JPH0233477A - Variable-displacement swash plate type compressor - Google Patents

Variable-displacement swash plate type compressor

Info

Publication number
JPH0233477A
JPH0233477A JP63184412A JP18441288A JPH0233477A JP H0233477 A JPH0233477 A JP H0233477A JP 63184412 A JP63184412 A JP 63184412A JP 18441288 A JP18441288 A JP 18441288A JP H0233477 A JPH0233477 A JP H0233477A
Authority
JP
Japan
Prior art keywords
pressure
swash plate
control body
control
pressure chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63184412A
Other languages
Japanese (ja)
Other versions
JPH0676794B2 (en
Inventor
Masahiro Kawaguchi
真広 川口
Hisao Kobayashi
久雄 小林
Masayuki Tanigawa
谷川 正行
Isao Tsuzuki
都築 功
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyoda Automatic Loom Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Automatic Loom Works Ltd filed Critical Toyoda Automatic Loom Works Ltd
Priority to JP63184412A priority Critical patent/JPH0676794B2/en
Priority to DE19893924347 priority patent/DE3924347A1/en
Publication of JPH0233477A publication Critical patent/JPH0233477A/en
Publication of JPH0676794B2 publication Critical patent/JPH0676794B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/10Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders
    • F04B27/1036Component parts, details, e.g. sealings, lubrication
    • F04B27/1054Actuating elements
    • F04B27/1072Pivot mechanisms

Abstract

PURPOSE:To facilitate assembling by setting the pressure receiving area of a slide control body so that the pressure in a control pressure chamber applied to the slide control body and the pressure applied to the slide control body from the opposite side to the control pressure chamber are balanced at the time of the maximum displacement. CONSTITUTION:The pressure receiving area of a slide control body 34 is set so that the pressure in a control pressure chamber 23a applied to the slide control body 34, i.e., the control pressure equal to the discharge pressure, and the pressure applied from the opposite side to the control pressure chamber are balanced when the ratio Ps/Pd between the intake pressure Ps and the discharge pressure Pd is the maximum compression ratio generated in a refrigerant circuit, e.g., at the maximum displacement when Ps/Pd=3/31. No stopper is required to restrict the position of the slide control body 34 to set the swash plate inclination angle at the time of the maximum displacement to the preset value, thus no alignment of the stroke and top clearance is required at the time of assembling. The time and labor required for assembling can be sharply reduced.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は両頭ピストンを備えた可変容量型斜板式圧縮機
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a variable displacement swash plate compressor equipped with a double-ended piston.

[従来の技術] 両頭ピストン型圧fimの冷房効率を兼ね備えた可変容
量型圧縮機が特開昭58−162782号公報に開示さ
れている。この圧縮機では斜板が回転軸と一体的に回転
可能かつ前後に揺動可能に支持されており、この斜板の
傾角が冷房負荷を反映する吸入圧情報に基づいて制御さ
れるようになっている。しかしながら、斜板の揺動中心
が回転軸上の固定位置に設定されているため、両頭ピス
トンの圧縮行程、E死点が前後両圧縮室のいずれにおい
ても斜板傾角に応じて変動し、斜板傾角が零11!II
に近い小容量側の圧縮作用領域では実質的な圧縮及び吐
出を行うことができない。
[Prior Art] A variable displacement compressor that combines the cooling efficiency of a double-headed piston type pressure fim is disclosed in Japanese Patent Laid-Open No. 162782/1982. In this compressor, the swash plate is supported so that it can rotate integrally with the rotating shaft and swing back and forth, and the inclination of this swash plate is controlled based on suction pressure information that reflects the cooling load. ing. However, since the center of oscillation of the swash plate is set at a fixed position on the rotation axis, the compression stroke and E dead center of the double-headed piston fluctuate depending on the swash plate inclination angle in both the front and rear compression chambers. The plate inclination angle is 0 11! II
Substantial compression and discharge cannot be performed in the compression action area on the small volume side close to .

この欠点を改良した可変容量圧縮機が特開昭63−14
7977号公報に開示されている。この圧縮機では斜板
の揺動中心が両頭ピストンを収容するシリンダブロック
のシリンダボアと対応する回転軸の半径方向位置に設定
されると共に、斜板の回転中心位置が可変となっている
。そのため、両頭ピストンの一側のシリンダボアにおけ
る圧縮行程上死点が定位置に規定され、斜板傾角が軍制
に近い小容量側の圧縮作用領域でも実質的な圧縮及び吐
出が行われる。
A variable capacity compressor that improved this drawback was developed in Japanese Patent Application Laid-Open No. 63-14.
It is disclosed in Japanese Patent No. 7977. In this compressor, the center of swing of the swash plate is set at a radial position of the rotating shaft corresponding to the cylinder bore of the cylinder block that accommodates the double-headed piston, and the center of rotation of the swash plate is variable. Therefore, the top dead center of the compression stroke in the cylinder bore on one side of the double-headed piston is defined at a fixed position, and substantial compression and discharge are performed even in the compression action area on the small capacity side where the swash plate inclination angle is close to the military system.

斜板傾角は吐出圧領域又は吸入圧領域に切換え接続され
る制御圧室の容積を変える摺動制御体及び斜板を介して
前後両シリンダボア内の圧力による斜板揺動力と制御圧
室内の圧力との対抗により制御されるようになっており
、摺動制御体は回転軸上に摺動可能に支持されている。
The swash plate inclination is determined by the swash plate rocking force due to the pressure in both the front and rear cylinder bores via the sliding control body and the swash plate that change the volume of the control pressure chamber connected to the discharge pressure region or the suction pressure region and the pressure in the control pressure chamber. The sliding control body is slidably supported on the rotating shaft.

この圧力対抗により揺動する斜板が回転軸に付与する作
用力は斜板側のガイドピンを介して回転軸側のガイド孔
に受は止められ、ガイドピンとガイド孔とのガイド関係
により斜板傾角が制御されるようになっている。
The force exerted on the rotating shaft by the swash plate, which oscillates due to this pressure opposition, is received by the guide hole on the rotating shaft side via the guide pin on the swash plate side, and the swash plate is stopped by the guide relationship between the guide pin and the guide hole. The tilt angle is controlled.

[発明が解決しようとする課題」 前記従来装置では最大容量時にスラスト荷重を担うスラ
ストベアリングに過大な負荷が掛かるのを防止するため
、摺動制御体をストッパに当接させることにより摺動制
御体の位置を規制していた。
[Problems to be Solved by the Invention] In the conventional device described above, in order to prevent an excessive load from being applied to the thrust bearing that carries the thrust load at maximum capacity, the sliding control body is brought into contact with a stopper. regulated the location of

ところが、このように最大容量時の摺動制御体の位置を
ストッパに当接させることにより規制する場合には、組
付は時にストローク、トップクリアランス調整のために
摺動制御体のストッパとめ当接面を削る必要があり、手
間と時間が非常に多く掛かるという問題がある。
However, when regulating the position of the sliding control body at maximum capacity by abutting it against a stopper, assembly is sometimes done by bringing the sliding control body into contact with the stopper in order to adjust the stroke and top clearance. There is a problem in that it is necessary to shave the surface, which takes a lot of effort and time.

又、従来の圧1機では最人容址側での制御圧力の単調増
大をもたらすことができず、この領域では補正ばねを用
いて制御圧力の引上げ方向)\の補正を行う必要があり
、回転軸と摺動制御体との間に補正ばねを介在する梢成
がR祠の複雑化を招く。
In addition, with the conventional pressure unit, it is not possible to monotonically increase the control pressure at the maximum capacity side, and in this region it is necessary to use a correction spring to correct the direction in which the control pressure is raised. The structure in which a correction spring is interposed between the rotating shaft and the sliding control body complicates the R shrine.

又、吐出圧と吸入圧との比、すなわち圧縮比が低い場合
には補正ばねのばね力を大きくして制御圧力を引1.・
、げ補正する必要がある。このように荘大容量側での制
御圧力を引き上けるための補正ばねを使用した場合には
、容:1100%から低容量側への容量変化の開始時期
の遅れ、すなわち制御圧室の圧力が減少しているにも拘
らず摺動制御体の移動が圧力の減少と同期して開始され
ない現象が生じ、制御圧に対する不感領域が現れるとい
う問題がある。
Also, if the ratio between the discharge pressure and the suction pressure, that is, the compression ratio is low, the spring force of the correction spring is increased to reduce the control pressure.・
, baldness needs to be corrected. In this way, when using a correction spring to raise the control pressure on the large capacity side, the start time of the capacity change from 1100% to the low capacity side is delayed, that is, the pressure in the control pressure chamber There is a problem in that the movement of the sliding control body does not start in synchronization with the decrease in pressure even though the pressure decreases, and a region insensitive to the control pressure appears.

本発明は前記従来の問題点に鑑みてなされたものであっ
て、その目的は組付は時にストローク及びトップクリア
ランスの調整を行う必要がなく、しかも、最大容量側に
おける不感領域が無くなり摺動制御体の追従性が向上し
て容量制御性がよくなる可変容重型斜板式圧縮機を提供
することにある。
The present invention has been made in view of the above-mentioned conventional problems, and its purpose is to eliminate the need to sometimes adjust the stroke and top clearance during assembly, and eliminate the dead area on the maximum capacity side to control sliding. It is an object of the present invention to provide a variable capacity heavy type swash plate type compressor which improves the followability of the body and improves the capacity controllability.

[課題を解決するための手段] 前記の目的を達成するなめ本発明においては、吐出圧相
当又は吸入圧相当の圧力に切換えられる容量制御用の制
御圧室を設けると共に、該制御圧室の容積を変える摺動
制御体を前記回転軸にその軸線方向へスライド可能に支
持し、前記摺動制御体の反制御圧室面に吸入圧力が作用
するように楕成し、冷媒ガス圧縮により生じる斜板揺動
力と制御圧室内の圧力とを斜板及び摺動制御体を介して
対抗させ、この対抗により揺動される斜板側にはガイド
ピンを取りトrけると共に、回転軸側にはmf記ガイド
ピンとガイド関係を持つガイド孔を設け、回転軸の軸線
方向への前記ガイドピンの変位位置を変数とするガイド
孔の大容址側の形状を規定するガイド曲線として斜板傾
角増大方向へのガイドピンの変位に対して単調増大かつ
下に凸の曲線を採用し、冷媒回路で生ずる最大の圧縮比
における最大容量時に前記摺動制御体に加わる制御圧室
内の圧力と活動制御体に反制御圧室側から加わる圧力と
が釣り合うように摺動制御体の受圧面積を設定した。
[Means for Solving the Problems] In order to achieve the above-mentioned object, the present invention provides a control pressure chamber for capacity control that can be switched to a pressure equivalent to the discharge pressure or suction pressure, and also provides a control pressure chamber for capacity control that can be switched to a pressure equivalent to the discharge pressure or suction pressure. A sliding control body is supported on the rotating shaft so as to be slidable in the axial direction of the rotating shaft, and the sliding control body is shaped like an ellipse so that suction pressure acts on the surface opposite to the control pressure chamber, and prevents tilting caused by compression of the refrigerant gas. The plate rocking force and the pressure in the control pressure chamber are opposed to each other via the swash plate and the sliding control body, and a guide pin is installed on the swash plate side that is swung by this opposition, and a guide pin is installed on the rotating shaft side. A guide hole having a guiding relationship with the guide pin described in mf is provided, and the swash plate inclination angle is increased as a guide curve that defines the shape of the large volume side of the guide hole with the displacement position of the guide pin in the axial direction of the rotating shaft as a variable. A monotonically increasing and downwardly convex curve is adopted for the displacement of the guide pin, and the pressure in the control pressure chamber applied to the sliding control body and the activity of the control body at the maximum capacity at the maximum compression ratio that occurs in the refrigerant circuit are The pressure receiving area of the sliding control body was set so that the pressure applied from the side opposite to the control pressure chamber was balanced.

[作用コ 斜板傾角はフロント側シリンダボア内及びリヤ側シリン
ダボア内の圧力差による斜板揺動力と、制御圧室内の圧
力との差圧に応じて変動する0回転軸に対する斜板の作
用力は斜板側のガイドピンを介して回転軸側のガイド孔
に受は止められ、斜板傾角はガイド孔とガイドピンとの
ガイド関係によっても制御される。ガイドピンはガイド
曲線に沿って変位するが、大容量側においてはガイド曲
線として斜板傾角増大方向へのガイドピンの変位に対し
て単調増大かつ下に凸の曲線が採用されているので、制
御圧力は斜板傾角増大方向I\のガイドピンの変位に対
して単調に増大する。又、最大容量時(100%容量時
)に摺動制御体に加わる制御圧室内の圧力すなわち吐出
圧と、活動制御体に反制御圧室側から加わる圧力とが釣
り合うので、活動制御体の位置は摺動制御体の回転軸方
向への変位を規制するストッパがなくとも所定の位置に
保持される。このことは、低圧縮比の場合を除き圧縮比
が変更された場合でも成立し、低圧縮比の場合でも最大
容量時の必要制御圧が吐出圧以下で吐出圧に近い値をと
ることになり、ストッパがなくとも制御的に支障を生じ
ない、又、最大容量側での制御圧力の引上げ補正を行う
補正ばねが存在しないため、最大容量から容量を下げる
際に制御圧力の変化に対して摺動制御体の追従性がよく
なり、不感領域がなくなり制御性が向上する。
[The swash plate inclination angle varies depending on the pressure difference between the swash plate rocking force due to the pressure difference in the front cylinder bore and the rear cylinder bore and the pressure in the control pressure chamber.The swash plate acting force on the zero rotation axis is The receiver is fixed in the guide hole on the rotating shaft side via the guide pin on the swash plate side, and the swash plate inclination angle is also controlled by the guide relationship between the guide hole and the guide pin. The guide pin is displaced along the guide curve, but on the high-capacity side, the guide curve is a curve that monotonically increases and is convex downward in the direction of increasing the swash plate inclination angle. The pressure increases monotonically with respect to the displacement of the guide pin in the direction of increasing swash plate inclination I\. In addition, the pressure in the control pressure chamber that is applied to the sliding control body at maximum capacity (at 100% capacity), that is, the discharge pressure, is balanced with the pressure that is applied to the active control body from the side opposite to the control pressure chamber, so the position of the active control body is held at a predetermined position even without a stopper that restricts displacement of the sliding control body in the direction of the rotation axis. This holds true even when the compression ratio is changed, except in the case of low compression ratios, and even in the case of low compression ratios, the required control pressure at maximum capacity is below the discharge pressure and takes a value close to the discharge pressure. , there is no problem in control even if there is no stopper, and since there is no correction spring that corrects raising the control pressure on the maximum capacity side, there is no problem with sliding against changes in control pressure when lowering the capacity from the maximum capacity. The followability of the dynamic control body is improved, there is no dead area, and controllability is improved.

〔実施例] 以下、本発明を具体化した一実施例を図面に従って説明
する。
[Example] An example embodying the present invention will be described below with reference to the drawings.

第1.2図に示ずように、シリンダブロック1の前後両
端面にはフロントハウジング2及びリヤハウジング3が
接合固定されており、フロントハウジング2及びシリン
ダブロック1には回転軸4がフロント軸部4aを介して
回転可能に支持されている。フロント軸部4aの内端側
にはリヤ軸部4bがベアリング受は板5及び連結体6.
7を介して連結固定されると共に、連結体6.7にはガ
イド孔6a、7aが形成されており、ベアリング受は板
5とシリンダブロック1の内端との間にはスラストベア
リング8が介装されている。
As shown in Fig. 1.2, a front housing 2 and a rear housing 3 are fixedly connected to both the front and rear end surfaces of the cylinder block 1, and a rotating shaft 4 is connected to the front housing 2 and the cylinder block 1 at the front shaft portion. It is rotatably supported via 4a. On the inner end side of the front shaft section 4a, a rear shaft section 4b is provided with a bearing plate 5 and a connecting body 6.
Guide holes 6a, 7a are formed in the connecting body 6.7, and a thrust bearing 8 is interposed between the plate 5 and the inner end of the cylinder block 1. equipped.

リヤ軸部4bにはガイドブツシュ9がスライド可能に嵌
合されており、ガイドブツシュ9の基端部左右両側には
軸ピン10(一方のみ図示)が突設されると共に、軸ビ
ン10には斜板11が回動可能に支持されている。斜板
11の前面にはブリッジllaが形成されると共に、そ
の中間部にはガイドピン12が両側方へ突出するように
嵌着されており、ガイドピン12の両端部には回転子1
3が取付けられている。ブリッジllaは両連結体6.
7の間に挟入されると共に、両回転子13が連結体6.
7のガイド孔6a、7aに嵌入されており、これにより
斜板11が斜4′l室14内で回転軸4と共に回転する
A guide bushing 9 is slidably fitted into the rear shaft portion 4b, and shaft pins 10 (only one shown) are provided protruding from both left and right sides of the base end of the guide bushing 9. A swash plate 11 is rotatably supported. A bridge lla is formed on the front surface of the swash plate 11, and a guide pin 12 is fitted in the middle of the bridge so as to protrude to both sides.
3 is installed. Bridge lla connects both connectors 6.
7, and both rotors 13 are connected to the connecting body 6.7.
As a result, the swash plate 11 rotates together with the rotating shaft 4 within the slant 4'l chamber 14.

回転軸4、斜板11及びガイドブ・ツシュ9は、ガイド
ピン12とガイド孔6a、7aとのガイド関係及び前後
にスライド可能なガイドブツシュ9に対する斜板11の
回動可能関係をもって互いに連結されている。これによ
り斜板11がガイドブツシュ9のスライドに伴って揺動
可能であり、この揺動中心Cが斜板11の周縁側に設定
されている。斜板11の回転軌跡上にて対応形成された
複数のフロント側シリンダボア1a及びリヤ側シリンダ
ボア1b内には両頭ピストン15が収容されると共に、
これら複数の両頭ピストン15と斜板11とはシュー1
6.17を介して係合しており、両頭ピストン15が斜
板11の回転に伴って前後に往復動する。
The rotating shaft 4, the swash plate 11, and the guide bush 9 are connected to each other through a guiding relationship between the guide pin 12 and the guide holes 6a, 7a, and a rotatable relationship between the swash plate 11 and the guide bush 9, which is slidable back and forth. ing. As a result, the swash plate 11 can swing as the guide bush 9 slides, and the center C of this swing is set on the periphery side of the swash plate 11. A double-headed piston 15 is accommodated in a plurality of front cylinder bores 1a and rear cylinder bores 1b that are formed correspondingly on the rotation locus of the swash plate 11.
These plural double-headed pistons 15 and swash plate 11 are connected to the shoe 1.
6.17, and the double-headed piston 15 reciprocates back and forth as the swash plate 11 rotates.

シリンダブロック1と前後両ハウジング2.3との間に
は区画プレート18.19及び弁形成プレート20.2
1が介在されており、前後両ハウジング2.3内には吸
入室22.23及び吐出室24.25が区画形成されて
いる。外部冷媒ガス回路を梢成する吸入管路26内の冷
媒ガスは、両頭ピストン15の往復動に伴って入口27
から斜根室14へ入り、フロント側吸入通路28、及び
リヤ側吸入通路29、フロント側吸入室22及びリヤ側
吸入室23、吸入弁20a、21aにより開閉される吸
入ボート18a、19aを経てフロント側圧縮室Pf及
びリヤ側圧縮室Prへ吸入されて圧縮作用を受ける。そ
して、両圧縮室Pf。
Between the cylinder block 1 and both the front and rear housings 2.3, there is a partition plate 18.19 and a valve formation plate 20.2.
1 is interposed, and a suction chamber 22.23 and a discharge chamber 24.25 are defined in both the front and rear housings 2.3. The refrigerant gas in the suction pipe 26 forming the external refrigerant gas circuit flows through the inlet 27 as the double-ended piston 15 reciprocates.
It enters the inclined root chamber 14 from the front side, passes through the front side suction passage 28, the rear side suction passage 29, the front side suction chamber 22, the rear side suction chamber 23, the suction boats 18a and 19a opened and closed by the suction valves 20a and 21a, and then the front side. It is sucked into the compression chamber Pf and the rear side compression chamber Pr and is subjected to a compression action. And both compression chambers Pf.

Prから吐出弁30.31により開閉される吐出ボート
18b、19bを経て両畦出室24.25へ吐出された
冷媒ガスは吐出通路32を経て出口33から排出される
Refrigerant gas discharged from Pr to both ridge chambers 24.25 via discharge boats 18b and 19b opened and closed by discharge valves 30.31 is discharged from outlet 33 via discharge passage 32.

斜板11の揺動中心Cは斜板11の周縁側に設定される
と共に、リヤ側シリンダボア1bWりに設定されており
、これによりフロント側圧縮室Pfにおける両頭ピスト
ン15の圧縮行程上死点は斜板11の傾角に応じて変動
するが、リヤ側圧縮室Prにおける両頭ピストン15の
圧縮行程−上死点は第1図に示す定位置に規定される。
The swing center C of the swash plate 11 is set on the peripheral edge of the swash plate 11, and is also set around the rear cylinder bore 1bW, so that the top dead center of the compression stroke of the double-headed piston 15 in the front compression chamber Pf is Although it varies depending on the inclination angle of the swash plate 11, the compression stroke - top dead center of the double-headed piston 15 in the rear side compression chamber Pr is defined at the fixed position shown in FIG.

従って、フロント側圧縮室Pfでは斜板傾角が小さい場
合には実質的な吸入及び吐出を伴わない圧縮及び彫版が
行われるだけであるが、圧縮行程上死点一定のリヤ側圧
縮室Prでは斜板11め傾角に関わりなく吸入及び吐出
を伴う実質的な圧縮作用が行われる。
Therefore, in the front side compression chamber Pf, when the swash plate inclination is small, compression and engraving without substantial suction and discharge are performed, but in the rear side compression chamber Pr, where the top dead center of the compression stroke is constant. Regardless of the inclination angle of the swash plate 11, a substantial compression action accompanied by suction and discharge is performed.

リヤ側吸入室23内には有底円筒状をなし後端にフラン
ジ部34aを有する摺動制御体34が前後方向へスライ
ド可能に嵌入され、その7ランジ部34aによりリヤ側
吸入室23の一部が制御圧室23aに区画形成されてい
る。摺動制御体34はその筒部34bがスラストベアリ
ング35及びラジアルベアリング36を介してガイドブ
ツシュ9に相対回転可能に支持されている。これにより
制御圧室23a内の圧力が摺動制御体34、ガイドブツ
シュ9及び斜板11を介してフロント側圧縮室Pf内の
圧力及びリヤ側圧縮室Pr内の圧力により生じる斜板揺
動力に対抗する。
A sliding control body 34 having a cylindrical shape with a bottom and having a flange portion 34a at the rear end is fitted into the rear suction chamber 23 so as to be slidable in the front and rear direction. The control pressure chamber 23a is partitioned into a control pressure chamber 23a. The sliding control body 34 has its cylindrical portion 34b supported by the guide bush 9 via a thrust bearing 35 and a radial bearing 36 so as to be relatively rotatable. As a result, the pressure in the control pressure chamber 23a is transmitted through the sliding control body 34, the guide bush 9, and the swash plate 11 to the swash plate rocking force generated by the pressure in the front side compression chamber Pf and the pressure in the rear side compression chamber Pr. to counter.

摺動制御体34は圧縮比すなわち吸入圧Psと吐出圧P
dの比P s / P dが冷媒回路で生ずる最大の圧
縮比、例えばPs/Pd=3/31における最大容量時
に前記摺動制御体34に加わる制御圧室23a内の圧力
すなわち吐出圧に等しい制御圧力と、摺動制御体34に
反制御圧室側から加わる圧力とが釣り合うように摺動制
御体34の受圧面積が設定されている。
The sliding control body 34 controls the compression ratio, that is, the suction pressure Ps and the discharge pressure Ps.
The ratio Ps/Pd of d is equal to the maximum compression ratio occurring in the refrigerant circuit, for example, the pressure in the control pressure chamber 23a that is applied to the sliding control body 34 at the maximum capacity at Ps/Pd=3/31, that is, the discharge pressure. The pressure receiving area of the sliding control body 34 is set so that the control pressure and the pressure applied to the sliding control body 34 from the side opposite to the control pressure chamber are balanced.

制御圧室23a、吐出圧頭載のリヤ側吐出室25、吸入
圧領域の斜板室14及び吸入管路26は図示しない要領
制御弁機構に接続されており、摺動制御体34の前後の
変位が吸入管路26内の吸入圧の変動により制御される
ようになっている。
The control pressure chamber 23a, the rear side discharge chamber 25 carrying the discharge pressure head, the swash plate chamber 14 in the suction pressure region, and the suction pipe 26 are connected to a control valve mechanism (not shown), and the front and rear displacement of the sliding control body 34 is controlled by fluctuations in the suction pressure within the suction line 26.

すなわち、吸入管路26内の吸入圧に基づく容量制御弁
機構内の弁の開閉により制御圧室23aが吐出圧相当の
高圧または吸入圧相当の低圧に切換え制御され、斜板1
1が第1図に示す傾角最大位置と図示しない傾角剋小位
置とに揺動切換え配置される。
That is, by opening and closing a valve in the capacity control valve mechanism based on the suction pressure in the suction pipe line 26, the control pressure chamber 23a is controlled to be switched to a high pressure equivalent to the discharge pressure or a low pressure equivalent to the suction pressure, and the swash plate 1
1 is swingably arranged between a maximum tilt position shown in FIG. 1 and a minimum tilt position (not shown).

斜板11の揺動は回転軸4側のガイド孔6a。The swash plate 11 swings through the guide hole 6a on the rotating shaft 4 side.

7aと斜板11側の回転子13との彫金を介して案内さ
れ、この案内作用をもたらすガイド孔6a。
7a and the rotor 13 on the side of the swash plate 11, the guide hole 6a is guided through the metal engraving and provides this guiding effect.

7aは回転軸4の軸線1に対して斜交している。7 a is oblique to the axis 1 of the rotating shaft 4 .

ガイドビン12の変位曲線すなわちガイド孔6a。The displacement curve of the guide bin 12, that is, the guide hole 6a.

7aのガイド曲線Sは第3図に示すように、ガイドビン
12の軸線方向への変位位置Xを変数として変位位置X
oに変曲点S0を持ち、大容量側のx0≦X≦x1では
ガイド曲線Sの接線の傾きαが変数Xの増大につれて増
大する正の単調増大となる曲線、すなわち斜板傾角増大
方向へのガイドビン12の変位に対して単調増大かつ下
に凸の曲線が使用され、0≦X≦x0ではガイド曲線S
の接線の傾きαが変数Xの増大につれて減少する負の単
調増大となる円弧が使用されている。ガイドビン12の
変位位置X、は第3図に実線で示ず軸ビン10の位置、
すなわち斜板傾角βが最大の場合に対応し、吐出容量が
最大となる。ガイドビン12の変位位置x=Oは第3図
の右側に鎖線で示ず軸ピンlOの位置、すなわち斜板傾
角βが最小の場合に対応し、吐出容量が最小となる。
As shown in FIG. 3, the guide curve S of 7a is calculated using the displacement position X of the guide bin 12 in the axial direction as a variable.
o has an inflection point S0, and on the large capacity side x0≦X≦x1, the slope α of the tangent to the guide curve S is a positive monotonically increasing curve that increases as the variable X increases, that is, in the direction of increasing swash plate inclination. A monotonically increasing and downwardly convex curve is used for the displacement of the guide bin 12, and when 0≦X≦x0, the guide curve S
A circular arc is used in which the slope α of the tangent line is a negative monotonically increasing slope that decreases as the variable X increases. The displacement position X of the guide bin 12 is not shown by a solid line in FIG. 3, but the position of the shaft bin 10 is
That is, this corresponds to the case where the swash plate inclination angle β is maximum, and the discharge capacity is maximum. The displacement position x=O of the guide bin 12 is indicated by a chain line on the right side of FIG. 3, and corresponds to the position of the shaft pin 1O, that is, the case where the swash plate inclination angle β is the minimum, and the discharge capacity is the minimum.

次ぎに前記のように構成された圧縮機の作用を説明する
0図示しない電磁クラッチが接続されてエンジンの回転
駆動力が回転軸4に伝達されると、回転軸4と共に斜板
11が一体的に回転する。斜板11は回転軸4に対して
傾斜しているため、斜板11の回転は揺動を伴うものと
なる。そして、この斜板11の揺動がシュー16.17
を介して両頭ピストン15に伝達され、両頭ピストン1
5がシリンダボア1a、lb内で往復運動を行う。
Next, we will explain the operation of the compressor configured as described above.0 When the electromagnetic clutch (not shown) is connected and the rotational driving force of the engine is transmitted to the rotating shaft 4, the swash plate 11 is integrated with the rotating shaft 4. Rotate to . Since the swash plate 11 is inclined with respect to the rotating shaft 4, the rotation of the swash plate 11 is accompanied by rocking. The rocking of the swash plate 11 causes the shoes 16 and 17 to
is transmitted to the double-ended piston 15 via the double-ended piston 1.
5 performs reciprocating motion within the cylinder bores 1a, lb.

圧縮機の吐出容量は斜板11の傾角を変更することによ
り可変制御される。第1図は斜板11の傾角が最大の状
態を示し、この状態で圧縮機の吐出容量は最大となる。
The discharge capacity of the compressor is variably controlled by changing the inclination angle of the swash plate 11. FIG. 1 shows a state in which the tilt angle of the swash plate 11 is at its maximum, and in this state, the discharge capacity of the compressor is at its maximum.

このとき、摺動制御体34の背面には制御圧室23a内
の制御圧が加わっており、前面にはフロント側圧縮室P
f内の圧力及びリヤ側圧力室Pr内の圧力により生じる
斜板揺動力と吸入圧とが加わっている。そして、摺動制
御体34は前記最大容量時において制御圧として吐出圧
が加えられたとき両者が釣り合うようにその受圧面積が
設定されているので、制御圧に対応して摺動制御体34
が所定位置に移動されると共にその位置に保持される。
At this time, the control pressure in the control pressure chamber 23a is applied to the back side of the sliding control body 34, and the front side compression chamber P is applied to the front side.
The swash plate rocking force generated by the pressure in f and the pressure in the rear pressure chamber Pr is added to the suction pressure. The pressure receiving area of the sliding control body 34 is set so that when the discharge pressure is applied as the control pressure at the maximum capacity, the pressure receiving area of the sliding control body 34 is set so that both are balanced.
is moved into position and held there.

すなわち、最大容量時における摺動制御体34の位置を
規制するためのストッパが不要となるので、圧縮機の組
付は時にストローク及びトップクリアランス調整を行う
必要がなくなり、組付けに要する時間及び労力が大幅に
削減される。
In other words, there is no need for a stopper to restrict the position of the sliding control body 34 at maximum capacity, so there is no need to sometimes adjust the stroke and top clearance when assembling the compressor, reducing the time and labor required for assembly. will be significantly reduced.

回路で生じる最大の圧縮比すなわち吸入圧Psと吐出圧
Pdとを<kgf /dlabs )の単位で表したと
き、その比がPs/Pd=3/31で100%容量時の
バランスPc(必要制御圧)が吐出圧Pdに等しくなる
ように活動制御体34の受圧面積を設定した場合のバラ
ンスPcと容量比との関係を表ず線図を第4図(f)に
示す、バランスPcは容量比100%から容量比の減少
にともない単調に減少している。この受圧面積を持つ活
動制御体34について圧縮比P s / P dの値を
種種変化させ、各圧縮比の場合についてバランスPcと
容量比との関係をシュミレーションによって求めた結果
を第4図(a)〜(e)に示す9図から明らかなように
、P s / P dの値が3/26 。
When the maximum compression ratio that occurs in the circuit, that is, the suction pressure Ps and the discharge pressure Pd, is expressed in units of < kgf /dlabs, the ratio is Ps/Pd = 3/31 and the balance Pc at 100% capacity (required control A diagram showing the relationship between the balance Pc and the capacity ratio when the pressure receiving area of the activity control body 34 is set so that the pressure) is equal to the discharge pressure Pd is shown in FIG. 4(f).The balance Pc is the capacity ratio. It monotonically decreases from 100% as the capacity ratio decreases. For the active control body 34 having this pressure-receiving area, the value of the compression ratio P s / P d is varied, and the relationship between the balance Pc and the capacity ratio for each compression ratio is obtained by simulation. The results are shown in Fig. 4(a). ) to (e), the value of P s / P d is 3/26.

3/21 、3/16と大きな場合には、3/31の場
合と同様に100%容量時のバランスPcが吐出圧Pd
に等しい値をとり、3/11.3/8と圧縮比が比教的
小さな場合でも100%容量時のバランスPcが吐出圧
以下で吐出圧に近い値をとる。すなわち、高圧縮比側の
ある圧縮比における最大容量時に前記摺動制御体311
に加わる制御圧室23a内の圧力と、摺動制御体34に
反制御圧室側から加わる圧力とが釣り合うように摺動制
御体34の受圧面積を設定することにより、はぼ全ての
圧縮比において最大容量時のバランスPcがそのときの
吐出圧に等しくなる。従って、活動制御体34の位置を
規制するストッパが不要となる。
In the case of large values such as 3/21 and 3/16, the balance Pc at 100% capacity is equal to the discharge pressure Pd, as in the case of 3/31.
Even when the compression ratio is comparatively small, such as 3/11.3/8, the balance Pc at 100% capacity is below the discharge pressure and takes a value close to the discharge pressure. That is, at the maximum capacity at a certain compression ratio on the high compression ratio side, the sliding control body 311
By setting the pressure receiving area of the sliding control body 34 so that the pressure inside the control pressure chamber 23a applied to the control pressure chamber 23a and the pressure applied to the sliding control body 34 from the side opposite to the control pressure chamber are balanced, almost all compression ratios can be adjusted. The balance Pc at maximum capacity becomes equal to the discharge pressure at that time. Therefore, a stopper for regulating the position of the activity control body 34 is not required.

又、第4図(a)〜(f)に示すように、各圧縮比にお
いてバランスPcが容量比の増加に対して単調増加の関
係にあり、しかも最大客足側領域での補正ばねによる制
御圧力の引上げを行っていないので、制御圧力の変化に
対する不感領域がなくなり、制御圧力の変化に対応して
活動制御体34の移動すなわち容量変化が追従性よく行
なわれる。
Moreover, as shown in FIGS. 4(a) to (f), the balance Pc monotonically increases with the increase in capacity ratio at each compression ratio, and the control pressure by the correction spring in the maximum customer volume side region Since the pressure is not pulled up, there is no insensitive area to changes in control pressure, and the movement of the active control body 34, that is, the change in capacity, can be performed with good followability in response to changes in control pressure.

なお、本発明は前記実施例に限定されるものではなく、
例えば、圧縮機が斜板傾角が最小側で停止した状態から
運転開始した場合、斜板11が最大傾角側へ移行しにく
いという不都合を解消するための復帰用ばね37を制御
圧室23a内に介装してもよい、このばねは最大容量側
における制御圧力の引上げを行うものではないので、最
大容量から小容量側への容量変更は前記実施例と同様に
円滑に行なわれる。
Note that the present invention is not limited to the above embodiments,
For example, when the compressor starts operating from a stopped state with the swash plate inclination at the minimum side, a return spring 37 is installed in the control pressure chamber 23a to eliminate the inconvenience that the swash plate 11 is difficult to move to the maximum inclination side. This spring, which may be interposed, does not raise the control pressure on the maximum capacity side, so that the capacity change from the maximum capacity to the small capacity side is performed smoothly in the same way as in the previous embodiment.

[発明の効果] 以上詳述したように本発明によれば、最大容量時に活動
制御体に加わる制御圧室内の圧力と摺動制御体に反制御
圧室側から加わる圧力とが釣り合うように活動制御体の
受圧面積が設定されているので、最大容量時の斜板傾角
が所定の値となるように摺動制御体の位置を規制するた
めのストッパが不要となり、組付は時にストローク及び
トップクリアランスの調整を行う必要がないため、組付
けに要する時間及び労力が大幅に削減される。又、最大
容量時に活動制御体は圧力バランスのみにより所定の位
置に保持されているので、容量を変更するため制御圧を
変化させると、摺動制御体が制御庄の変化に追従して円
滑に移動し、制御圧に対する不感領域がなくなり制御性
が向上するという優れた効果を奏する。
[Effects of the Invention] As detailed above, according to the present invention, the activation is performed so that the pressure in the control pressure chamber applied to the active control body at maximum capacity is balanced with the pressure applied to the sliding control body from the side opposite to the control pressure chamber. Since the pressure-receiving area of the control body is set, there is no need for a stopper to regulate the position of the sliding control body so that the swash plate inclination angle at maximum capacity is a predetermined value. Since there is no need to adjust the clearance, the time and labor required for assembly are significantly reduced. In addition, at maximum capacity, the active control body is held in a predetermined position only by pressure balance, so when the control pressure is changed to change the capacity, the sliding control body follows the change in control pressure and smoothly moves. This has the excellent effect of improving controllability by eliminating areas insensitive to control pressure.

【図面の簡単な説明】[Brief explanation of the drawing]

第1〜4図は本発明を具体化した一実施例を示すもので
あって、第1図は圧縮機の線断面図、第2図は第1図の
A−A線断面図、第3図はガイド孔及びガイド曲線を説
明するための図、第4図(a)〜(f)は圧縮比を変え
た場合のバランスPc(必要制御圧)と容量比との関係
を示す1.図、第5図は変更例の部分断面図である。 シリンダブロック1、回転軸4、ガイド孔6a。 7a、斜板11、ガイドビン12、両頭ピストン15、
制御圧室23a、摺動制御体34、ガイド曲&lS。 特許出願人  株式会社 豊田自動!111m製作所代
 理 人  弁理士  恩1)博宣 容i11.比 (%) 容量比 (%) 容量比(%) 容量比 (%) 容量比 (%) 第4図(f) 団 O0 容量比 (%)
1 to 4 show an embodiment embodying the present invention, in which FIG. 1 is a line sectional view of the compressor, FIG. 2 is a sectional view taken along line A-A in FIG. The figure is a diagram for explaining the guide hole and the guide curve, and FIGS. 4(a) to 4(f) show the relationship between balance Pc (required control pressure) and capacity ratio when the compression ratio is changed. FIG. 5 is a partial sectional view of a modified example. Cylinder block 1, rotating shaft 4, guide hole 6a. 7a, swash plate 11, guide bin 12, double-ended piston 15,
Control pressure chamber 23a, sliding control body 34, guide music &lS. Patent applicant: Toyota Automobile Co., Ltd.! 111m Manufacturing Representative Patent Attorney On 1) Hiroshi Yoshihiro i11. Ratio (%) Capacity ratio (%) Capacity ratio (%) Capacity ratio (%) Capacity ratio (%) Figure 4 (f) Group O0 Capacity ratio (%)

Claims (1)

【特許請求の範囲】[Claims]  1.両頭ピストンを往復動可能に収容するシリンダブ
ロック内に回転軸を回転可能に収容支持すると共に、該
回転軸には両頭ピストンを往復駆動する斜板を相対回転
不能かつその周縁側を中心として前後に揺動可能に支持
し、その揺動中心位置をリヤ側シリンダボア寄りに設定
すると共に、回転軸の回転に伴う揺動中心の回転領域土
に前記両頭ピストンの往復動領域を設定し、リヤ側シリ
ンダボアにおける圧縮行程上死点を定位置とした斜板式
圧縮機において、吐出圧相当又は吸入圧相当の圧力に切
換えられる容量制御用の制御圧室を設けると共に、該制
御圧室の容積を変える摺動制御体を前記回転軸にその軸
線方向へスライド可能に支持し、前記摺動制御体の反制
御圧室面には吸入圧力が作用するように構成し、冷媒ガ
ス圧縮により生じる斜板揺動力と制御圧室内の圧力とを
斜板及び摺動制御体を介して対抗させ、この対抗により
揺動される斜板側にはガイドピンを取り付けると共に、
回転軸側には前記ガイドピンとガイド関係を持つガイド
孔を設け、回転軸の軸線方向への前記ガイドピンの変位
位置を変数とするガイド孔の大容量側の形状を規定する
ガイド曲線として斜板傾角増大方向へのガイドピンの変
位に対して単調増大かつ下に凸の曲線を採用し、冷媒回
路で生ずる最大の圧縮比における最大容量時に前記摺動
制御体に加わる制御圧室内の圧力と摺動制御体に反制御
圧室側から加わる圧力とが釣り合うように摺動制御体の
受圧面積を設定した可変容量型斜板式圧縮機。
1. A rotary shaft is rotatably housed and supported in a cylinder block that reciprocably accommodates a double-headed piston, and a swash plate for reciprocating the double-headed piston is mounted on the rotary shaft and is not relatively rotatable and moves back and forth around its periphery. It is supported so as to be swingable, and its swing center position is set near the rear cylinder bore, and the reciprocating movement area of the double-headed piston is set in the rotation area of the swing center due to the rotation of the rotating shaft, and the swing center position is set near the rear cylinder bore. In a swash plate compressor with the top dead center of the compression stroke at a fixed position, a control pressure chamber for capacity control that can be switched to a pressure equivalent to discharge pressure or suction pressure is provided, and a sliding mechanism that changes the volume of the control pressure chamber is provided. A control body is supported on the rotating shaft so as to be slidable in the axial direction thereof, and suction pressure is applied to a surface of the sliding control body opposite to the control pressure chamber, and the swash plate rocking force generated by refrigerant gas compression and The pressure in the control pressure chamber is opposed to the pressure in the control pressure chamber via the swash plate and the sliding control body, and a guide pin is attached to the swash plate side that is swung by this opposition, and
A guide hole having a guide relationship with the guide pin is provided on the rotating shaft side, and a swash plate is formed as a guide curve that defines the shape of the large capacity side of the guide hole with the displacement position of the guide pin in the axial direction of the rotating shaft as a variable. A downwardly convex curve that increases monotonically with respect to the displacement of the guide pin in the direction of increasing inclination angle is adopted, and the pressure in the control pressure chamber applied to the sliding control body and the sliding pressure are applied to the sliding control body at the maximum capacity at the maximum compression ratio that occurs in the refrigerant circuit. A variable capacity swash plate compressor in which the pressure receiving area of the sliding control body is set so that the pressure applied to the sliding control body from the side opposite to the control pressure chamber is balanced.
JP63184412A 1988-07-22 1988-07-22 Variable capacity swash plate compressor Expired - Lifetime JPH0676794B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP63184412A JPH0676794B2 (en) 1988-07-22 1988-07-22 Variable capacity swash plate compressor
DE19893924347 DE3924347A1 (en) 1988-07-22 1989-07-22 Swashplate compressor with variable flow - has angle of swashplate changed by pressure acting on central piston

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63184412A JPH0676794B2 (en) 1988-07-22 1988-07-22 Variable capacity swash plate compressor

Publications (2)

Publication Number Publication Date
JPH0233477A true JPH0233477A (en) 1990-02-02
JPH0676794B2 JPH0676794B2 (en) 1994-09-28

Family

ID=16152717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63184412A Expired - Lifetime JPH0676794B2 (en) 1988-07-22 1988-07-22 Variable capacity swash plate compressor

Country Status (1)

Country Link
JP (1) JPH0676794B2 (en)

Also Published As

Publication number Publication date
JPH0676794B2 (en) 1994-09-28

Similar Documents

Publication Publication Date Title
JP2600305B2 (en) Variable displacement swash plate compressor
KR19980071799A (en) Variable displacement compressor
US5417552A (en) Swash plate type variable displacement compressor
US6116145A (en) Variable displacement compressor
US5931079A (en) Variable capacity swash plate compressor
US5857402A (en) Variable displacement compressor method and apparatus
JPH01147171A (en) Variable displacement swash plate type compressor
KR100201934B1 (en) Variable capacity compressor
JPH1162824A (en) Variable capacity compressor
JPH0676793B2 (en) Variable capacity swash plate compressor
JP2707896B2 (en) Refrigerant gas suction guide mechanism in piston type compressor
JPH0233477A (en) Variable-displacement swash plate type compressor
US6260469B1 (en) Piston for use in a compressor
JP2611382B2 (en) Oscillating swash plate compressor
JPH1061549A (en) Variable displacement compressor
JP3292096B2 (en) Variable capacity swash plate type compressor
KR20000031816A (en) Variable capacity swash plate type compressor
JP2600308B2 (en) Variable displacement swash plate compressor
JP2600310B2 (en) Variable displacement swash plate compressor
JP2503566B2 (en) Variable displacement swash plate compressor
JP2001193647A (en) Reciprocating compressor
JPH01138382A (en) Variable capacity type swash plate type compressor
JPH11241680A (en) Variable displacement compressor
JP3182944B2 (en) Oscillating swash plate type variable displacement compressor
JPH0821358A (en) Variable displacement type compressor with swash plate