JP2600305B2 - Variable displacement swash plate compressor - Google Patents

Variable displacement swash plate compressor

Info

Publication number
JP2600305B2
JP2600305B2 JP63167419A JP16741988A JP2600305B2 JP 2600305 B2 JP2600305 B2 JP 2600305B2 JP 63167419 A JP63167419 A JP 63167419A JP 16741988 A JP16741988 A JP 16741988A JP 2600305 B2 JP2600305 B2 JP 2600305B2
Authority
JP
Japan
Prior art keywords
swash plate
guide
pressure
displacement
curve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63167419A
Other languages
Japanese (ja)
Other versions
JPH0219665A (en
Inventor
真広 川口
久雄 小林
正行 谷川
功 都築
Original Assignee
株式会社豊田自動織機製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機製作所 filed Critical 株式会社豊田自動織機製作所
Priority to JP63167419A priority Critical patent/JP2600305B2/en
Publication of JPH0219665A publication Critical patent/JPH0219665A/en
Application granted granted Critical
Publication of JP2600305B2 publication Critical patent/JP2600305B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/10Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders
    • F04B27/1036Component parts, details, e.g. sealings, lubrication
    • F04B27/1054Actuating elements
    • F04B27/1072Pivot mechanisms

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は両頭ピストンを備えた可変容量型斜板式圧縮
機に関するものである。
Description: TECHNICAL FIELD The present invention relates to a variable displacement swash plate type compressor having a double-headed piston.

[従来の技術] 特開昭58−162782号公報に開示されている両頭ピスト
ン式圧縮機では斜板が回転軸と一体的に回転可能かつ前
後に揺動可能に支持されており、この斜板の傾角が冷房
負荷を反映する吸入圧情報に基づいて制御されるように
なっている。しかしながら、斜板の揺動中心が回転軸上
の固定位置に設定されているため、両頭ピストンの圧縮
行程上死点が前後両圧縮室のいずれにおいても斜板傾角
に応じて変動し、斜板傾角が零側に近い小容量側の圧縮
作用領域では実質的な圧縮及び吐出を行なうことができ
ない。
2. Description of the Related Art In a double-headed piston type compressor disclosed in Japanese Patent Application Laid-Open No. 58-16272, a swash plate is supported so as to be rotatable integrally with a rotating shaft and swingable back and forth. Is controlled based on suction pressure information reflecting the cooling load. However, since the swing center of the swash plate is set at a fixed position on the rotating shaft, the top dead center of the compression stroke of the double-headed piston fluctuates according to the inclination angle of the swash plate in both the front and rear compression chambers. Substantial compression and discharge cannot be performed in the compression operation region on the small capacity side where the inclination angle is close to zero.

本願出願人はこの欠点を改良した圧縮機を特願昭62−
298630号で出願している。この圧縮機における斜板の揺
動中心は両頭ピストンを収容するシリンダブロックのシ
リンダボアと対応する回転軸の半径方向位置に設定され
ており、これにより両頭ピストンの一側のシリンダボア
における圧縮行程上死点が定位置に規定され、斜板傾角
が零側に近い小容量側の圧縮作用領域でも実質的な圧縮
及び吐出が行われる。
The applicant of the present application has proposed a compressor in which this disadvantage is improved, as disclosed in Japanese Patent Application No.
298630 filed. The center of swing of the swash plate in this compressor is set at the radial position of the rotary shaft corresponding to the cylinder bore of the cylinder block that houses the double-headed piston, so that the compression stroke top dead center in the cylinder bore on one side of the double-headed piston is set. Is defined at a fixed position, and substantial compression and discharge are performed even in the compression operation region on the small capacity side where the swash plate tilt angle is close to zero.

斜板傾角は吐出圧領域又は吸入圧領域に切換接続され
る制御圧室の容積を変える摺動制御体及び斜板を介して
前後両シリンダボア内の圧力による斜板揺動力と制御圧
室内の圧力との対抗により制御されるようになってお
り、摺動制御体は回転軸上に摺動可能に支持されてい
る。この圧力対抗により揺動する斜板が回転軸に付与す
る作用力は斜板側のガイドピンを介して回転軸側のガイ
ド孔に受け止められ、ガイドピンとガイド孔とのガイド
関係により斜板傾角が制御されるようになっている。
The swash plate tilt angle changes the volume of the control pressure chamber which is switched and connected to the discharge pressure area or the suction pressure area, and the swash plate oscillating power and the pressure in the control pressure chamber due to the pressure in the front and rear cylinder bores via the swash plate. The sliding control body is slidably supported on a rotating shaft. The acting force applied to the rotating shaft by the swash plate that swings due to the pressure is received by the guide hole on the rotating shaft through the guide pin on the swash plate, and the swash plate tilt angle is determined by the guide relationship between the guide pin and the guide hole. It is controlled.

[発明が解決しようとする課題] しかしながら、特願昭62−298630号に開示されるガイ
ド孔では最大容量側での制御圧力の単調増大をもたらす
ことができず、この領域では補正ばねを用いて制御圧力
の引き上げ方向への補正を行なう必要があり、回転軸と
摺動制御体との間に補正ばねを介在する構成が機構の複
雑化を招く。又、吐出圧と吸入圧との比、即ち圧縮比が
高い場合には補正ばねのばね力を大きくして制御圧力を
引き上げ補正しなければならず、圧縮比が低い場合には
補正を必要とされる斜板傾角範囲を前記補正ばねの作用
範囲内に全て包含することができない。しかも、補正ば
ねのばね力を過大にすると低圧縮比の場合の制御圧力が
この低圧縮比の場合の吐出圧を越えてしまい、制御不能
となる。
[Problems to be Solved by the Invention] However, the guide hole disclosed in Japanese Patent Application No. 62-298630 cannot provide a monotonous increase in the control pressure on the maximum capacity side, and in this region, a correction spring is used. It is necessary to correct the control pressure in the raising direction, and a configuration in which a correction spring is interposed between the rotating shaft and the sliding control body causes a complicated mechanism. Further, when the ratio between the discharge pressure and the suction pressure, that is, the compression ratio is high, the control pressure must be increased by increasing the spring force of the correction spring, and correction must be performed when the compression ratio is low. The swash plate tilt angle range cannot be completely included in the operation range of the correction spring. In addition, if the spring force of the correction spring is excessively large, the control pressure at the low compression ratio exceeds the discharge pressure at the low compression ratio, and the control becomes impossible.

さらにこの種の圧縮機では斜板傾角が最小側で停止し
た状態から運転開始した場合、斜板が最大傾角へ移行し
にくく、冷房作用を得るための応答性が悪いという不都
合がある。
Further, in this type of compressor, when the operation is started from a state in which the swash plate is stopped at the minimum tilt angle, the swash plate hardly shifts to the maximum tilt angle, and the responsiveness for obtaining the cooling action is poor.

本発明は、両頭ピストンを収容する一方のシリンダボ
アにおける圧縮行程上死点を定位置とする可変容量型圧
縮機の容量可変制御性を向上することを目的とするもの
である。
SUMMARY OF THE INVENTION It is an object of the present invention to improve the variable displacement controllability of a variable displacement compressor in which a top dead center of a compression stroke in one cylinder bore accommodating a double-headed piston is a fixed position.

[課題を解決するための手段] そのために本発明では、冷媒ガス圧縮により生じる斜
板揺動力と制御圧室内の圧力とを斜板及び摺動制御体を
介して対抗させ、この対抗により揺動される斜板側には
ガイドピンを取り付けると共に、回転軸側には前記ガイ
ドピンとガイド関係を持つガイド孔を設け、回転軸の軸
線方向への前記ガイドピンの変位位置を変数とするガイ
ド孔のガイド曲線として斜板傾角増大方向へのガイドピ
ンの変位に対して単調増大かつ途中で負から正へ変わる
変曲点を持ち、かつある圧縮比において吐出容量の変動
に対して線型的な制御圧変移をもたらす曲線とし、さら
に制御圧室内には斜板傾角増大方向へ摺動制御体を付勢
するための補正ばねを介在すると共に、この補正ばねに
は斜板の最小傾角付近でのみ作用するばね特性を設定し
た。
[Means for Solving the Problems] In the present invention, therefore, the swash plate oscillating power generated by refrigerant gas compression and the pressure in the control pressure chamber are opposed via the swash plate and the sliding control body, and the oscillating force is caused by the opposition. A guide pin is mounted on the swash plate side, and a guide hole having a guide relationship with the guide pin is provided on the rotary shaft side, and a guide hole having a variable displacement position of the guide pin in the axial direction of the rotary shaft is provided. The guide curve has an inflection point that increases monotonically with the displacement of the guide pin in the direction of increasing the swash plate inclination and changes from negative to positive on the way, and has a linear control pressure against a change in the discharge capacity at a certain compression ratio. The control pressure chamber is provided with a correction spring for biasing the sliding control body in the direction of increasing the swash plate inclination, and the correction spring acts only near the minimum inclination of the swash plate. Spring special Sex was set.

[作用] 回転軸に対する斜板の作用力は斜板側のガイドピンを
介して回転軸側のガイド孔に受け止められ、斜板傾角は
ガイド孔とガイドピンとのガイド関係で制御される。ガ
イドピンはガイド曲線に沿って変位するが、斜板傾角増
大方向へのガイドピンの変位に対して単調増大かつ途中
で負から正へ変わる変曲点を持ち、かつある圧縮比にお
いて吐出容量の変動に対して線型的な制御圧変移をもた
らす曲線をガイド曲線として採用することにより、摺動
制御体の可動範囲内で制御圧力は吸入圧と吐出圧との間
に抑えられ、しかも斜板傾角増大方向へのガイドピンの
変位に対して単調に増大する。さらに圧縮比によっては
制御不良が生じる最小容量側においても制御圧室内の補
正ばねの存在により制御圧が引き下げ補正され、運転停
止時には斜板が補正ばねにより最大傾角側へ移行保持さ
れる。制御圧の引き下げ補正を行なう補正ばねは制御圧
室内という比較的余裕のある場所に収容されるため、機
構の複雑化及び圧縮機の大型化をもたらすことはない。
[Operation] The acting force of the swash plate on the rotation shaft is received by the guide hole on the rotation shaft side via the guide pin on the swash plate side, and the inclination angle of the swash plate is controlled by the guide relationship between the guide hole and the guide pin. The guide pin is displaced along the guide curve, but has a point of inflection that monotonically increases with the displacement of the guide pin in the direction of increasing the swash plate tilt angle and changes from negative to positive on the way, and the discharge capacity at a certain compression ratio. By adopting a guide curve that produces a linear control pressure change with respect to fluctuations, the control pressure is suppressed between the suction pressure and the discharge pressure within the movable range of the sliding control body, and the swash plate tilt angle It increases monotonically with the displacement of the guide pin in the increasing direction. Further, depending on the compression ratio, the control pressure is reduced and corrected by the presence of the correction spring in the control pressure chamber even on the minimum displacement side where the control failure occurs, and when the operation is stopped, the swash plate is shifted and held to the maximum tilt angle side by the correction spring. The compensating spring for compensating the reduction of the control pressure is accommodated in a comparatively large space such as the control pressure chamber, so that the mechanism does not become complicated and the compressor does not become large.

[実施例] 以下、本発明を具体化した一実施例を図面に基づいて
説明する。
[Embodiment] An embodiment of the present invention will be described below with reference to the drawings.

シリンダブロック1の前後両端面にはフロントハウジ
ング2及びリヤハウジング3が接合固定されており、フ
ロントハウジング2及びシリンダブロック1には回転軸
4がフロント軸部4aを介して回転可能に支持されてい
る。フロント軸部4aの内端側にはリヤ軸部4bがベアリン
グ受け板8及び連結体5,6を介して連結固定されている
と共に、連結体5,6にはガイド孔5a,6aが形成されてお
り、ベアリング受け板8とシリンダブロック1の内端面
との間にはスラストベアリング27が介在されている。
A front housing 2 and a rear housing 3 are joined and fixed to both front and rear end surfaces of the cylinder block 1, and a rotation shaft 4 is rotatably supported by the front housing 2 and the cylinder block 1 via a front shaft portion 4a. . A rear shaft portion 4b is connected and fixed to the inner end side of the front shaft portion 4a via a bearing receiving plate 8 and connecting members 5, 6, and guide holes 5a, 6a are formed in the connecting members 5, 6. A thrust bearing 27 is interposed between the bearing receiving plate 8 and the inner end surface of the cylinder block 1.

リヤ軸部4bにはガイドブッシュ7がスライド可能に嵌
合されており、ガイドブッシュ7の基端部の左右には軸
ピン7a(一方のみ図示)が突設されていると共に、軸ピ
ン7aには斜板9が回動可能に支持されている。斜板9の
前面にはブリッジ9aが形成されていると共に、その中間
部にはガイドピン9bが両側方へ突出するように嵌着され
ており、ガイドピン9bの両端部には回転子9cが取付けら
れている。ブリッジ9aは両連結体5,6間に挟入されてい
ると共に、両回転子9cが連結体5,6のガイド孔5a,6aに嵌
入されており、これにより斜板9が斜板室1a内で回転軸
4と共に回転する。
A guide bush 7 is slidably fitted to the rear shaft portion 4b. A shaft pin 7a (only one of which is shown) is protrudingly provided on the left and right sides of the base end of the guide bush 7, and is connected to the shaft pin 7a. The swash plate 9 is supported rotatably. A bridge 9a is formed on the front surface of the swash plate 9, and a guide pin 9b is fitted at an intermediate portion thereof so as to protrude to both sides, and a rotor 9c is provided at both ends of the guide pin 9b. Installed. The bridge 9a is sandwiched between the two connecting members 5, 6, and both the rotors 9c are fitted into the guide holes 5a, 6a of the connecting members 5, 6, whereby the swash plate 9 is moved into the swash plate chamber 1a. And rotates with the rotating shaft 4.

回転軸4、斜板9及びガイドブッシュ7は、ガイドピ
ン9bとガイド孔5a,6aとのガイド関係及び前後にスライ
ド可能なガイドブッシュ7に対する斜板9の回動可能関
係をもって互いに連結しており、これにより斜板9がガ
イドブッシュ7のスライドに伴って揺動可能であり、こ
の揺動中心Cが斜板9の周縁側に設定されている。斜板
9の回転軌跡上にて対応形成されたフロント側シリンダ
ボア1b及びリヤ側シリンダボア1c内には両頭ピストン10
が収容されていると共に、これら複数の両頭ピストン10
と斜板9とはシュー11,12を介して係合しており、両頭
ピストン10が斜板9の回転に伴って前後に往復動する。
The rotating shaft 4, the swash plate 9 and the guide bush 7 are connected to each other with a guide relationship between the guide pin 9b and the guide holes 5a and 6a and a rotatable relationship of the swash plate 9 with respect to the guide bush 7 which can slide back and forth. Thereby, the swash plate 9 can swing with the sliding of the guide bush 7, and the swing center C is set on the peripheral side of the swash plate 9. A double-headed piston 10 is provided in the front-side cylinder bore 1b and the rear-side cylinder bore 1c correspondingly formed on the rotation trajectory of the swash plate 9.
Are accommodated, and the plurality of double-headed pistons 10
And the swash plate 9 are engaged via the shoes 11 and 12, and the double-headed piston 10 reciprocates back and forth as the swash plate 9 rotates.

シリンダブロック1と前後両ハウジング2,3との間に
は区画プレート13,14及び弁形成プレート15,16が介在さ
れており、前後両ハウジング2,3内には吸入室17,18及び
吐出室19,20が区画形成されている。外部冷媒ガス回路
を構成する吸入管路21内の冷媒ガスは両頭ピストン10の
往復動に伴って入口22から斜板室1aへ入り、フロント側
吸入通路1d及びリヤ側吸入通路1e、フロント側吸入室17
及びリヤ側吸入室18、吸入弁15a,16aにより開閉される
吸入ポート13a,14aを経てフロント側圧縮室Pf及びリヤ
側圧縮室Prへ吸入されて圧縮作用を受ける。そして、両
圧縮室Pf,Prから吐出弁28,29により開閉される吐出ポー
ト13b,14bを経て両吐出室19,20へ吐出された冷媒ガスは
吐出通路1fへ流出すると共に、吐出通路1fを経て出口23
から排出される。
Partition plates 13 and 14 and valve forming plates 15 and 16 are interposed between the cylinder block 1 and the front and rear housings 2 and 3, and suction chambers 17 and 18 and a discharge chamber are disposed inside the front and rear housings 2 and 3. 19 and 20 are sectioned. Refrigerant gas in the suction pipe line 21 constituting the external refrigerant gas circuit enters the swash plate chamber 1a from the inlet 22 with the reciprocation of the double-headed piston 10, enters the front-side suction passage 1d, the rear-side suction passage 1e, and the front-side suction chamber. 17
The air is sucked into the front-side compression chamber Pf and the rear-side compression chamber Pr through suction ports 13a and 14a opened and closed by the rear-side suction chamber 18 and the suction valves 15a and 16a, and is subjected to a compression action. The refrigerant gas discharged from the compression chambers Pf, Pr to the discharge chambers 19, 20 via the discharge ports 13b, 14b opened and closed by the discharge valves 28, 29 flows out to the discharge passage 1f, and flows through the discharge passage 1f. Exit 23
Is discharged from

斜板9の揺動中心Cは斜板9の周縁側に設定されてい
ると共に、リヤ側シリンダボア1c寄りに設定されてお
り、これによりフロント側圧縮室Pfにおける両頭ピスト
ン10の圧縮行程上死点は斜板9の傾角に応じて変動する
が、リヤ側圧縮室Prにおける両頭ピストン10の圧縮行程
上死点が第1,4図に示す定位置に規定される。従って、
フロント側圧縮室Pfでは斜板傾角が小さい場合には実質
的な吸入及び吐出を伴わない圧縮及び膨脹が行われるだ
けであるが、圧縮行程上死点一定のリヤ側圧縮室Prでは
斜板9の傾角に関わりなく吸入及び吐出を伴う実質的な
圧縮が行われる。
The swing center C of the swash plate 9 is set on the peripheral edge side of the swash plate 9 and is set near the rear cylinder bore 1c, whereby the top dead center of the compression stroke of the double-headed piston 10 in the front compression chamber Pf is set. Varies according to the tilt angle of the swash plate 9, but the top dead center of the compression stroke of the double-headed piston 10 in the rear compression chamber Pr is defined at the fixed position shown in FIGS. Therefore,
When the inclination angle of the swash plate is small in the front-side compression chamber Pf, compression and expansion without substantial suction and discharge are performed only. However, in the rear-side compression chamber Pr having a constant top dead center in the compression stroke, the swash plate 9 is not used. Substantially compression involving suction and discharge is performed irrespective of the inclination angle of.

リヤ側吸入室18内にはスプール形状の摺動制御体24が
前後方向へスライド可能に嵌入されており、そのフラン
ジ部24aによりリヤ側吸入室18の一部が制御圧室18aに区
画形成されていると共に、筒部24bがスラストベアリン
グ25及びラジアルベアリング26を介してガイドブッシュ
7に相対回転可能に支持されている。これにより制御圧
室18a内の圧力が摺動制御体24、ガイドブッシュ7及び
斜板9を介してフロント側圧縮室Pf内の圧力及びリヤ側
圧縮室Pr内の圧力により生じる斜板揺動力に対抗する。
A spool-shaped slide control body 24 is slidably fitted in the rear-side suction chamber 18 in the front-rear direction, and a part of the rear-side suction chamber 18 is partitioned into a control pressure chamber 18a by its flange portion 24a. The cylindrical portion 24b is rotatably supported by the guide bush 7 via a thrust bearing 25 and a radial bearing 26. As a result, the pressure in the control pressure chamber 18a is converted into the swash plate oscillating power generated by the pressure in the front compression chamber Pf and the pressure in the rear compression chamber Pr via the slide control body 24, the guide bush 7, and the swash plate 9. Oppose.

制御圧室18a、吐出圧領域のリヤ側吐出室20、吸入圧
領域の斜板室1a及び吸入管路21は図示しない容量制御弁
機構に接続されており、摺動制御体24の前後の変位が吸
入管路21内の吸入圧の変動により制御されるようになっ
ている。即ち、吸入管路21内の吸入圧に基づく容量制御
弁機構内の弁体の開閉により制御圧室18aが吐出圧相当
の高圧又は吸入圧相当の低圧に切換制御され、斜板9が
第1図に示す傾角最大位置と第5図に示す傾角最小位置
とに揺動切換配置される。
The control pressure chamber 18a, the rear discharge chamber 20 in the discharge pressure area, the swash plate chamber 1a in the suction pressure area, and the suction pipe line 21 are connected to a capacity control valve mechanism (not shown). It is controlled by the fluctuation of the suction pressure in the suction pipe 21. That is, the control pressure chamber 18a is switched to a high pressure equivalent to the discharge pressure or a low pressure equivalent to the suction pressure by opening and closing a valve in the capacity control valve mechanism based on the suction pressure in the suction pipe line 21, and the swash plate 9 is moved to the first position. The swing is switched between a maximum tilt angle position shown in the figure and a minimum tilt angle position shown in FIG.

制御圧室18a内において摺動制御体24とリヤハウジン
グ3との間には補正ばね30が介在されており、第3図に
示すように摺動制御体24が左側の鎖線位置に来たときに
補正ばね30に接し、この位置から斜板傾角が減少すると
補正ばね30のばね作用が摺動制御体24に対して働く。
In the control pressure chamber 18a, a correction spring 30 is interposed between the slide control body 24 and the rear housing 3, and when the slide control body 24 comes to the left chain line position as shown in FIG. When the inclination angle of the swash plate decreases from this position, the spring action of the correction spring 30 acts on the slide control body 24.

斜板9の揺動は回転軸4側のガイド孔5a,6aと斜板9
側の回転子9cとの係合を介して案内され、この案内作用
をもたらすガイド孔5a,6aは回転軸4の軸線lに対して
斜交している。ガイドピン9bの変位曲線、即ちガイド孔
5a,6aのガイド曲線Sは第4図に示すようにガイドピン9
bの変位位置xを変数として変位位置x0に変曲点s0を持
ち、0≦x<x0はガイド曲線Sの接線の傾きαが変数x
の増大につれて減少する負の単調増大区間、x0<x≦x1
は傾きαが変数xの増大につれて増大する正の単調増大
区画となる。ガイドピン9bの変位位置x1は第4図に実線
で示す軸ピン7aの位置、即ち斜板傾角βが最大の場合に
対応し、吐出容量が最大となる。ガイドピン9bの変位位
置x=0は右側の鎖線で示す軸ピン7aの位置、即ち斜板
傾角βが最小の場合に対応し、吐出容量が最小となる。
The swash plate 9 is swung by the guide holes 5a and 6a on the rotary shaft 4 side and the swash plate 9
The guide holes 5a and 6a which are guided through engagement with the rotor 9c on the side and provide this guiding action are oblique to the axis l of the rotating shaft 4. The displacement curve of the guide pin 9b, that is, the guide hole
The guide curve S for 5a and 6a is shown in FIG.
With the displacement position x of b as a variable, the displacement position x 0 has an inflection point s 0 , and 0 ≦ x <x 0 means that the inclination α of the tangent to the guide curve S is the variable x
Monotonically increasing section that decreases as x increases, x 0 <x ≦ x 1
Is a positive monotone increasing section in which the slope α increases as the variable x increases. Guide pin displaced position x 1 and 9b is the position of the pivot pin 7a indicated by the solid line in FIG. 4, i.e. inclination angle of the inclined plate β corresponds to the case of the maximum discharge displacement is maximized. The displacement position x = 0 of the guide pin 9b corresponds to the position of the shaft pin 7a indicated by the chain line on the right side, that is, the case where the swash plate inclination angle β is minimum, and the discharge capacity is minimum.

第7図に示すグラフの横軸zは摺動制御体24の変位位
置を表し、縦軸Pは制御圧室18a内の制御圧を表す。第
6図に示すグラフの横軸Vは吐出容量を表し、Vmaxは最
大吐出容量、Vminは最小吐出容量を表す。第6図に実線
で示す直線D2はガイド曲線Sを導くための基礎となる直
線であり、最小吐出容量Vminに対応する最小制御圧P2mi
nは吸入圧Ps以上、最大吐出容量Vmaxに対応する最大制
御圧P2maxは吐出圧Pd2以下に設定されている。
The horizontal axis z of the graph shown in FIG. 7 represents the displacement position of the sliding control body 24, and the vertical axis P represents the control pressure in the control pressure chamber 18a. The horizontal axis V of the graph shown in FIG. 6 represents the discharge capacity, Vmax represents the maximum discharge capacity, and Vmin represents the minimum discharge capacity. Straight D 2 shown by the solid line in FIG. 6 is a straight line as a basis for guiding the guide curve S, the minimum control pressure P 2 mi corresponding to the minimum discharge displacement Vmin
n is set to the suction pressure Ps or more, and the maximum control pressure P 2 max corresponding to the maximum discharge capacity Vmax is set to the discharge pressure Pd 2 or less.

制御圧Pは次式(1)で表される。 The control pressure P is represented by the following equation (1).

P=〔M・sinα/L−ΣFj〕/A+P ・・・(1) 但し、Fjは各圧縮室Pf,Prにおける冷媒ガス圧、Mは
各圧縮室Pf,Prにおける冷媒ガス圧Fjにより生じるモー
メント、Lは第4図に示す距離、Aは各圧縮室Pf,Prに
おける受圧面積を表す。
P = [M · sin α / L−ΣFj] / A + P (1) where Fj is the refrigerant gas pressure in each compression chamber Pf, Pr, and M is the moment generated by the refrigerant gas pressure Fj in each compression chamber Pf, Pr. , L are the distances shown in FIG. 4, and A is the pressure receiving area in each compression chamber Pf, Pr.

吐出容量Vは摺動制御体24の変位zと1対1に対応
し、次式(2)で表される。
The discharge capacity V has a one-to-one correspondence with the displacement z of the sliding control body 24 and is expressed by the following equation (2).

V=A・2z+Vmin ・・・(2) 即ち、吐出容量Vの関数である制御圧Pは摺動制御体
24の変位zと1対1に対応し、制御圧Pを吐出容量Vで
微分すれば次式(3)で表される。
V = A · 2z + Vmin (2) That is, the control pressure P, which is a function of the discharge capacity V, is a sliding control body.
When the control pressure P is differentiated by the discharge capacity V in one-to-one correspondence with the displacement z of 24, the following expression (3) is obtained.

dP/dV=dP/dz・dz/dV =dP/dz・1/2A =(Pmax−Pmin)/(Vmax−Vmin)・・・(3) 又、ガイド曲線S(x)と変位zとは次式(4)で結
ばれる。
dP / dV = dP / dz · dz / dV = dP / dz · 1 / 2A = (Pmax−Pmin) / (Vmax−Vmin) (3) Further, the guide curve S (x) and the displacement z are as follows. It is connected by the following equation (4).

(x+L1−z)+S(x)=L0 2 ・・・(4) 但し、L0はガイドピン9bと軸ピン7aとの距離(一
定)、L1は摺動制御体24の変位z=0のときの軸ピン7a
とガイドピン9bとの回転軸線l上における距離である。
(X + L 1 −z) 2 + S (x) = L 0 2 (4) where L 0 is the distance between the guide pin 9b and the shaft pin 7a (constant), and L 1 is the displacement of the sliding control body 24 Shaft pin 7a when z = 0
And the distance on the rotation axis l between the guide pin 9b and the guide pin 9b.

式(4)を変位xで微分すれば次式(5)となる。 Differentiating equation (4) with displacement x gives the following equation (5).

2(x+L1−z)(1−dz/dx)+2S・dS/dx =2(x+L1−z)(1−dz/dx)+2Sα =0 ・・・(5) さらに、第4図に示す距離Lはガイド曲線S(x)に
より定まる直線l1,l2によって特定され、変位z及び傾
きαの関数となるガイド曲線Sで特定される距離Lは変
位z及び傾きαの関数である。なお、直線l1はガイド溝
5a,6aからのガイドピン9bに対する反力の方向線を表わ
し、この反力は第4図の矢印P方向である。従って、ガ
イド曲線Sは、制御圧Pを表す式(1)、変位zで微分
した制御圧Pの傾きを表す式(3)、変位zと変位xと
の関係を表す式(4)、及び変位zと変位xと傾きαと
の関係を表す式(5)から求められ、基礎直線D2を設定
することによりガイド曲線Sが前記のような変曲点s0
持つ単調増大曲線として設定される。
2 (x + L 1 −z) (1−dz / dx) + 2S · dS / dx = 2 (x + L 1 −z) (1−dz / dx) + 2Sα = 0 (5) Further, FIG. The distance L is specified by straight lines l 1 and l 2 determined by the guide curve S (x), and the distance L specified by the guide curve S, which is a function of the displacement z and the inclination α, is a function of the displacement z and the inclination α. Incidentally, the straight line l 1 is the guide groove
The direction line of the reaction force from 5a, 6a to the guide pin 9b is shown, and this reaction force is in the direction of arrow P in FIG. Therefore, the guide curve S is expressed by the equation (1) representing the control pressure P, the equation (3) representing the gradient of the control pressure P differentiated by the displacement z, the equation (4) representing the relationship between the displacement z and the displacement x, and calculated from equation expressing the relationship between the displacement z and the displacement x and inclination alpha (5) setting, as a monotonically increasing curve guide curve S has an inflection point s 0 as described above by setting a basic linear D 2 Is done.

第6図に実線で示す曲線D1,D3,D4は補正ばね30の作用
を除いた場合の各吐出圧Pd1,Pd3,Pd4に対応する制御圧
曲線を示し、各制御圧曲線D1,D3,D4は吸入圧Ps以上かつ
各吐出圧Pd1,Pd3,Pd4以下となる。直線D0は補正ばね30
のばね特性を表す。このばね特性を有する補正ばね30の
ばね作用を各曲線D1,D3,D4及び基礎直線D2に付加する
と、各曲線D1,D3,D4及び基礎直線D2が最小容量側で鎖線
で示すように補正される。
Curves D 1 , D 3 and D 4 shown by solid lines in FIG. 6 show control pressure curves corresponding to the respective discharge pressures Pd 1 , Pd 3 and Pd 4 when the action of the correction spring 30 is excluded. The curves D 1 , D 3 , D 4 are equal to or higher than the suction pressure Ps and equal to or lower than the respective discharge pressures Pd 1 , Pd 3 , Pd 4 . Straight line D 0 is the compensation spring 30
Represents the spring characteristics of The addition of the spring action of compensating spring 30 having the spring characteristic in the curves D 1, D 3, D 4 and basal rectilinear D 2, the curves D 1, D 3, D 4 and basal rectilinear D 2 are minimum capacity side Is corrected as shown by the chain line.

直線Dを基礎に設定されたガイド曲線Sは第7図に示
すように各吐出圧Pd1,Pd2,Pd3,Pd4に対して実線で示す
制御圧曲線C1,C2,C3,C4をもたらす。実線で示す制御圧
曲線C2は最小容量側でも制御可能な単調増大曲線である
が、他の制御圧曲線C1,C3,C4は最小容量側で単調減少、
最大容量側で単調増大とる曲線であり、最小容量側に制
御不能領域を持つ。しかしながら、補正ばね30のばね特
性D0により各制御圧曲線C1,C2,C3,C4が最小容量側で鎖
線で示すように補正され、補正された各制御圧曲線C1,C
2,C3,C4はいずれも単調増大曲線かつ吸入圧Ps以上とな
る。従って、吐出圧の変動、換言すれば圧縮比の変動及
び摺動制御体24の変位位置z=0から最大変位位置z ma
xにわたる全ての領域で斜板9の円滑な傾動動作を得る
ことができる。
As shown in FIG. 7, the guide curve S set based on the straight line D is a control pressure curve C 1 , C 2 , C 3 shown by a solid line for each discharge pressure Pd 1 , Pd 2 , Pd 3 , Pd 4 . , leading to C 4. Although the control pressure curve C 2 indicated by the solid line is a monotonic increasing curve can be controlled at a minimum capacity side, the other control pressure curve C 1, C 3, C 4 monotonously decreases at minimum capacity side,
The curve is monotonically increasing on the maximum capacity side, and has an uncontrollable region on the minimum capacity side. However, each control pressure curve C 1 , C 2 , C 3 , C 4 is corrected by the spring characteristic D 0 of the correction spring 30 so as to be indicated by a dashed line on the minimum displacement side, and the corrected control pressure curves C 1 , C
2 , C 3 and C 4 are all monotonically increasing curves and are higher than the suction pressure Ps. Therefore, the fluctuation of the discharge pressure, in other words, the fluctuation of the compression ratio and the maximum displacement position z ma from the displacement position z = 0 of the sliding control body 24
A smooth tilting operation of the swash plate 9 can be obtained in all the regions over x.

又、制御圧を引き下げ補正する補正ばね30が比較的余
裕のある制御圧室18a内に介在されることから機構の複
雑化及び圧縮機の大型化がもたらされることもなく、し
かもこの補正ばね30の存在により運転停止時の斜板9の
傾角が最大傾角側に保持され、運転開始後に斜板9が最
大傾角へ速やかに移行する。
Further, since the correction spring 30 for lowering and correcting the control pressure is interposed in the control pressure chamber 18a having a relatively large margin, the mechanism is not complicated and the size of the compressor is not increased. The inclination angle of the swash plate 9 at the time of operation stop is maintained at the maximum inclination side due to the presence of the swash plate 9, and the swash plate 9 quickly shifts to the maximum inclination angle after the operation is started.

本発明は勿論前記実施例にのみ限定されるものではな
く、例えば摺動制御体24の変位zの増大に対して単調増
大する制御圧曲線を得るには基礎直線Dに近い円弧曲
線、楕円弧曲線等の滑らかな曲線の採用も可能であり、
前記実施例と略同様のガイド曲線が得られる。
The present invention is, of course, not limited to the above embodiment. For example, in order to obtain a control pressure curve that increases monotonously with an increase in the displacement z of the sliding control body 24, an arc curve or an elliptic arc curve close to the base straight line D It is also possible to adopt smooth curves such as
A guide curve substantially similar to that of the above embodiment can be obtained.

[発明の効果] 以上詳述したように本発明は、回転軸の軸線方向への
ガイドピンの変位位置を変数とするガイド孔のガイド曲
線として斜板傾角増大方向へのガイドピンの変位に対し
て単調増大かつ途中で負から正へ変わる変曲点を持ち、
かつある圧縮比において吐出容量の変動に対して線型的
な制御圧変移をもたらす曲線とし、さらに最小容量側で
の制御圧を引き下げ補正するためのばねを制御圧室内に
介在したので、機構の複雑化及び制御不能領域発生をも
たらすことなく斜板の最小傾角から最大傾角にわたる全
領域での容量可変制御性を向上し得るという優れた効果
を奏する。
[Effects of the Invention] As described in detail above, the present invention provides a guide curve of a guide hole in which the displacement position of the guide pin in the axial direction of the rotating shaft is a variable, with respect to the displacement of the guide pin in the direction of increasing the swash plate inclination angle. Has an inflection point that increases monotonically and changes from negative to positive on the way,
In addition, a curve that linearly changes the control pressure with respect to the change of the discharge capacity at a certain compression ratio is provided, and a spring for lowering and correcting the control pressure on the minimum capacity side is interposed in the control pressure chamber, so the mechanism is complicated. An excellent effect is obtained that the variable capacity controllability in the entire region from the minimum inclination angle to the maximum inclination angle of the swash plate can be improved without causing the formation of the swash plate and the generation of the uncontrollable region.

【図面の簡単な説明】[Brief description of the drawings]

図面は本発明を具体化した一実施例を示し、第1図は圧
縮機の側断面図、第2図は第1図のA−A線断面図、第
3図は要部破断側面図、第4図はガイド曲線を説明する
ためのグラフ、第5図は斜板傾角最小状態を示す側断面
図、第6図は吐出容量と制御圧との関係を示すグラフ、
第7図は摺動制御体の変位と制御圧との関係を示すグラ
フである。 シリンダブロック……1、回転軸……4、ガイド孔……
5a,6a、斜板……9、ガイドピン……9b、回転子……9
c、制御圧室……18a、摺動制御体……24、補正ばね……
30、ガイド曲線……S、変曲点……s0
BRIEF DESCRIPTION OF THE DRAWINGS The drawings show an embodiment of the present invention, FIG. 1 is a side sectional view of a compressor, FIG. 2 is a sectional view taken along line AA of FIG. 1, FIG. FIG. 4 is a graph for explaining a guide curve, FIG. 5 is a side sectional view showing a state where a swash plate is at a minimum tilt angle, FIG. 6 is a graph showing a relationship between a discharge capacity and a control pressure,
FIG. 7 is a graph showing the relationship between the displacement of the sliding control body and the control pressure. Cylinder block: 1, rotating shaft: 4, guide hole:
5a, 6a, swash plate ... 9, guide pin ... 9b, rotor ... 9
c, control pressure chamber 18a, sliding control body 24, correction spring
30, the guide curve ...... S, the inflection point ...... s 0.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】両頭ピストンを往復動可能に収容するシリ
ンダブロック内に回転軸を回転可能に収容支持すると共
に、この回転軸には両頭ピストンを往復駆動する斜板を
相対回転不能かつその周縁側を中心として前後に揺動可
能に支持し、この揺動中心位置をリヤ側シリンダボア寄
りに設定すると共に、回転軸の回転に伴う揺動中心の回
転領域上に前記両頭ピストンの往復動領域を設定し、リ
ヤ側シリンダボアにおける圧縮行程上死点を定位置とし
た斜板式圧縮機において、吐出圧相当又は吸入圧相当の
圧力に切換えられる容量制御用の制御圧室の容積を変え
る摺動制御体を前記回転軸に摺動可能に支持し、冷媒ガ
ス圧縮により生じる斜板揺動力と制御圧室内の圧力とを
斜板及び摺動制御体を介して対抗させ、この対抗により
揺動される斜板側にはガイドピンを取り付けると共に、
回転軸側には前記ガイドピンとガイド関係を持つガイド
孔を設け、回転軸の軸線方向への前記ガイドピンの変位
位置を変数とするガイド孔のガイド曲線として斜板傾角
増大方向へのガイドピンの変位に対して単調増大かつ途
中で負から正へ変わる変曲点を持ち、かつある圧縮比に
おいて吐出容量の変動に対して線型的な制御圧変移をも
たらす曲線とし、さらに制御圧室内には斜板傾角増大方
向へ摺動制御体を付勢するための補正ばねを介在すると
共に、この補正ばねには斜板の最小傾角付近でのみ作用
するばね特性を設定した可変容量型斜板式圧縮機。
A rotary shaft is rotatably accommodated and supported in a cylinder block which accommodates a double-headed piston in a reciprocally movable manner, and a swash plate for reciprocatingly driving the double-headed piston is relatively non-rotatable on a peripheral side of the rotary shaft. The center of oscillation is set near the rear cylinder bore, and the reciprocating area of the double-headed piston is set on the rotation area of the center of oscillation associated with the rotation of the rotating shaft. In a swash plate compressor in which the top dead center of the compression stroke in the rear cylinder bore is a fixed position, a sliding control body that changes the volume of a control pressure chamber for capacity control that is switched to a pressure equivalent to a discharge pressure or a suction pressure is provided. The swash plate, which is slidably supported on the rotating shaft, opposes a swash plate oscillating power generated by refrigerant gas compression and a pressure in the control pressure chamber via a swash plate and a sliding control body, and the swash plate is swung by the opposition. ~ side With the attachment of the guide pins,
A guide hole having a guide relationship with the guide pin is provided on the rotating shaft side, and a guide curve of the guide hole in a direction in which the inclination angle of the swash plate increases as a guide curve of the guide hole with the displacement position of the guide pin in the axial direction of the rotating shaft as a variable. A curve that has an inflection point that increases monotonically with the displacement and changes from negative to positive in the middle, and that causes a linear control pressure change with respect to a change in the discharge capacity at a certain compression ratio. A variable displacement type swash plate compressor in which a correction spring for urging the sliding control body in the direction of increasing the plate tilt angle is interposed, and the correction spring has a spring characteristic that operates only near the minimum tilt angle of the swash plate.
JP63167419A 1988-07-05 1988-07-05 Variable displacement swash plate compressor Expired - Lifetime JP2600305B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63167419A JP2600305B2 (en) 1988-07-05 1988-07-05 Variable displacement swash plate compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63167419A JP2600305B2 (en) 1988-07-05 1988-07-05 Variable displacement swash plate compressor

Publications (2)

Publication Number Publication Date
JPH0219665A JPH0219665A (en) 1990-01-23
JP2600305B2 true JP2600305B2 (en) 1997-04-16

Family

ID=15849349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63167419A Expired - Lifetime JP2600305B2 (en) 1988-07-05 1988-07-05 Variable displacement swash plate compressor

Country Status (1)

Country Link
JP (1) JP2600305B2 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6028525B2 (en) 2012-11-05 2016-11-16 株式会社豊田自動織機 Variable capacity swash plate compressor
US9903352B2 (en) 2012-11-05 2018-02-27 Kabushiki Kaisha Toyota Jidoshokki Swash plate type variable displacement compressor
JP6028524B2 (en) 2012-11-05 2016-11-16 株式会社豊田自動織機 Variable capacity swash plate compressor
JP5870902B2 (en) 2012-11-05 2016-03-01 株式会社豊田自動織機 Variable capacity swash plate compressor
JP6003547B2 (en) 2012-11-05 2016-10-05 株式会社豊田自動織機 Variable capacity swash plate compressor
JP6003546B2 (en) 2012-11-05 2016-10-05 株式会社豊田自動織機 Variable capacity swash plate compressor
JP6083291B2 (en) 2013-03-27 2017-02-22 株式会社豊田自動織機 Variable capacity swash plate compressor
JP5949626B2 (en) 2013-03-27 2016-07-13 株式会社豊田自動織機 Variable capacity swash plate compressor
JP6115258B2 (en) * 2013-03-29 2017-04-19 株式会社豊田自動織機 Double-head piston type swash plate compressor
DE112014001751T5 (en) 2013-03-29 2015-12-17 Kabushiki Kaisha Toyota Jidoshokki Variable displacement swash plate type compressor
JP6079379B2 (en) 2013-03-29 2017-02-15 株式会社豊田自動織機 Variable capacity swash plate compressor
KR101777183B1 (en) 2013-03-29 2017-09-11 가부시키가이샤 도요다 지도숏키 Variable-capacity swash plate-type compressor
JP6094456B2 (en) 2013-10-31 2017-03-15 株式会社豊田自動織機 Variable capacity swash plate compressor
JP6146263B2 (en) 2013-11-06 2017-06-14 株式会社豊田自動織機 Variable capacity swash plate compressor
JP6194836B2 (en) 2014-03-28 2017-09-13 株式会社豊田自動織機 Variable capacity swash plate compressor
JP6179438B2 (en) 2014-03-28 2017-08-16 株式会社豊田自動織機 Variable capacity swash plate compressor
JP6191527B2 (en) 2014-03-28 2017-09-06 株式会社豊田自動織機 Variable capacity swash plate compressor
JP6194837B2 (en) 2014-03-28 2017-09-13 株式会社豊田自動織機 Variable capacity swash plate compressor
JP6179439B2 (en) 2014-03-28 2017-08-16 株式会社豊田自動織機 Variable capacity swash plate compressor
JP6287483B2 (en) 2014-03-28 2018-03-07 株式会社豊田自動織機 Variable capacity swash plate compressor

Also Published As

Publication number Publication date
JPH0219665A (en) 1990-01-23

Similar Documents

Publication Publication Date Title
JP2600305B2 (en) Variable displacement swash plate compressor
EP1918583B1 (en) Suction throttle valve of a compressor
US6164925A (en) Control valve for variable displacement compressors
JPH0676793B2 (en) Variable capacity swash plate compressor
US20050244278A1 (en) Piston-type variable displacement compressor
JP4412186B2 (en) Variable capacity compressor
JPH1162824A (en) Variable capacity compressor
JPH01147171A (en) Variable displacement swash plate type compressor
KR100201934B1 (en) Variable capacity compressor
KR950011369B1 (en) Wobble plate compressor
JP5983863B2 (en) Variable capacity swash plate compressor
JP2600310B2 (en) Variable displacement swash plate compressor
JP2600308B2 (en) Variable displacement swash plate compressor
JP2707896B2 (en) Refrigerant gas suction guide mechanism in piston type compressor
JP2001012345A (en) Variable displacement compressor
JPH1061549A (en) Variable displacement compressor
KR20000031814A (en) Single-headed piston and variable capacity swash plate type compressor using the same
JP2503566B2 (en) Variable displacement swash plate compressor
JPH0233477A (en) Variable-displacement swash plate type compressor
JPH0656148B2 (en) Variable capacity swash plate compressor
JP2001193647A (en) Reciprocating compressor
KR20210118664A (en) Swash plate type compressor
JPH076504B2 (en) Variable capacity swash plate compressor
US20080107543A1 (en) Compressor having a suction throttle valve
JPH01253574A (en) Variable-volume swash plate type compressor