JPH0236841B2 - - Google Patents

Info

Publication number
JPH0236841B2
JPH0236841B2 JP57032600A JP3260082A JPH0236841B2 JP H0236841 B2 JPH0236841 B2 JP H0236841B2 JP 57032600 A JP57032600 A JP 57032600A JP 3260082 A JP3260082 A JP 3260082A JP H0236841 B2 JPH0236841 B2 JP H0236841B2
Authority
JP
Japan
Prior art keywords
supply amount
value
water
steam
deviation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57032600A
Other languages
Japanese (ja)
Other versions
JPS58150702A (en
Inventor
Yukio Myama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP3260082A priority Critical patent/JPS58150702A/en
Publication of JPS58150702A publication Critical patent/JPS58150702A/en
Publication of JPH0236841B2 publication Critical patent/JPH0236841B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Description

【発明の詳細な説明】 本発明は、変圧貫流ボイラの制御装置に係り、
特に気水分離器に流入される流体の態様が湿り・
乾きの切替わる運転領域におけるボイラの制御特
性を改善させるものに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a control device for a variable pressure once-through boiler,
In particular, the condition of the fluid flowing into the steam/water separator may be wet or
This invention relates to improving the control characteristics of a boiler in an operating region where dryness changes.

変圧貫流ボイラの一例の水蒸気系統図が第1図
に示されている。
A steam system diagram of an example of a variable pressure once-through boiler is shown in FIG.

第1図において、給水ポンプ1から送出される
水は給水加熱器2によつて加熱され、再循環水合
流部3を経て節炭器4に供給されている。節炭器
4によつてさらに加熱された水は火炉水壁5に流
入され、火炉水壁5により加熱され、蒸気となつ
て気水分離器6に送出される。気水分離器6は蒸
気に含まれている水を分離させるものであり、分
離された水(ドレン)は再循環ポンプ11により
抜出され、前記再循環水合流部3において給水ポ
ンプ1から流入された水と合流されて節炭器4に
供給されている。一方、気水分離器6から送出さ
れる蒸気は一次過熱器7によつて過熱され、過熱
器減温器8及び二次過熱器9を経て蒸気タービン
10に供給されている。また、過熱器減温器8に
は前記給水加熱器2から過熱器注水ライン12を
通して注水されるようになつている。
In FIG. 1, water sent out from a feed water pump 1 is heated by a feed water heater 2, and is supplied to an energy saver 4 via a recirculation water confluence section 3. The water further heated by the economizer 4 flows into the furnace water wall 5, is heated by the furnace water wall 5, becomes steam, and is sent to the steam-water separator 6. The steam-water separator 6 separates water contained in steam, and the separated water (drain) is extracted by the recirculation pump 11 and flows into the recirculation water confluence section 3 from the water supply pump 1. It is combined with the collected water and supplied to the economizer 4. On the other hand, steam sent out from the steam separator 6 is superheated by a primary superheater 7, and is supplied to a steam turbine 10 via a superheater attemperator 8 and a secondary superheater 9. Further, water is injected into the superheater desuperheater 8 from the feed water heater 2 through the superheater water injection line 12.

このように構成される変圧貫流ボイラの制御装
置の一例として、第2図に示される系統図の制御
装置が知られている。
As an example of a control device for a variable pressure once-through boiler configured in this manner, a control device shown in a system diagram shown in FIG. 2 is known.

第2図において、ボイラの負荷量に応じた負荷
要求信号Dが関数発生要素13A,13B,13
Cに夫々入力されている。関数発生要素13A〜
13Cは夫々負荷要求信号Dに相関させた蒸気圧
力設定信号PS、蒸気温度設定信号TS、給水量先
行値信号WFを出力するものである。関数発生要
素13Aの出力は減算要素14Aに入力されてお
り、この減算要素14Aは蒸気圧力検出端15か
ら入力される蒸気圧力検出信号PAと前記設定信
号PSとの偏差信号を出力するもので、この偏差信
号は比例積分要素16A,16Bを介して、夫々
蒸気圧力に応じた給水量蒸気圧補正信号Wcpと
燃料蒸気圧補正信号Fcpとして信号切換要素17
A,17Bとに入力されている。この信号切換要
素17Aには零信号要素18から零信号が入力さ
れており、指令により入力された信号のいずれか
が加算要素19Aに出力される。この加算要素1
9Aは前記給水量先行値信号WFと信号切換要素
17Aから出力される信号とを加算し、給水量目
標値信号WTとして関数発生要素13Dと信号選
択要素20とに出力するものである。この信号選
択要素20は最低給水量設定要素21から入力さ
れる最低給水量設定信号WTnioと、前記信号WT
のいずれか高い値の給水量目標値信号を出力する
ものである。
In FIG. 2, the load request signal D corresponding to the load amount of the boiler is transmitted to the function generating elements 13A, 13B, 13.
These are respectively input to C. Function generation element 13A~
Reference numeral 13C outputs a steam pressure setting signal P S , a steam temperature setting signal T S , and a water supply amount advance value signal WF correlated with the load request signal D, respectively. The output of the function generation element 13A is input to a subtraction element 14A, and this subtraction element 14A outputs a deviation signal between the steam pressure detection signal P A input from the steam pressure detection terminal 15 and the setting signal P S. This deviation signal is sent to the signal switching element 17 as a water supply vapor pressure correction signal Wcp and a fuel vapor pressure correction signal Fcp corresponding to the steam pressure, respectively, via the proportional-integral elements 16A and 16B.
A and 17B are input. A zero signal is input from the zero signal element 18 to this signal switching element 17A, and one of the input signals is outputted to the addition element 19A according to a command. This addition element 1
9A adds the water supply amount advance value signal W F and the signal output from the signal switching element 17A, and outputs the result to the function generation element 13D and the signal selection element 20 as the water supply amount target value signal W T. This signal selection element 20 outputs a water supply amount target value signal having a higher value of either the minimum water supply amount setting signal W Tnio inputted from the minimum water supply amount setting element 21 or the signal W T.

一方、減算要素14Bは蒸気温度検出端22か
ら入力される蒸気温度検出信号TAと前記設定信
号TSとの偏差信号を出力するものであり、この
偏差信号は比例積分要素16Cを介して、蒸気温
度に応じて熱量供給量を補正する燃料蒸気温補正
信号FcTとして信号切換要素17Bに入力されて
いる。この信号切換要素17Bは指令により、前
記補正信号FcpとFcTのいずれかを加算要素19
Bに出力するものである。この加算要素19B
は、関数発生要素13Dから出力される前記給水
量目標値信号WTに応じた燃料供給量先行値信号
FFと、信号切換要素17Bから出力される補正
信号と、を加算して燃料供給量目標値信号FT
出力するものである。
On the other hand, the subtraction element 14B outputs a deviation signal between the steam temperature detection signal TA inputted from the steam temperature detection end 22 and the setting signal TS , and this deviation signal is passed through the proportional-integral element 16C. It is input to the signal switching element 17B as a fuel steam temperature correction signal FcT that corrects the amount of heat supply according to the steam temperature. This signal switching element 17B inputs either of the correction signals Fcp and FcT to the addition element 19 according to a command.
This is what is output to B. This addition element 19B
is a fuel supply amount advance value signal corresponding to the water supply amount target value signal W T outputted from the function generating element 13D.
The fuel supply amount target value signal F T is output by adding F F and the correction signal output from the signal switching element 17B.

このように構成される従来例の制御動作につい
て次に説明する。
The control operation of the conventional example configured in this way will be described next.

まず、ボイラが貫流運転時即ち火炉水壁5の送
出蒸気が乾き領域の運転態様にあるときの蒸気圧
力及び温度の制御動作について説明する。貫流運
転時の蒸気圧力は節炭器4に供給される給水量に
依存して定まるものであることから、負荷要求信
号Dに応じた給水量先行値信号WFを、蒸気圧力
に応じた給水量蒸気圧補正信号Wcpにより補正
した給水量目標値信号WTによつて、給水量を制
御することにより蒸気圧力を所定値に保持させて
いる。なお、この給水量の最低量は火炉などを保
護するため、最低給水量設定信号WTnio以上とな
るように信号選択要素20によつて選択出力させ
ている。また、貫流運転時の蒸気温度制御は、水
燃比によつて定められる燃料供給量先行値信号
FFを、蒸気温度に応じた燃料蒸気温補正信号FcT
により補正した燃料供給量目標値信号FTによつ
て、燃料供給量を制御することにより蒸気温度を
所定値に保持させている。
First, a description will be given of the steam pressure and temperature control operations when the boiler is in a once-through operation, that is, when the steam sent from the furnace water wall 5 is in a dry region. Since the steam pressure during once-through operation is determined depending on the water supply amount supplied to the energy saver 4, the water supply amount advance value signal W F corresponding to the load request signal D is used as the water supply amount corresponding to the steam pressure. The steam pressure is maintained at a predetermined value by controlling the water supply amount using the water supply amount target value signal W T corrected by the water vapor pressure correction signal Wcp. Note that, in order to protect the furnace and the like, the minimum amount of water supply is selected and outputted by the signal selection element 20 so as to be equal to or higher than the minimum water supply amount setting signal W Tnio . In addition, steam temperature control during once-through operation is performed using a fuel supply amount advance value signal determined by the water-fuel ratio.
F F is the fuel steam temperature correction signal Fc T according to the steam temperature.
The steam temperature is maintained at a predetermined value by controlling the fuel supply amount using the fuel supply amount target value signal F T corrected by .

次に、ボイラが再循環運転時即ち火炉水壁5の
送出蒸気が湿り領域の運転態様にあるときの蒸気
圧力及び温度の制御動作について説明する。再循
環運転時の蒸気圧力は給水量だけではなく、給水
量と火炉水壁5の送出蒸気の乾き度との積である
蒸気量に依存して定まるものであることから、貫
流運転時のように蒸気圧力低下に対応させて給水
量を増加すると、火炉水壁5の熱吸収量が同一で
あればかえつて乾き度が給水量の増加割合以上に
低下されてしまう。そこで、再循環運転時には信
号切換要素17Aを作動させて前記給水量蒸気圧
補正信号Wcpを零信号に切換え、給水量を蒸気
圧力に応じた補正をせずに、給水量先行値信号
WF又は最低給水量設定信号WTnioによつて制御
し、蒸気圧力は燃料供給量を補正制御させること
によつて所定値に保持させている。即ち、再循環
運転時には信号切換要素17Bを作動させて燃料
蒸気温補正信号FcTを燃料蒸気圧補正信号Fcpに
切換えて、給水量に応じた燃料供給量先行値信号
FFを補正した燃料供給量目標値信号FTにより燃
料供給量を制御して、蒸気圧力を所定値に保持さ
せている。
Next, a description will be given of the steam pressure and temperature control operations when the boiler is in recirculation operation, that is, when the steam sent from the furnace water wall 5 is in a wet region operation mode. The steam pressure during recirculation operation is determined not only by the amount of water supplied, but also by the amount of steam, which is the product of the amount of water supplied and the dryness of the steam sent from the furnace water wall 5. If the amount of water supplied is increased in response to a decrease in steam pressure, the dryness will be reduced by more than the rate of increase in the amount of water supplied if the amount of heat absorbed by the furnace water wall 5 is the same. Therefore, during recirculation operation, the signal switching element 17A is activated to switch the feed water amount vapor pressure correction signal Wcp to a zero signal, and the water feed amount advance value signal is changed without correcting the feed water amount according to the steam pressure.
It is controlled by W F or the minimum water supply amount setting signal W Tnio , and the steam pressure is maintained at a predetermined value by correcting and controlling the fuel supply amount. That is, during recirculation operation, the signal switching element 17B is operated to switch the fuel vapor temperature correction signal FcT to the fuel vapor pressure correction signal Fcp, and the fuel supply amount advance value signal is changed according to the water supply amount.
The fuel supply amount is controlled by the fuel supply amount target value signal F T obtained by correcting F F to maintain the steam pressure at a predetermined value.

ところが、上記の制御方式によると、再循環運
転から貫流運転に切替わつた直後又は貫流運転か
ら再循環運転に切替わる直前の貫流運転時に蒸気
圧力の逆応答現象が起ることがある。つまり、制
御が整定状態になれば、給水量に相関させて定め
られた燃料供給量に応じて加熱される火炉では、
その給水量と火炉熱吸収量がバランスするので所
定の蒸気圧力と温度に制御されるが、制御が過渡
状態のとき、例えば、蒸気圧力が低下したとき給
水量を増加して蒸気圧力を増加させるような動作
が行われると、火炉熱吸収量が給水量増加分に速
応して追従できず、火炉水壁5の送出蒸気はエン
タルピが低下して湿り領域に入つてしまうという
蒸気圧力の逆応答現象が生ずることがあり、これ
によつて蒸気圧力が不安定になるという欠点を有
していた。
However, according to the above control method, a reverse response phenomenon of steam pressure may occur during once-through operation immediately after switching from recirculation operation to once-through operation or immediately before switching from once-through operation to recirculation operation. In other words, once the control reaches a stable state, the furnace heats according to the amount of fuel supplied in correlation with the amount of water supplied.
Since the amount of water supplied and the amount of heat absorbed by the furnace are balanced, the steam pressure and temperature are controlled to a predetermined level, but when the control is in a transient state, for example, when the steam pressure decreases, the amount of water supplied is increased to increase the steam pressure. If such an operation is performed, the amount of heat absorbed by the furnace cannot quickly follow the increase in the amount of water supplied, and the enthalpy of the steam sent out from the furnace water wall 5 decreases and the steam enters the wet region, which is the opposite of steam pressure. This method has the disadvantage that a response phenomenon may occur, which makes the steam pressure unstable.

本発明の目的は、変圧貫流ボイラにおける貫流
運転と再循環運転との切換時に起る蒸気圧力制御
の逆応答現象の発生を防止し、安定な蒸気圧力制
御を可能とさせる変圧貫流ボイラの制御装置を提
供することにある。
An object of the present invention is to provide a control device for a variable pressure once-through boiler that prevents the occurrence of a reverse response phenomenon in steam pressure control that occurs when switching between once-through operation and recirculation operation in a variable-pressure once-through boiler, and enables stable steam pressure control. Our goal is to provide the following.

本発明は、ボイラ給水量と火炉熱吸収量との過
渡的なアンバランスに応じて気水分離器内流体温
度(以下、気水分離器温度と略称する)が変動さ
れるという現象に着目してなされたものであり、
気水分離器の温度を検出してこの温度と所定の温
度設定値との偏差に応じて給水量及び燃料供給量
を補正制御することによつて蒸気圧力制御の逆応
答現象の発生を防止して安定な蒸気圧力制御を行
わせようとするものである。
The present invention focuses on the phenomenon that the fluid temperature in the steam-water separator (hereinafter abbreviated as "steam-water separator temperature") changes depending on the transient imbalance between the boiler water supply amount and the furnace heat absorption amount. It was created by
By detecting the temperature of the steam water separator and correcting and controlling the water supply amount and fuel supply amount according to the deviation between this temperature and a predetermined temperature setting value, the occurrence of a reverse response phenomenon in steam pressure control is prevented. The aim is to achieve stable steam pressure control.

以下、本発明の図示実施例に基いて説明する。 DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be explained below based on illustrated embodiments.

第3図に本発明の適用された一実施例の制御ブ
ロツク系統図が示されている。なお、第3図中第
2図図示従来例と同一符号の付されたものは同一
構成、同一機能を具えたものであり、説明は省略
する。
FIG. 3 shows a control block system diagram of an embodiment to which the present invention is applied. It should be noted that components in FIG. 3 with the same reference numerals as those in the conventional example shown in FIG.

第3図において、気水分離器温度検出端23か
ら出力される気水分離器温度HAが減算要素14
Cに入力されており、この減算要素14Cには関
数発生要素13Eから負荷要求量Dに応じて出力
される気水分離器温度設定信号HSが入力されて
いる。この減算要素14Cの出力は比例積分要素
16Dを介して比例要素24A,24Bに入力さ
れている。この比例要素24Aの出力は給水量逆
応答補正信号WcHとして、比例積分要素16Aと
信号切換要素17Aとの間に接続して設けられた
減算要素14Dに入力されている。また、比例要
素24Bの出力は燃料逆応答補正信号FcHとして、
比例積分要素16Cと信号切換要素17Bとの間
に接続して設けられた加算要素19Cに入力され
ている。
In FIG. 3, the steam-water separator temperature H A output from the steam-water separator temperature detection end 23 is the subtraction element 14.
A steam/water separator temperature setting signal H S outputted from the function generation element 13E in accordance with the required load amount D is input to the subtraction element 14C. The output of this subtraction element 14C is input to proportional elements 24A and 24B via a proportional-integral element 16D. The output of this proportional element 24A is input as a water supply amount reverse response correction signal W cH to a subtraction element 14D connected between the proportional integral element 16A and the signal switching element 17A. In addition, the output of the proportional element 24B is the fuel reverse response correction signal F cH ,
It is input to an addition element 19C connected between the proportional-integral element 16C and the signal switching element 17B.

このように構成されるものであるから、気水分
離温度HAが設定信号HSよりも高い場合には、そ
の偏差に応じて比例・積分処理された給水量逆応
答補正信号WcHと燃料逆応答補正信号FcHとによ
り、夫々給水量を増加、燃料供給量を低減させ、
また、気水分離器温度HAが設定信号HSより低い
場合には、その偏差に応じて比例・積分処理され
た前記の補正信号WcH,FcHにより、夫々給水量
を低減、燃料供給量を増加させて、蒸気圧力変動
に対して逆応答現象を発生させることなく蒸気圧
力を所定の値に保持させている。
Since it is configured in this way, when the steam/water separation temperature H A is higher than the set signal H S , the water supply amount inverse response correction signal W cH and the fuel are proportionally and integrally processed according to the deviation. The reverse response correction signal F cH increases the water supply amount and reduces the fuel supply amount, respectively.
In addition, when the steam-water separator temperature H A is lower than the set signal H S , the above-mentioned correction signals W cH and F cH are processed proportionally and integrally according to the deviation to reduce the water supply amount and fuel supply, respectively. By increasing the amount, the steam pressure is maintained at a predetermined value without causing an adverse response phenomenon to steam pressure fluctuations.

従つて、本実施例によれば、再循環運転態様に
近い貫流運転態様のときに発生する逆応答現象を
防止させることができ、安定した蒸気圧力の制御
を行わせることができるという効果がある。
Therefore, according to this embodiment, it is possible to prevent the reverse response phenomenon that occurs in the once-through operation mode close to the recirculation operation mode, and it is possible to perform stable steam pressure control. .

第4図に本発明の他の実施例の制御ブロツク系
統図が示されている。第4図中第1図図示従来例
又は第3図図示実施例と同一符号の付されたもの
は、同一構成、同一機能を具えたものであり説明
は省略する。
FIG. 4 shows a control block system diagram of another embodiment of the present invention. Components in FIG. 4 denoted by the same reference numerals as those in the conventional example shown in FIG. 1 or the embodiment shown in FIG.

第4図に示された実施例が第3図図示実施例と
異なる点は、ボイラの運転態様に応じて補正信号
を切換えることなく、共通の制御方式によつて蒸
気圧力及び温度の制御を行うことにある。
The difference between the embodiment shown in FIG. 4 and the embodiment shown in FIG. 3 is that the steam pressure and temperature are controlled by a common control method without changing the correction signal depending on the operating mode of the boiler. There is a particular thing.

即ち、第4図に示されたように、蒸気温度によ
り燃料供給量の補正を行わせる制御回路は具えら
れていない。比例積分要素16Dから出力される
気水分離器温度偏差信号Pc1と、比例積分要素1
6Aから出力される蒸気圧力偏差信号PC1を比例
要素24Dにより比例処理された蒸気圧力偏差信
号PC2とを、加算要素19Dによつて加算してお
り、この加算要素19Dからは燃料補正信号Fc
が出力されている。関数発生要素13Fには負荷
要求信号Dが入力されており、この関数発生要素
13Fからは負荷要求量に応じた燃料供給量先行
値信号FDが出力されている。加算要素19Bは
入力される燃料供給量先行値信号FDと燃料補正
信号Fcとを加算して燃料供給量目標値信号FT
出力している。また、前記比例積分要素16Dか
ら出力された気水分離器温度偏差信号Hc1を比例
要素24Cにより比例処理された気水分離器温度
偏差信号Hc2が減算要素14Dに入力されてい
る。
That is, as shown in FIG. 4, a control circuit for correcting the fuel supply amount based on the steam temperature is not provided. The steam/water separator temperature deviation signal Pc 1 output from the proportional integral element 16D and the proportional integral element 1
An addition element 19D adds the steam pressure deviation signal PC 1 output from 6A to the steam pressure deviation signal PC 2 proportionally processed by a proportional element 24D, and from this addition element 19D, a fuel correction signal Fc is added.
is being output. A load request signal D is inputted to the function generating element 13F, and a fuel supply amount advance value signal F D corresponding to the load request amount is outputted from the function generating element 13F. The addition element 19B adds the input fuel supply amount advance value signal F D and the fuel correction signal Fc and outputs the fuel supply amount target value signal F T. Further, a steam/water separator temperature deviation signal Hc 2 obtained by proportionally processing the steam/water separator temperature deviation signal Hc 1 outputted from the proportional integral element 16D by the proportional element 24C is input to the subtraction element 14D.

このように構成されるものであるから、蒸気圧
力低下又は気水分離器温度低下がともに燃料供給
量を増加させるように、燃料供給量先行値信号
FDに蒸気圧力偏差信号Pc2と、気水分離器温度偏
差信号HC1と、を加算して燃料供給量目標値信号
FTを出力している。また、蒸気圧力低下又は気
水分離器温度上昇がともに給水量を増加させるよ
うに、給水量先行値信号WFに蒸気圧力偏差信号
Pc1と、気水分離器温度偏差信号Hc2と、を加算
して給水量目標値信号WTを出力している。
Since it is configured in this way, the fuel supply amount advance value signal is set so that the fuel supply amount increases as the steam pressure decreases or the steam water separator temperature decreases.
A fuel supply amount target value signal is obtained by adding the steam pressure deviation signal Pc 2 and the steam water separator temperature deviation signal HC 1 to F D.
Outputting F T. In addition, the steam pressure deviation signal is added to the water supply amount advance value signal W F so that the water supply amount increases when the steam pressure decreases or the steam water separator temperature increases.
Pc 1 and the steam/water separator temperature deviation signal Hc 2 are added to output the water supply amount target value signal W T.

なお、本実施例における蒸気温度制御は、主と
して気水分離器温度を制御することによつてなさ
れており、必要に応じて過熱器注水ライン12に
より注水量を制御することによつて蒸気温度を制
御することができることから、特に蒸気温度によ
り燃料供給量の補正を行わせていないが、仮にこ
れに必要な回路を追加しても前記実施例に比べて
全体としてシンプルな構成とすることができる。
The steam temperature control in this embodiment is mainly performed by controlling the temperature of the steam-water separator, and the steam temperature can be controlled by controlling the amount of water injected through the superheater water injection line 12 as necessary. Since the fuel supply amount can be controlled, the fuel supply amount is not particularly corrected based on the steam temperature, but even if the necessary circuit is added, the overall configuration can be made simpler than the previous embodiment. .

従つて、本実施例によれば、前記実施例の効果
に加えて簡単な構成とすることができるという効
果がある。
Therefore, according to this embodiment, in addition to the effects of the previous embodiments, there is an effect that the structure can be simplified.

以上説明したように、本発明によれば、火炉水
壁出口の内部流体(蒸気)温度が設定温度よりも
高い場合には、その偏差に応じて夫々給水量を増
加させる一方燃料供給量を低減させ、また、設定
値より低い場合には、その偏差に応じて夫々給水
量を低減させる一方燃料供給量を増加させている
ことから、切換前後の貫流運転時に蒸気圧力が低
下して給水量が増加されたときに、例えば内部流
体温度が低いときには、火炉熱吸収量に余裕がな
いので蒸気圧力が低下される方向になるが、その
増加された給水量が逆に低減補正されるとともに
燃料が増加されるので、蒸気圧力の低下を防止で
きる。また、内部流体温度が高いときには火炉熱
吸収量に余裕があるので、その余裕の範囲内で上
記作用とは逆の補正がなされる。この結果、貫流
運転と再循環運転との切換え時に起る蒸気圧力制
御の逆応答現象の発生を防止し、安定した蒸気圧
力の制御を行わせることができるという効果があ
る。
As explained above, according to the present invention, when the internal fluid (steam) temperature at the outlet of the furnace water wall is higher than the set temperature, the water supply amount is increased and the fuel supply amount is reduced depending on the deviation. In addition, if it is lower than the set value, the water supply amount is reduced depending on the deviation, while the fuel supply amount is increased, so the steam pressure decreases and the water supply amount decreases during once-through operation before and after switching. For example, when the internal fluid temperature is low, the steam pressure tends to decrease because there is no margin in the furnace heat absorption amount, but the increased water supply amount is corrected and the fuel Since the steam pressure is increased, a drop in steam pressure can be prevented. Further, when the internal fluid temperature is high, there is a margin in the amount of heat absorbed by the furnace, so a correction opposite to the above effect is performed within the margin. As a result, it is possible to prevent the occurrence of a reverse response phenomenon in steam pressure control that occurs when switching between once-through operation and recirculation operation, and to achieve stable steam pressure control.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は変圧貫流ボイラの一例を示す水蒸気系
統図、第2図は従来例の制御ブロツク系統図、第
3図は本発明の一実施例の制御ブロツク系統図、
第4図は本発明の他の実施例の制御ブロツク系統
図である。 6……気水分離器、13A〜F……関数発生要
素、14A〜D……減算要素、15……蒸気圧力
検出端、16A〜D……比例積分要素、17A〜
B……信号切換要素、19A〜D……加算要素、
22……蒸気温度検出端、23……気水分離器温
度検出端。
Fig. 1 is a steam system diagram showing an example of a variable pressure once-through boiler, Fig. 2 is a control block system diagram of a conventional example, and Fig. 3 is a control block system diagram of an embodiment of the present invention.
FIG. 4 is a control block system diagram of another embodiment of the present invention. 6... Steam water separator, 13A-F... Function generation element, 14A-D... Subtraction element, 15... Steam pressure detection end, 16A-D... Proportional integral element, 17A-
B... Signal switching element, 19A-D... Addition element,
22...Steam temperature detection end, 23...Steam water separator temperature detection end.

Claims (1)

【特許請求の範囲】 1 貫流運転と再循環運転との切換え運転がなさ
れるボイラの負荷要求量に応じてそれぞれ定めら
れる給水量先行値と燃料供給量先行値とに基づい
てそれぞれ前記ボイラの給水量と燃料供給量との
制御を行ない、貫流運転時には前記負荷要求量に
応じて定められる蒸気圧力設定値と蒸気圧力検出
値を比較して、該蒸気圧力検出値が高いときはそ
の偏差に応じて前記給水量先行値を低減する補正
をする一方、低いときはその偏差に応じて前記給
水量先行値を増加する補正を行ない、再循環運転
時には前記蒸気圧力の偏差に応じて行なう前記給
水量先行値の補正を停止して、前記蒸気圧力検出
値が高いときはその偏差に応じて前記燃料供給量
先行値を低減する補正をする一方、低いときはそ
の偏差に応じて前記燃料供給量先行値を増大する
補正を行なう手段を含んでなる変圧貫流ボイラの
制御装置において、 前記ボイラの火炉水壁出口から一次過熱器に至
る間の内部流体温度を検出し、該内部流体検出温
度と前記負荷要求量に応じて予め定められる内部
流体温度設定値とを比較し、前記内部流体検出温
度が高いときにはその偏差に応じて前記給水量先
行値を増加させるとともに前記燃料供給量先行値
を低減する補正を行ない、前記内部流体温度が低
いときにはその偏差に応じて前記給水量先行値を
低減させるとともに前記燃料供給量先行値を増加
する補正を行う手段を設けたことを特徴とする変
圧貫流ボイラの制御装置。
[Scope of Claims] 1. The water supply to the boiler is determined based on the water supply amount advance value and the fuel supply amount advance value, which are respectively determined according to the load requirement of the boiler in which the switching operation between the once-through operation and the recirculation operation is performed. During once-through operation, the steam pressure set value determined according to the load requirement and the detected steam pressure value are compared, and if the detected steam pressure value is high, the control is performed according to the deviation. When the amount of water supplied is low, the preceding value of the amount of water supplied is corrected to be reduced, and when it is low, the preceding value of the amount of water supplied is corrected to be increased according to the deviation.During recirculation operation, the amount of water supplied is made according to the deviation of the steam pressure. Correction of the preceding value is stopped, and when the steam pressure detected value is high, the fuel supply amount preceding value is corrected to be reduced according to the deviation, while when it is low, the fuel supply amount preceding value is reduced according to the deviation. A control device for a variable pressure once-through boiler comprising means for making a correction to increase a value, which detects an internal fluid temperature between the furnace water wall outlet and a primary superheater of the boiler, and compares the internal fluid detected temperature and the load. Comparison with an internal fluid temperature set value predetermined according to the requested amount, and when the detected internal fluid temperature is high, the correction increases the water supply amount advance value and reduces the fuel supply amount advance value according to the deviation. Control of a variable pressure once-through boiler, characterized in that, when the internal fluid temperature is low, correction means is provided for reducing the water supply amount advance value and increasing the fuel supply amount advance value according to the deviation. Device.
JP3260082A 1982-03-02 1982-03-02 Controller for pressure-changing once-through boiler Granted JPS58150702A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3260082A JPS58150702A (en) 1982-03-02 1982-03-02 Controller for pressure-changing once-through boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3260082A JPS58150702A (en) 1982-03-02 1982-03-02 Controller for pressure-changing once-through boiler

Publications (2)

Publication Number Publication Date
JPS58150702A JPS58150702A (en) 1983-09-07
JPH0236841B2 true JPH0236841B2 (en) 1990-08-21

Family

ID=12363351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3260082A Granted JPS58150702A (en) 1982-03-02 1982-03-02 Controller for pressure-changing once-through boiler

Country Status (1)

Country Link
JP (1) JPS58150702A (en)

Also Published As

Publication number Publication date
JPS58150702A (en) 1983-09-07

Similar Documents

Publication Publication Date Title
US4555906A (en) Deaerator pressure control system for a combined cycle steam generator power plant
JPH0236841B2 (en)
JP2955728B2 (en) Boiler main steam temperature control method and apparatus
FI90377B (en) Method for adjusting the feed water volume of a steam boiler plant
JPS6391402A (en) Boiler controller
JPH0223921Y2 (en)
JP2686259B2 (en) Operating method of once-through boiler
EP0065408B1 (en) Control systems for boilers
JPH03282102A (en) Exhaust heat recovery boiler and controller of temperature reducing device used for it
JP2511400B2 (en) Steam temperature control method for once-through boiler
JPH109502A (en) Water tube boiler
JPH11325408A (en) Operation control method of boiler
JPH0722563Y2 (en) Boiler equipment
JPS5840082B2 (en) Automatic control method for stable steam generation in waste heat steam generator
JPH0465282B2 (en)
JPH07122485B2 (en) Steamer steam prevention device for once-through thermal power generation boiler system
JPH06300209A (en) Method of switching an operating condition of a variable pressure once-through boiler
JP2708592B2 (en) Boiler startup temperature rise control device
JPH1073205A (en) Controller for once-through boiler
JPS5981401A (en) Temperature controller for economizer
JPH09280504A (en) Predictive detector for generation of swelling and controller for feed water of boiler
JP2002168406A (en) Reheat steam temperature controller for boiler
JPS63148004A (en) Method of operating once-through boiler
JPS62178803A (en) Controller for once-through boiler
JPS6024885B2 (en) Control method for once-through boiler with circulation device