this opposition causes the rocking A guide pin is attached to the swash plate side, and a guide hole is provided on the rotating shaft side to have a guiding relationship with the guide pin, and the guide hole is provided with a displacement position of the guide pin in the axial direction of the rotating shaft as a variable. The guide curve monotonically increases with respect to the displacement of the guide pin in the direction of increasing swash plate inclination angle, has an inflection point that changes from negative to positive along the way, and has a circular arc in the negative monotonically increasing region.
At a specific compression ratio, a curve that linearly decreases the control pressure with respect to the displacement of the guide pin in the direction of increasing the swash plate inclination is a curve that has a positive monotonically increasing region, and a curve that decreases the control pressure linearly in the direction of decreasing the swash plate inclination. A correction spring is provided to bias the control pressure and correct it.

[作用] 回転軸に対する斜板の作用力は斜板側のガイドピンと回
転軸側のガイド孔との保合関係を介して受は止められ、
斜板傾角はガイド孔とガイドピンとのガイド関係で制御
される。低圧縮比の場合、斜板傾角増大方向へのガイド
ピンの変位に対して制御圧力が最大容量側では線型的に
減少するが、この減少は補正ばねの引き上げ補正により
増大変移する方向へ補正される。高圧縮比の場合には斜
板仰角増大方向へのガイドピンの変位に対して制御圧力
が最大容量側では路線型的に増大変移し、しかも吐出圧
を越えることはない。一方、最小容量側では円弧曲線の
ガイド孔のガイド作用により制御圧が斜板傾角増大方向
へのガイドピンの変位に対して全ての圧縮比で単調に増
大し、しかも吸入圧以上に設定可能である。従って、圧
縮比に関係なく円滑な容量可変制御が可能となる。
[Operation] The acting force of the swash plate on the rotating shaft is stopped by the engagement relationship between the guide pin on the swash plate side and the guide hole on the rotating shaft side.
The swash plate inclination angle is controlled by the guide relationship between the guide hole and the guide pin. In the case of a low compression ratio, the control pressure decreases linearly on the maximum capacity side in response to the displacement of the guide pin in the direction of increasing the swash plate inclination angle, but this decrease is compensated for in the direction of increasing movement by pulling up the compensation spring. Ru. In the case of a high compression ratio, the control pressure increases linearly on the maximum displacement side with respect to the displacement of the guide pin in the direction of increasing the swash plate elevation angle, and does not exceed the discharge pressure. On the other hand, on the minimum capacity side, the control pressure increases monotonically at all compression ratios in response to the displacement of the guide pin in the direction of increasing the swash plate inclination due to the guiding action of the circular guide hole, and can be set higher than the suction pressure. be. Therefore, smooth capacity variable control is possible regardless of the compression ratio.

[実施例] 以下、本発明を具体化した一実施例を図面に基づいて説
明する。
[Example] Hereinafter, an example embodying the present invention will be described based on the drawings.

シリンダブロック1の前後両端面にはフロントハウジン
グ2及びリヤハウジング3が接合固定されており、フロ
ントハウジング2及びシリンダブロック1には回転軸4
がフロント軸部4aを介して回転可能に支持されている
。フロント軸部4aの内端側にはリヤ軸部4bがべ、フ
ランジ受は板8皮び連結体5,6を介して連結固定され
ていると共に、連結体5,6にはガイド孔5a、6aが
形成されており、ベアリング受は板8とシリンダブロッ
ク1の内端面との間にはスラストベアリング27が介在
されている。
A front housing 2 and a rear housing 3 are fixedly connected to both front and rear end surfaces of the cylinder block 1, and a rotation shaft 4 is attached to the front housing 2 and the cylinder block 1.
is rotatably supported via the front shaft portion 4a. The rear shaft portion 4b is attached to the inner end of the front shaft portion 4a, and the flange holder is connected and fixed via the plate 8 skinned connecting bodies 5, 6, and the connecting bodies 5, 6 are provided with guide holes 5a, 6a is formed, and a thrust bearing 27 is interposed between the plate 8 and the inner end surface of the cylinder block 1.

リヤ軸部4bにはガイドブツシュ7がスライド可能に嵌
合されており、ガイドブツシュ7の基端部の左右には軸
ピン7a(一方のみ図示)が突設されていると共に、軸
ピン7aには斜板9が回動可能に支持されている。斜板
9の前面にはブリッジ9aが形成されていると共に、そ
の中間部にはガイドピン9bが両側方へ突出するように
嵌着されており、ガイドピン9bの両端部には回転子9
Cが取付けられている。ブリッジ9aは両連結体5゜6
間に挟入されていると共に、両回転子9Cが連結体5.
6のガイド孔5a、6aに嵌入されており、これにより
斜板9が斜板室la内で回転軸4と共に回転する。
A guide bushing 7 is slidably fitted into the rear shaft portion 4b, and shaft pins 7a (only one shown) are provided protruding from the left and right sides of the base end of the guide bushing 7. A swash plate 9 is rotatably supported on 7a. A bridge 9a is formed on the front surface of the swash plate 9, and a guide pin 9b is fitted in the middle of the bridge so as to protrude to both sides, and a rotor 9 is attached to both ends of the guide pin 9b.
C is installed. The bridge 9a has both connecting bodies 5゜6
Both rotors 9C are sandwiched between the connecting body 5.
The swash plate 9 is fitted into the guide holes 5a, 6a of the swash plate 6, and thereby the swash plate 9 rotates together with the rotating shaft 4 within the swash plate chamber la.

回転軸4、斜板9及びガイドブツシュ7は、ガイドピン
9bとガイド孔5a、5aとのガイド関係及び前後にス
ライド可能なガイドブツシュ7に対する斜板9の回動可
能関係をもって互いに連結しており、これにより斜板9
がガイドブツシュ7のスライドに伴って揺動可能であり
、この揺動中心Cが斜板9の周縁側に設定されている。
The rotating shaft 4, the swash plate 9, and the guide bush 7 are connected to each other through a guiding relationship between the guide pin 9b and the guide holes 5a, and a rotatable relationship between the swash plate 9 and the guide bush 7, which is slidable back and forth. As a result, the swash plate 9
is swingable as the guide bushing 7 slides, and the swinging center C is set on the peripheral edge side of the swash plate 9.

斜板9の回転′軌跡上にて対応形成されたフロント側シ
リンダボア1b及びリヤ側シリンダボアIC内には両頭
ピストン10が収容されていると共に、これら複数の両
頭ピストン10と斜板9とはシュー11゜12を介して
係合しており、両頭ピストン10が斜板9の回転に伴っ
て前後に往復動する。
A double-headed piston 10 is accommodated in a front cylinder bore 1b and a rear cylinder bore IC that are formed correspondingly on the rotational trajectory of the swash plate 9. These double-headed pistons 10 and the swash plate 9 are connected to a shoe 11. The double-headed piston 10 reciprocates back and forth as the swash plate 9 rotates.

シリンダブロック1と前後両ハウジング2,3との間に
は区画プレー)13.14及び弁形成プレー)15.1
6が介在されており、前後両ハウジング2.3内には吸
入室17.18及び吐出室19.20が区画形成されて
いる。外部冷媒ガス回路を構成する吸入管路21内の冷
媒ガスは両頭ピストン10の往復動に伴って入口22か
ら斜板室1aへ入り、フロント側吸入通路1d及びリヤ
側吸入通路1e、フロント側吸入室17及びリヤ側吸入
室18、吸入弁15a、16aにより開閉される吸入ボ
ート13a、14aを経てフロント側圧縮室Pf及びリ
ヤ側圧縮室Prへ吸入されて圧縮作用を受ける。そして
、両圧縮室Pf、Prから吐出弁28.29により開閉
される吐出ボート13b、14bを経て両社出室19.
20へ吐出された冷媒ガスは吐出通路lfへ流出すると
共に、吐出通路1rfc経て出口23から排出される。
Between the cylinder block 1 and both the front and rear housings 2 and 3 there is a partition play) 13.14 and a valvuloplasty play) 15.1
A suction chamber 17.18 and a discharge chamber 19.20 are defined in both the front and rear housings 2.3. The refrigerant gas in the suction pipe 21 constituting the external refrigerant gas circuit enters the swash plate chamber 1a from the inlet 22 as the double-headed piston 10 reciprocates, and passes through the front suction passage 1d, the rear suction passage 1e, and the front suction chamber. 17, rear side suction chamber 18, and suction boats 13a, 14a which are opened and closed by suction valves 15a, 16a, and are sucked into front side compression chamber Pf and rear side compression chamber Pr, where they are subjected to compression action. Then, from both the compression chambers Pf and Pr, the discharge chamber 19.
The refrigerant gas discharged to 20 flows out to the discharge passage lf and is discharged from the outlet 23 via the discharge passage 1rfc.

斜板9の揺動中心Cは斜板9の周縁側に設定されている
と共に、リヤ側シリンダポアIC寄りに設定されており
、これによりフロント側圧縮室Pfにおける両頭ピスト
ン10の圧縮行程上死点は斜板9の傾角に応じて変動す
るが、リヤ側圧縮室Prにおける両頭ピストント0の圧
縮行程上死点が第1.4図に示す定位置に規定される。
The swing center C of the swash plate 9 is set on the peripheral edge side of the swash plate 9, and is also set closer to the rear cylinder pore IC, so that the top dead center of the compression stroke of the double-ended piston 10 in the front compression chamber Pf varies depending on the inclination angle of the swash plate 9, but the compression stroke top dead center of the double-headed piston 0 in the rear side compression chamber Pr is defined at the fixed position shown in FIG. 1.4.

従って、フロント側圧縮室Pfでは斜板傾角が小さい場
合には実質的な吸入及び吐出を伴わない圧縮及び膨脂が
行われるだけであるが、圧縮行程上死点一定のリヤ側圧
縮室Prでは斜板9の傾角に関わりなく吸入及び吐出を
伴う実質的な圧縮が行われる。
Therefore, in the front side compression chamber Pf, when the swash plate inclination is small, compression and expansion without substantial suction and discharge are performed, but in the rear side compression chamber Pr, where the top dead center of the compression stroke is constant. Substantial compression with suction and discharge takes place regardless of the inclination angle of the swash plate 9.

リヤ側吸入室18内にはスプール形状の摺動制御体24
が前後方向へスライド可能に嵌入されており、そのフラ
ンジ部24aによりリヤ(!Ill吸入室18の一部が
制御圧室18aに区画形成されていると共に、筒部24
bがスラストベアリング25及びラジアルへフランジ2
6を介してガイドブツシュ7に相対回転可能に支持され
ている。これにより制御圧室18a内の圧力が摺動制御
体24、ガイドブツシュ7及び斜板9を介してフロント
側圧縮室Pr内の圧力及びリヤ側圧縮室Pr内の圧力に
より生じる斜板揺動力に対抗する。
Inside the rear suction chamber 18 is a spool-shaped sliding control body 24.
is fitted so as to be slidable in the front-rear direction, and a part of the rear (!
b is the thrust bearing 25 and the radial flange 2
It is supported by a guide bush 7 via a guide bush 7 so as to be relatively rotatable. As a result, the pressure in the control pressure chamber 18a is transmitted through the sliding control body 24, the guide bush 7, and the swash plate 9 to the swash plate rocking force generated by the pressure in the front compression chamber Pr and the pressure in the rear compression chamber Pr. to counter.

制御圧室18a、吐出圧領域のリヤ側吐出室20、吸入
圧領域の斜板室la及び吸入管路21は図示しない容量
制御弁機構に接続されており、摺動制御体24の前後の
変位が吸入管路21内の吸入圧の変動により制御される
ようになっている。即ち、吸入管路21内の吸入圧に基
づく容量制御弁機構内の弁体の開閉により制御圧室18
aが吐出圧相当の高圧又は吸入圧相当の低圧に切換制御
され、斜板9が第1図に示す傾角最大位置と第5図に示
す傾角最小位置とに揺動切換配置される。
The control pressure chamber 18a, the rear discharge chamber 20 in the discharge pressure region, the swash plate chamber la in the suction pressure region, and the suction pipe line 21 are connected to a capacity control valve mechanism (not shown), and the longitudinal displacement of the sliding control body 24 is controlled by the control pressure chamber 18a. It is controlled by fluctuations in the suction pressure within the suction pipe 21. That is, the control pressure chamber 18 is opened and closed by opening and closing the valve body in the capacity control valve mechanism based on the suction pressure in the suction pipe 21.
a is controlled to be switched to a high pressure equivalent to the discharge pressure or a low pressure equivalent to the suction pressure, and the swash plate 9 is swingably arranged between the maximum inclination position shown in FIG. 1 and the minimum inclination position shown in FIG.

ガイドブツシュ7の先端内面と回転軸4の先端との間に
は補正ばね30が介在されており、補正ばね30には摺
動制御体24が斜板傾角増大方向へ移動して第3図の実
線位置へ配置されたときに補正ばね30がブツシュ7の
内端面に接するばね特性が設定されている。
A correction spring 30 is interposed between the inner surface of the tip of the guide bush 7 and the tip of the rotary shaft 4, and the slide control body 24 moves in the direction of increasing the swash plate inclination angle to the correction spring 30 as shown in FIG. A spring characteristic is set such that the correction spring 30 comes into contact with the inner end surface of the bushing 7 when the correction spring 30 is disposed at the solid line position.

斜板9の揺動は回転軸4側のガイド孔5a、6aと斜板
9側の回転子9Cとの保合を介して案内され、この案内
作用をもたらすガイド孔5a、6aは回転軸4の軸線l
に対して斜交している。ガイドピン9bの変位曲線、即
ちガイド孔5a、6aのガイド曲線Sは第4図に示すよ
うにガイドピン9bの変位位置Xを変数として変位位置
XQに変曲点SQを持ち、O≦X<X(1はガイド曲線
Sの接線の傾きαが変数Xの増大につれて減少する負の
単調増大区間、X(1<X≦x1は傾きαが変数Xの増
大につれて増大する正の単調増大区間となる。そして、
単調増大区間O≦X<Xoのガイド曲線として点Qに中
心を持つ円弧Scが用いられており、その角度範囲がθ
となっている。
Swinging of the swash plate 9 is guided through engagement between the guide holes 5a, 6a on the rotating shaft 4 side and the rotor 9C on the swash plate 9 side, and the guide holes 5a, 6a that provide this guiding action are connected to the rotating shaft 4. axis l
It is oblique to . As shown in FIG. 4, the displacement curve of the guide pin 9b, that is, the guide curve S of the guide holes 5a and 6a, has an inflection point SQ at the displacement position XQ with the displacement position X of the guide pin 9b as a variable, and O≦X< X(1 is a negative monotonically increasing section where the slope α of the tangent to the guide curve S decreases as the variable X increases, and X(1<X≦x1 is a positive monotonically increasing section where the slope α increases as the variable X increases. It becomes.And,
A circular arc Sc centered at point Q is used as a guide curve for the monotonically increasing section O≦X<Xo, and its angular range is θ
It becomes.

ガイドピン9bの変位位置x1は第4図に実線で示す軸
ピン7aの位置、即ち斜板傾角βが最大の場合に対応し
、吐出容量が最大となる。ガイドピン9bの変位位置X
=Oは右側の鎖線で示す軸ピン7aの位置、即ち斜板傾
角βが最小の場合に対応し、吐出容量が最小となる。
The displacement position x1 of the guide pin 9b corresponds to the position of the shaft pin 7a shown by the solid line in FIG. 4, that is, when the swash plate inclination angle β is maximum, and the discharge capacity is maximum. Displacement position X of guide pin 9b
=O corresponds to the position of the shaft pin 7a shown by the chain line on the right side, that is, the case where the swash plate inclination angle β is the minimum, and the discharge capacity is the minimum.

第7図に示すグラフの横軸2は摺動制御体24の変位位
置を表し、縦軸Pは制御圧室18a内の制御圧を表す、
第6図に示すグラフの横軸Vは吐出容量を表し、Vma
xは最大吐出容量、Vminは最小吐出容量を表す。第
6図に鎖線で示す曲線D1は正の単調増大区間X(1<
X≦x1におけるガイド曲線S(以下、区間X Q ”
< X≦x1におけるガイド曲線SをS′と表す)を導
くための基礎となる曲線であり、最小吐出容量■l1l
inに対応する最小制御圧P1minは吸入圧Ps以上
、最大吐出容量Vmaxに対応する最大制御圧P1ma
xは吐出圧Pdl以下に設定されている。
The horizontal axis 2 of the graph shown in FIG. 7 represents the displacement position of the sliding control body 24, and the vertical axis P represents the control pressure in the control pressure chamber 18a.
The horizontal axis V of the graph shown in FIG. 6 represents the discharge capacity, and Vma
x represents the maximum discharge volume, and Vmin represents the minimum discharge volume. The curve D1 shown by the chain line in FIG. 6 is a positive monotonically increasing section X (1<
Guide curve S at X≦x1 (hereinafter referred to as section X Q ”
< The guide curve S at X≦x1 is expressed as S').
The minimum control pressure P1min corresponding to in is equal to or higher than the suction pressure Ps, and the maximum control pressure P1ma corresponding to the maximum discharge volume Vmax
x is set to be less than or equal to the discharge pressure Pdl.

制御圧Pは次式(1)で表される。The control pressure P is expressed by the following equation (1).

但し、Fjは各圧縮室Pf。However, Fj is each compression chamber Pf.

ガス圧、Mは各圧縮室Pf、P ス圧Fjにより生じるモーメン 示す距離、Bは各圧縮室Pf。Gas pressure, M is each compression chamber Pf, P Moment caused by the pressure Fj The distance shown, B is each compression chamber Pf.

面積を表す。Represents area.

吐出容量■は摺動制御体2 4の変位2と1対1 P =  CM−sin  a/ L−ΣFj)/B+
Ps ・ ・ ・ (1) Prにおける冷媒 rにおける冷媒ガ ト、Lは第4図に Prにおける受圧 に対応し、次式(2)で表される。
The discharge capacity ■ is 1:1 with the displacement 2 of the sliding control body 24 P = CM-sin a/L-ΣFj)/B+
Ps ・ ・ ・ (1) The refrigerant gap and L in the refrigerant r in Pr correspond to the pressure received in Pr in FIG. 4, and are expressed by the following equation (2).

v=B ・ 2z+■min       ・ ・ ・
 (2)即ち、吐出容量Vの関数である制御圧Pは摺動
制御体24の変位2と1対lに対応し、制御圧Pを変位
2で微分すれば次式(3)で表される。
v=B ・ 2z+■min ・ ・ ・
(2) That is, the control pressure P, which is a function of the discharge volume V, corresponds to the displacement 2 of the sliding control body 24 in a ratio of 1:1, and if the control pressure P is differentiated by the displacement 2, it is expressed by the following equation (3). Ru.

dP/dz=dP/dV ・ dV/dz=dP/dV
 ・ 2B ・ ・ ・ (3) 式(3)における微分d P/d Vは第6図における
基礎曲線D1の接線の傾きを表し、吐出容量■が最小吐
出容量V winから■1付近までの傾きρは負、吐出
容量■がvl付近から最大吐出容量Vmaxまでの傾き
σは正、かつ傾きσが定数に設定されている。即ち、式
(3)をさらに正確に表現すれば次式(3−a)、  
(3−b)となる。
dP/dz=dP/dV ・dV/dz=dP/dV
・ 2B ・ ・ ・ (3) The differential d P/d V in equation (3) represents the slope of the tangent to the basic curve D1 in Figure 6, and the discharge volume ■ is the slope from the minimum discharge volume V win to around ■ 1 ρ is negative, the slope σ from the vicinity of vl of the discharge capacity ■ to the maximum discharge capacity Vmax is positive, and the slope σ is set to be a constant. That is, to express formula (3) more accurately, the following formula (3-a),
(3-b).

dP/dz=ρ ・ 2B<OVl  >V≧Vmin
・ ・ ・ (3−a) dP/dz=−y l 2B>OVmax  >V≧v
1・ ・ ・ (3−b) 又、ガイド曲線S (x)と変位2とは次式(4)%式
% 但し、t、oはガイドピン9bと軸ピン7aとの距離(
一定)、Llは摺動制御体24の変位2=0のときの軸
ピン7aとガイドピン9bとの回転軸線β上における距
離である。
dP/dz=ρ ・2B<OVl>V≧Vmin
・ ・ ・ (3-a) dP/dz=-y l 2B>OVmax>V≧v
1. . . (3-b) Also, the guide curve S (x) and displacement 2 are the following formula (4)% formula % However, t and o are the distances between the guide pin 9b and the shaft pin 7a (
(constant), and Ll is the distance between the shaft pin 7a and the guide pin 9b on the rotation axis β when the displacement 2 of the sliding control body 24 is 0.

式(4)を変位Xで微分すれば次式(5)となる。Differentiating equation (4) with respect to displacement X yields the following equation (5).

2(x+L1−z)(1−dz/dx )+23−dS
/dx=2(x+L1−z)(1−dz/dx )+2
3cr−〇                  ・ 
・ ・ (5)さらに、第4図に示す距離りはガイド曲
線5(x)により定まる直線11,122によって特定
され、変位2及び傾きαの関数となるガイド曲線Sで特
定される距fiLは変位2及び傾きαの関数である。な
お、直線/lはガイド孔5a、6aからのガイドピン9
bに対する反力の方向線を表し、この反力は第4図の矢
印p方向である。従って、ガイド曲線Sは、制御圧Pを
表す式(1)、変位2で微分した制御圧Pの傾きを表す
式(3−a)及び式(3−b)、変位2と変位Xとの関
係を表す式(4)、及び変位2と変位Xと傾きαとの関
係を表す式(5)から求められ、基礎曲線Diを設定す
ることによりガイド曲線Sが前記のような変曲点3gを
持つ単調増大曲線として設定される。
2(x+L1-z)(1-dz/dx)+23-dS
/dx=2(x+L1-z)(1-dz/dx)+2
3cr-〇・
・ ・ (5) Furthermore, the distance shown in FIG. 4 is specified by the straight lines 11 and 122 determined by the guide curve 5(x), and the distance fiL specified by the guide curve S, which is a function of the displacement 2 and the slope α, is It is a function of displacement 2 and slope α. Note that the straight line /l is the guide pin 9 from the guide holes 5a and 6a.
It represents the direction line of the reaction force against b, and this reaction force is in the direction of arrow p in FIG. Therefore, the guide curve S is calculated using equation (1) expressing the control pressure P, equations (3-a) and equation (3-b) expressing the slope of the control pressure P differentiated by the displacement 2, and the equation (3-a) and equation (3-b) expressing the slope of the control pressure P differentiated by the displacement 2. It is determined from equation (4) expressing the relationship and equation (5) expressing the relationship between displacement 2, displacement is set as a monotonically increasing curve with .

そして、ガイド曲線Sの接線の傾きαが変数Xの増大に
つれて増大する正の単調増大区間XO<X≦XIではガ
イド曲線S′が用いられ、ガイド曲′1IASの接線の
傾きαが変数Xの増大につれて減少する負の単調増大区
間O≦X<XOではガイド曲線として円弧Scが用いら
れる。この円弧Scのガイド作用により傾きσが正、即
ち制御圧が斜板傾角増大方向へのガイドピン9bの変位
に対して単調増大となる。
In a positive monotonically increasing section XO<X≦XI where the slope α of the tangent to the guide curve S increases as the variable In the negative monotonically increasing section O≦X<XO that decreases as the curve increases, the circular arc Sc is used as the guide curve. Due to the guiding action of the arc Sc, the slope σ is positive, that is, the control pressure increases monotonically with respect to the displacement of the guide pin 9b in the direction of increasing the swash plate inclination angle.

第6図に鎖線で示す曲線D2.D3.D4.D5゜D6
は補正ばね30の作用を除いた場合の各吐出圧Pd2.
Pd3.Pd4.Pd5.pctaに対応する制御圧曲
線を示し、各制御圧曲線D2.D3゜D4.D5.D6
は吸入圧Ps以上かつ各吐出圧Pd2.Pd3.Pd4
.Pd5.pa6以下となるが、制御圧曲線DI、D2
.D3では最大容量側が斜板傾角増大方向へのガイドピ
ン9bの変位に対して単調減少あるいは略一定値となり
、最大容量側に制御不能領域が生じる。直線EOは補正
ばね30のばね特性を表す。このばね特性EOをもたら
す補正ばね30のばね作用を各曲線D2゜D3.D4.
D5.D6及び基礎曲線D!に付加すると、各曲線D2
.D3.D4.D5.D6及び基礎直線D1が実線で示
すように補正される。
Curve D2. shown by a chain line in FIG. D3. D4. D5゜D6
is each discharge pressure Pd2. when the action of the correction spring 30 is excluded.
Pd3. Pd4. Pd5. The control pressure curves corresponding to pcta are shown, and each control pressure curve D2. D3゜D4. D5. D6
is greater than or equal to the suction pressure Ps and each discharge pressure Pd2. Pd3. Pd4
.. Pd5. pa6 or less, but the control pressure curves DI, D2
.. At D3, the maximum capacity side monotonically decreases or becomes a substantially constant value with respect to the displacement of the guide pin 9b in the increasing direction of the swash plate inclination, and an uncontrollable region occurs on the maximum capacity side. The straight line EO represents the spring characteristics of the correction spring 30. The spring action of the correction spring 30 that provides this spring characteristic EO is expressed by each curve D2°D3. D4.
D5. D6 and basic curve D! , each curve D2
.. D3. D4. D5. D6 and the basic straight line D1 are corrected as shown by solid lines.

基礎曲線D1を基礎に設定されたガイド曲gs’は第7
図に示すように各吐出圧pa1.Pd2゜Pd3.Pd
4.Pds、Pdaに対して鎖線で示す制御圧曲線C1
,C2,C3,C4,C5゜C6をもたらす。鎖線で示
す制御圧曲線C1,C2C5は最大容量側で単調減少あ
るいは略一定となる曲線であり、最大容量側に制御不能
領域を持つ。
The guide song gs' set based on the basic curve D1 is the seventh
As shown in the figure, each discharge pressure pa1. Pd2゜Pd3. Pd
4. Control pressure curve C1 shown by a chain line for Pds and Pda
, C2, C3, C4, C5°C6. The control pressure curves C1 and C2C5 shown by chain lines are curves that monotonically decrease or are substantially constant on the maximum capacity side, and have an uncontrollable region on the maximum capacity side.

しかしながら、補正ばね30のばね特性EOにより各制
御圧曲線Cm、c2.c3.c4.、cS。
However, due to the spring characteristic EO of the correction spring 30, each control pressure curve Cm, c2. c3. c4. , cS.

C6が最大容量側で実線で示すように補正され、゛補正
された制御圧曲線Cm、C2,C3は単調増大曲線かつ
吐出圧Pd、、Pd2.Pd3以下となる。従って、い
ずれの圧縮比においても摺動制御体24の変位位置2=
0から最大変位位置z maxにわたる全ての領域で斜
板9の円滑な傾動動作を得ることができ、円滑な容量可
変制御性を達成することができる。
C6 is corrected as shown by the solid line on the maximum capacity side, and the corrected control pressure curves Cm, C2, C3 are monotonically increasing curves and the discharge pressures Pd, , Pd2 . Pd3 or less. Therefore, at any compression ratio, the displacement position 2 of the sliding control body 24 =
Smooth tilting motion of the swash plate 9 can be obtained in the entire range from 0 to the maximum displacement position z max, and smooth capacity variable controllability can be achieved.

本発明は勿論前記実施例にのみ限定されるものではなく
、例えば摺動制御体24の変位2の増大に対して単調増
大する制御圧曲線を得るには基礎曲線Dlの直線部に近
い円弧曲線、楕円弧曲線等の滑らかな曲線の採用も可能
であり、前記実施例と略同様のガイド曲線が得られる。
The present invention is, of course, not limited to the above-mentioned embodiments. For example, in order to obtain a control pressure curve that monotonically increases as the displacement 2 of the sliding control body 24 increases, an arcuate curve close to the straight part of the basic curve Dl is required. , it is also possible to adopt a smooth curve such as an elliptic arc curve, and a guide curve substantially similar to that of the above embodiment can be obtained.

又、補正ばねの組み込み構成としては第8図に示す実施
例も可能である。この実施例では、回転軸4とガイドブ
ッシュ7内端面との間に一対の補正ばね31.32が直
列的に介在されており、回転軸4先端には支持ボルト3
3が螺着されている。
Furthermore, the embodiment shown in FIG. 8 is also possible as a construction in which the correction spring is incorporated. In this embodiment, a pair of correction springs 31 and 32 are interposed in series between the rotating shaft 4 and the inner end surface of the guide bush 7, and a support bolt 3 is provided at the tip of the rotating shaft 4.
3 is screwed on.

支持ボルト33にはスプリングホルダ34が支持されて
おり、回転軸4とスプリングホルダ34との間には補正
ばね31が介在されている。補正ばね31には予荷重G
が掛けられており、スプリングホルダ34に対して頭部
33a側から予荷重Gよりも大きい荷重が加えられたと
きにのみスプリングホルダ34が左方へ移動する。補正
ばね32にはガイドブツシュ7が第8図鎖線位置へ来た
ときにスプリングホルダ34に接するばね特性が設定さ
れている。
A spring holder 34 is supported by the support bolt 33, and a correction spring 31 is interposed between the rotating shaft 4 and the spring holder 34. The correction spring 31 has a preload G
is applied, and the spring holder 34 moves to the left only when a load greater than the preload G is applied to the spring holder 34 from the head 33a side. The correction spring 32 is set to have spring characteristics such that the guide bush 7 comes into contact with the spring holder 34 when the guide bush 7 comes to the position indicated by the chain line in FIG.

両補正ばね31.32を組み合わせたばね特性が第9図
に示されており、直vAEtは補正ばね32のみの作用
、直線E2は補正ばね31と補正ばね32との直列的な
重ね合わせ作用を表す。さらに正確に言えば、補正ばね
31のばね定数をkl、補正ばね32のばね定数をに2
とすると、各直線El、E2で表される作用力に1.に
2は次式%式% 又、予荷重Gは次式(8)で表される。
The spring characteristics of the combination of both correction springs 31 and 32 are shown in FIG. 9, where the straight line vAEt represents the action of only the correction spring 32, and the straight line E2 represents the superimposed action of the correction springs 31 and 32 in series. . To be more precise, the spring constant of the correction spring 31 is kl, and the spring constant of the correction spring 32 is 2.
Then, the acting force represented by each straight line El, E2 is 1. 2 is the following formula % Formula % Also, the preload G is expressed by the following formula (8).

G=kl  (z2   zl)       ・ ・
 ・ (8)補正ばね31,32の組み合わせによるこ
のようなばね特性を用いれば、最大容量から最小容量側
にわたる広い範囲で制御圧の適正な補正が容易となり、
容量可変制御性の一層の向上が可能となる。
G=kl (z2 zl) ・ ・
(8) By using such a spring characteristic due to the combination of the correction springs 31 and 32, it becomes easy to appropriately correct the control pressure in a wide range from the maximum capacity to the minimum capacity side,
Further improvement in capacity variable controllability becomes possible.

[発明の効果] 以上詳述したように本発明は、回転軸の軸線方向へのガ
イドピンの変位位置を変数とするガイド孔のガイド曲線
として、斜板傾角増大方向へのガイドピンの変位に対し
て単調に増大し、かつ途中で負から正へ変わる変曲点を
持つと共に、負の単調増大領域に円弧、特定の圧縮比で
は斜板傾角増大方向へのガイドピンの変位に対して線型
的に制御圧力を減少する曲線を正の単調増大領域に持つ
曲線とし、斜板傾角減少方向へ摺動制御体を付勢するた
めの補正ばねを設けたので、圧縮比に関係なく斜板傾角
増大に対して制御圧が単調増大し、これにより圧縮比全
領域での容量可変制御性を向上し得るという優れた効果
を奏する。
[Effects of the Invention] As described in detail above, the present invention provides a guide curve for the guide hole in which the displacement position of the guide pin in the axial direction of the rotating shaft is used as a variable, so that the displacement of the guide pin in the direction of increasing the swash plate inclination angle is It increases monotonically with respect to the swash plate, and has an inflection point that changes from negative to positive in the middle, and has a circular arc in the negative monotonically increasing region, and at a certain compression ratio, it is linear with respect to the displacement of the guide pin in the direction of increasing swash plate inclination. Since the curve that decreases the control pressure in a positive monotonically increasing region is used, and a correction spring is provided to bias the sliding control body in the direction of decreasing the swash plate inclination, the swash plate inclination will be constant regardless of the compression ratio. The control pressure monotonically increases as the pressure increases, which has the excellent effect of improving capacity variable control over the entire compression ratio range.

【図面の簡単な説明】[Brief explanation of the drawing]

第1〜7図は本発明を具体化した一実施例を示し、第1
図は圧縮機の側断面図、第2図は第1図のA−A線断面
図、第3図は要部破断側面図、第4図はガイド曲線を説
明するためのグラフ、第5図は斜板傾角最小状態を示す
側断面図、第6図は吐出容量と制御圧との関係を示すグ
ラフ、第7図は摺動制御体の変位と制御圧との関係を示
すグラフ、第8図は本発明の別個を示す要部破断側面図
、第9図は組み合わせられた補正ばねのばね特性を示す
グラフである。 ガイド孔5a、6a、斜板9、ガイドピン9b、回転子
9C1制御圧室18a、摺動制御体24、補正ばね30
,31,32、基礎曲線Di、ばね特性EO1制御圧曲
線CI、C2,C3,C4゜cs、c6、ガイド曲線s
、s’、円弧Sc、変曲点sg。
1 to 7 show an embodiment embodying the present invention.
The figure is a side cross-sectional view of the compressor, Figure 2 is a cross-sectional view taken along the line A-A in Figure 1, Figure 3 is a side view of a main part broken away, Figure 4 is a graph for explaining the guide curve, and Figure 5 is a graph for explaining the guide curve. 6 is a graph showing the relationship between discharge capacity and control pressure. FIG. 7 is a graph showing the relationship between displacement of the sliding control body and control pressure. The figure is a cutaway side view of the main parts separately showing the present invention, and FIG. 9 is a graph showing the spring characteristics of the combined correction spring. Guide holes 5a, 6a, swash plate 9, guide pin 9b, rotor 9C1 control pressure chamber 18a, sliding control body 24, correction spring 30
, 31, 32, basic curve Di, spring characteristic EO1 control pressure curve CI, C2, C3, C4 ° cs, c6, guide curve s
, s', arc Sc, inflection point sg.

Claims (1)

【特許請求の範囲】[Claims]  1.両頭ピストンを往復動可能に収容するシリンダブ
ロック内に回転軸を回転可能に収容支持すると共に、こ
の回転軸には両頭ピストンを往復駆動する斜板を相対回
転不能かつその周縁側を中心として前後に揺動可能に支
持し、この揺動中心位置をリヤ側シリンダボア寄りに設
定すると共に、回転軸の回転に伴う揺動中心の回転領域
上に前記両頭ピストンの往復動領域を設定し、リヤ側シ
リンダボアにおける圧縮行程上死点を定位置とした斜板
式圧縮機において、吐出圧相当又は吸入圧相当の圧力に
切換えられる容量制御用の制御圧室の容積を変える摺動
制御体を前記回転軸に摺動可能に支持し、冷媒ガス圧縮
により生じる斜板揺動力と制御圧室内の圧力とを斜板及
び摺動制御体を介して対抗させ、この対抗により揺動さ
れる斜板側にはガイドピンを取り付けると共に、回転軸
側には前記ガイドピンとガイド関係を持つガイド孔を設
け、回転軸の軸線方向への前記ガイドピンの変位位置を
変数とするガイド孔のガイド曲線として、斜板傾角増大
方向へのガイドピンの変位に対して単調に増大し、かつ
途中で負から正へ変わる変曲点を持つと共に、負の単調
増大領域に円弧、特定の圧縮比では斜板傾角増大方向へ
のガイドピンの変位に対して線型的に制御圧力を減少す
る曲線を正の単調増大領域に持つ曲線とし、さらに斜板
傾角減少方向へ摺動制御体を付勢するための補正ばねを
設けた可変容量型斜板式圧縮機。
1. A rotary shaft is rotatably housed and supported in a cylinder block that reciprocably accommodates the double-headed piston, and a swash plate that drives the double-headed piston to reciprocate is attached to the rotary shaft so that the swash plate is not relatively rotatable and moves back and forth around its periphery. The pivoting center position is set close to the rear cylinder bore, and the reciprocating region of the double-headed piston is set above the rotational region of the pivoting center caused by the rotation of the rotating shaft. In a swash plate compressor with the compression stroke top dead center at a fixed position, a sliding control body that changes the volume of a control pressure chamber for capacity control that is switched to a pressure equivalent to discharge pressure or suction pressure is slid on the rotating shaft. The swash plate is movably supported, and the swash plate rocking force generated by refrigerant gas compression and the pressure in the control pressure chamber are opposed to each other via the swash plate and the sliding control body, and a guide pin is provided on the swash plate side that is swung by this opposition. At the same time, a guide hole having a guiding relationship with the guide pin is provided on the rotating shaft side, and a guide curve of the guide hole with the displacement position of the guide pin in the axial direction of the rotating shaft as a variable is set in the direction of increasing swash plate inclination. It increases monotonically with respect to the displacement of the guide pin, and has an inflection point that changes from negative to positive along the way, and has a circular arc in the negative monotonically increasing region, and at a certain compression ratio, the guide in the direction of increasing swash plate inclination. The variable capacity has a curve in which the control pressure linearly decreases with respect to the displacement of the pin in a positive monotonically increasing region, and is further provided with a correction spring to bias the sliding control body in the direction of decreasing the swash plate inclination. Type swash plate compressor.
JP63188641A 1988-07-28 1988-07-28 Variable displacement swash plate compressor Expired - Lifetime JP2600310B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63188641A JP2600310B2 (en) 1988-07-28 1988-07-28 Variable displacement swash plate compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63188641A JP2600310B2 (en) 1988-07-28 1988-07-28 Variable displacement swash plate compressor

Publications (2)

Publication Number Publication Date
JPH0237177A true JPH0237177A (en) 1990-02-07
JP2600310B2 JP2600310B2 (en) 1997-04-16

Family

ID=16227270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63188641A Expired - Lifetime JP2600310B2 (en) 1988-07-28 1988-07-28 Variable displacement swash plate compressor

Country Status (1)

Country Link
JP (1) JP2600310B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104047833A (en) * 2014-06-16 2014-09-17 江苏盈科汽车空调有限公司 Planetary plate for vehicle air conditioning compressor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104047833A (en) * 2014-06-16 2014-09-17 江苏盈科汽车空调有限公司 Planetary plate for vehicle air conditioning compressor

Also Published As

Publication number Publication date
JP2600310B2 (en) 1997-04-16

Similar Documents

Publication Publication Date Title
JP2600305B2 (en) Variable displacement swash plate compressor
US7614858B2 (en) Variable capacity vane pump with force reducing chamber on displacement ring
US5486098A (en) Swash plate type variable displacement compressor
EP1918583B1 (en) Suction throttle valve of a compressor
JP2945748B2 (en) Variable capacity oscillating compressor
EP0928898B1 (en) Control valve for variable displacement compressors
JPS62206277A (en) Mechanism for returning swing slant angle of wobble plate in swing swash plate type compressor
US5181453A (en) Variable displacement compressor
JPH0216374A (en) Variable displacement swash plate type compressor
KR100277815B1 (en) Variable capacity compressor
US5857402A (en) Variable displacement compressor method and apparatus
US6524079B1 (en) Alignment means for the swash plate of a variable-capacity swash-plate type compressor
JPH01147171A (en) Variable displacement swash plate type compressor
KR20120065143A (en) Variable displacement swash plate type compressor
JPH0237177A (en) Variable displacement swash plate type compressor
JPH0249975A (en) Variable displacement swash plate-type compressor
JP2600308B2 (en) Variable displacement swash plate compressor
JPH1061549A (en) Variable displacement compressor
JPH02108871A (en) Oscillating swash plate type compressor
JPS61255285A (en) Compression capacity varying mechanism in swingable slash plate type compressor
JPH01253574A (en) Variable-volume swash plate type compressor
JP2009138629A (en) Variable capacity compressor
JPH02115576A (en) Variable capacity type swingable compressor
JPH01138382A (en) Variable capacity type swash plate type compressor
JPH0233477A (en) Variable-displacement swash plate type compressor