JPH0236324A - Cavity type black body for calibrating radiation thermometer - Google Patents
Cavity type black body for calibrating radiation thermometerInfo
- Publication number
- JPH0236324A JPH0236324A JP63187192A JP18719288A JPH0236324A JP H0236324 A JPH0236324 A JP H0236324A JP 63187192 A JP63187192 A JP 63187192A JP 18719288 A JP18719288 A JP 18719288A JP H0236324 A JPH0236324 A JP H0236324A
- Authority
- JP
- Japan
- Prior art keywords
- cavity
- opening part
- radiation thermometer
- opening
- energy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000005855 radiation Effects 0.000 title claims abstract description 16
- 238000009826 distribution Methods 0.000 abstract description 2
- 230000000694 effects Effects 0.000 description 4
- 230000002238 attenuated effect Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000011810 insulating material Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
Landscapes
- Radiation Pyrometers (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、放射温度計の校正用空洞形態体(以下、単に
空洞形馬体と云う)に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a hollow body for calibrating a radiation thermometer (hereinafter simply referred to as a hollow body).
従来の空洞形具体の空洞は、第4図に示すように、(a
)円筒形、(b)円錐形、(C)球形、(d)円錐円筒
形、(e)二重円錐形、(f)絞り付円筒形等それぞれ
の空洞41の底面42が開口部43から遠ざかるように
形成されていた。As shown in Fig. 4, the cavity of the conventional cavity concrete is (a
) cylindrical shape, (b) conical shape, (C) spherical shape, (d) conical cylindrical shape, (e) double conical shape, (f) cylindrical shape with aperture, etc., the bottom surface 42 of each cavity 41 extends from the opening 43. It was formed to move away.
これは、これらの形状が球形を除いて加工がし易いこと
と、従来から使用されている放射温度計が視野角がせま
いものであったため、上記のような空洞形状のものでよ
かった。This is because these shapes are easy to process except for the spherical shape, and the radiation thermometers conventionally used have a narrow viewing angle, so the hollow shape described above was sufficient.
ところで、近時、サーモパイルを用いた安価な放射温度
計が用いられるようになってきているが、この種の放射
温度計は感度上多くのエネルギを受は取る必要があると
ころから、従来のものに比べて視野角が広くなっている
。By the way, recently, inexpensive radiation thermometers using thermopiles have come into use, but this type of radiation thermometer needs to receive and absorb a lot of energy for sensitivity, so conventional The viewing angle is wider than that of the
そこで、上記したような考え方で、前記視野角が広い放
射温度計に適した空洞形態体を、例えば第4図(e)に
示す二重円錐形に製作しようとすると、第5図に示すよ
うに、空洞51の開口部52から底面53までの距離(
奥行き)lを大きくとる必要がある。Therefore, based on the above-mentioned idea, if we try to manufacture a cavity suitable for the radiation thermometer with a wide viewing angle, for example in the double cone shape shown in Fig. 4(e), it will be as shown in Fig. 5. , the distance from the opening 52 of the cavity 51 to the bottom surface 53 (
depth) l needs to be large.
しかしながら、上記のように空洞51の奥行き!が大き
くなると、それに比例して空洞51内部の側壁面54に
おける温度制御範囲が広くなり、それだけ温度制御が困
難になると共に、第5図において実線Aで示すように、
外部から入射したエネルギが空洞51の壁面における2
回目の反射によって開口部52から空洞51の外部に出
てしまい、空$451内において入射エネルギを十分に
減衰させることができないといった不都合がある。又、
空洞51の奥行き2が大きいため、それだけ空洞形男体
5Gが大型化するといった問題点もある。尚、第5図に
おいて、RTは放射温度計を示す。However, as mentioned above, the depth of the cavity 51! As the temperature becomes larger, the temperature control range on the side wall surface 54 inside the cavity 51 becomes wider in proportion to it, and temperature control becomes that much more difficult, and as shown by the solid line A in FIG.
The energy incident from the outside is applied to the wall surface of the cavity 51.
Due to the second reflection, the incident energy goes out of the cavity 51 through the opening 52, causing the inconvenience that the incident energy cannot be sufficiently attenuated within the cavity 451. or,
Since the depth 2 of the cavity 51 is large, there is also the problem that the hollow male body 5G becomes larger accordingly. In addition, in FIG. 5, RT indicates a radiation thermometer.
本発明は、上述の事柄に留意してなされたもので、その
目的とするところは、小型でありながらも空洞内部で外
部からの入射エネルギを十分に減衰させることができ、
しかも、温度制御が容易な放射温度計の校正用空洞形黒
体を提供することにある。The present invention has been made with the above-mentioned considerations in mind, and its purpose is to be able to sufficiently attenuate incident energy from the outside inside the cavity, even though it is small.
Moreover, it is an object of the present invention to provide a hollow black body for calibrating a radiation thermometer whose temperature can be easily controlled.
上述の目的を達成するため、本発明に係る放射温度計の
校正用空洞形具体は、空洞の開口部に対向する底面を前
記開口部側に突出させるようにしである。In order to achieve the above-mentioned object, the cavity-shaped embodiment for calibration of the radiation thermometer according to the present invention is configured such that the bottom surface facing the opening of the cavity projects toward the opening.
上記構成によれば、空洞内部における入射エネルギの反
射回数が増え、空洞内部において入射エネルギを十分に
減衰させることができる。そして、空洞の奥行きを短く
することができると共に、先端角度を大きくすることが
できるので、空洞形里体そのものの大きさを小さ(する
ことができ、しかも、空洞内部壁面における温度制御が
容易になるので、上記目的は完全に達成される。According to the above configuration, the number of reflections of incident energy inside the cavity increases, and the incident energy can be sufficiently attenuated inside the cavity. In addition, since the depth of the cavity can be shortened and the tip angle can be increased, the size of the cavity itself can be reduced, and the temperature on the inner wall of the cavity can be easily controlled. Therefore, the above objective is fully achieved.
(実施例〕
以下、本発明の実施例を、図面を参照しながら説明する
。(Example) Hereinafter, an example of the present invention will be described with reference to the drawings.
第1図は本発明に係る空洞形黒体を組み込んだ黒体炉に
の一例を示し、同図において、lは空洞形黒体で、例え
ば炭素、銅、ステンレス等熱伝導率の良好な材料で形成
しである。そして、その内部に形成される空洞2は、開
口部3に対抗する底面4を開口部3側に突出するように
形成してあり、図示する例においては、底面4の中央部
4Aが開口部3側に突出し、その両側に斜面部4B、
4Bが形成されるようにしである。この形状は、第4図
(C)における底面42を開口部43側に突出させたも
のに略等しい。5.5は底面4の両端部と開口部3の端
部との間に形成される側壁面である。前記底面4、側壁
面5,5の表面は黒化処理が施されてあって、反射率を
十分に大きくしである。FIG. 1 shows an example of a black body furnace incorporating a hollow black body according to the present invention. It is formed by The cavity 2 formed inside the cavity 2 is formed so that a bottom surface 4 that opposes the opening 3 protrudes toward the opening 3. In the illustrated example, the central portion 4A of the bottom surface 4 is the opening. 3 side, and slope portions 4B on both sides thereof,
4B is formed. This shape is approximately the same as that in FIG. 4(C) with the bottom surface 42 protruding toward the opening 43 side. 5.5 is a side wall surface formed between both ends of the bottom surface 4 and the end of the opening 3. The surfaces of the bottom surface 4 and side wall surfaces 5, 5 are subjected to a blackening treatment to sufficiently increase the reflectance.
上述のように構成された空洞形場体1は、取付はフラン
ジ6を介してステンレス製の内槽7の壁面に、開口部3
が壁面に対向するように取り付けである。The hollow field body 1 configured as described above is attached to the wall surface of the stainless steel inner tank 7 via the flange 6 through the opening 3.
It is installed so that it faces the wall.
前記内槽7の内部には空洞形黒体lを浸漬するようにし
てオイル8が所定深さに充填しであると共に、加熱用ヒ
ータ9、モータ10によって回転駆動される撹拌用側t
lillがオイル8に浸漬されるようにして収容しであ
る。The interior of the inner tank 7 is filled with oil 8 to a predetermined depth so as to immerse a hollow black body l therein, and a stirring side t which is rotationally driven by a heater 9 and a motor 10 is provided.
The lill is housed in such a way that it is immersed in oil 8.
12A、 12Bは内槽7内に設けられる内蓋、13は
ステンレス製の外槽、14は内槽7と外槽13との間に
設けられる断熱材、15は外槽13の上部に設けられる
外蓋である。12A and 12B are inner lids provided in the inner tank 7, 13 is a stainless steel outer tank, 14 is a heat insulating material provided between the inner tank 7 and the outer tank 13, and 15 is provided on the top of the outer tank 13. It is the outer lid.
16は空洞形黒体1の開口部3に対応するように、内槽
7、外槽13、断熱材14の所定部分を貫通するように
設けられた孔で、この孔16の左方に設けられた放射温
度計RTにより空洞形黒体1の空洞2内を測定できるよ
うにしである。A hole 16 is provided to correspond to the opening 3 of the hollow black body 1 and penetrates through predetermined portions of the inner tank 7, the outer tank 13, and the heat insulating material 14. The inside of the cavity 2 of the cavity black body 1 can be measured using the radiation thermometer RT.
第2図は上記内部形状を有する空洞形黒体lにおけるエ
ネルギの反射状態を示すもので、空洞2の底面4を開口
部3側に突出させであるので、空洞形男体1の外部から
開口部3を経て空洞2内に入射したエネルギは、実線B
で示すように、空洞2内においてその壁面で4回反射し
ないと外部に出てこないのである。これは、空洞2の底
面4を開口部3側に突出させたことにより、恰も先端円
錐の先端角度(第4図(e)における角度α)を小さく
したものに相当する空洞効果を奏するものと考えられる
。FIG. 2 shows the state of energy reflection in the hollow black body l having the above-mentioned internal shape. Since the bottom surface 4 of the cavity 2 protrudes toward the opening 3, the opening can be accessed from the outside of the hollow male body 1. The energy that has entered the cavity 2 through the section 3 is shown by the solid line B.
As shown in the figure, the light does not come out of the cavity 2 unless it is reflected four times on the walls of the cavity 2. By making the bottom surface 4 of the cavity 2 protrude toward the opening 3 side, this produces a cavity effect equivalent to a smaller tip angle (angle α in FIG. 4(e)) of the tip cone. Conceivable.
従って、前記エネルギは反射毎に減衰し、開口部3に臨
むようにして設けられる放射温度計R,Tへの影響を極
めて小さくすることができるのである。Therefore, the energy is attenuated each time it is reflected, and the influence on the radiation thermometers R and T provided facing the opening 3 can be extremely reduced.
又、空洞2の底面4を開口部3側に突出させたことによ
り、空洞2の奥行きLを小さくすることができると共に
、底面4における先端角度(拡がり角度)βを大きくす
ることができるので、底面4の温度分布を均一化し易く
なると共に、空洞形黒体1そのものの大きさを小さ(す
ることができ本発明は、上述の実施例に限られるもので
はなく、空洞2の形状を任意に形成し得るが、最も好ま
しくは、第3図に示すように、空洞2が球形の場合であ
る。このように構成した場合、エネルギを空洞2内に略
閉じ込めることができる。Furthermore, by making the bottom surface 4 of the cavity 2 protrude toward the opening 3 side, the depth L of the cavity 2 can be reduced, and the tip angle (spreading angle) β at the bottom surface 4 can be increased. The temperature distribution on the bottom surface 4 can be easily made uniform, and the size of the hollow black body 1 itself can be reduced. Most preferably, the cavity 2 is spherical, as shown in FIG. 3. With this configuration, energy can be substantially confined within the cavity 2.
そして、上記第1図及び第2図に示した実施例において
は、空洞2の側壁面5.5が成す角度が放射温度計RT
の視野角よりも大きくしてあったが、本発明は、側壁面
5.5の温度管理を十分に行うようにすれば、前記角度
が視野角よりも小さい空洞2にも適用することができる
。In the embodiment shown in FIGS. 1 and 2 above, the angle formed by the side wall surface 5.5 of the cavity 2 is
Although the viewing angle is larger than the viewing angle, the present invention can also be applied to the cavity 2 where the angle is smaller than the viewing angle if the temperature of the side wall surface 5.5 is adequately controlled. .
以上説明したように、本発明に係る放射温度計の校正用
空洞形黒体は、空洞の開口部に対向する底面を前記開口
部側に突出させるようにしであるので、空洞内部におい
てエネルギの反射回数を増やすことができ、外部より入
ってくるエネルギの反射率を下げることができると共に
、空洞表面の仕上げ精度が多少悪くても、高い放射率を
得ることができるので、放射温度計には悪影響が及ぼさ
れることがなく、これを確実に校正することができる。As explained above, the hollow blackbody for calibrating a radiation thermometer according to the present invention has the bottom surface facing the opening of the cavity protruding toward the opening, so that energy is reflected inside the cavity. It is possible to increase the number of repetitions, reduce the reflectance of energy coming in from the outside, and even if the finish accuracy of the cavity surface is somewhat poor, it is possible to obtain a high emissivity, so there is no negative effect on the radiation thermometer. This can be reliably calibrated without being affected.
又、本発明によれば、空洞の奥行きを小さくすることが
できるので、空洞形そのものを小型化できると共に、空
洞底面の拡がり角度を大きくすることが可能であるから
、温度制御が容易であるといった効果がある。Furthermore, according to the present invention, since the depth of the cavity can be reduced, the shape of the cavity itself can be made smaller, and the expansion angle of the bottom of the cavity can be increased, making temperature control easier. effective.
第1図及び第2図は本発明の一実施例を示し、第1図は
本発明に係る空洞形出体を組み込んだ黒体炉の一例を示
す縦断面図、第2図は空洞形出体内の空洞におけるエネ
ルギの反射状態を示す図である。
第3図は本発明の他の実施例に係る空洞形出体を示す断
面図である。
第4図及び第5図は従来技術を説明するための図で、第
4図は従来の空洞形出体の形状を示す断面図、第5図は
第4図(e)に示す空洞形出体内の空洞におけるエネル
ギの反射状態を示す図である。
l・・・空洞形出体、2・・・空洞、3・・・開口部、
4・・・底面、RT・・・放射温度計。
第3図
第4図
第5図1 and 2 show an embodiment of the present invention, FIG. 1 is a vertical cross-sectional view showing an example of a blackbody furnace incorporating a hollow body according to the present invention, and FIG. FIG. 3 is a diagram showing a state of energy reflection in a cavity inside the body. FIG. 3 is a sectional view showing a hollow body according to another embodiment of the present invention. FIGS. 4 and 5 are diagrams for explaining the prior art. FIG. 4 is a cross-sectional view showing the shape of a conventional cavity-shaped body, and FIG. FIG. 3 is a diagram showing a state of energy reflection in a cavity inside the body. l...Cavity shaped body, 2...Cavity, 3...Opening part,
4...Bottom, RT...Radiation thermometer. Figure 3 Figure 4 Figure 5
Claims (1)
せてなる放射温度計の校正用空洞形黒体。A hollow black body for calibrating a radiation thermometer, the bottom surface of which faces the opening of the cavity protrudes toward the opening.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63187192A JPH0236324A (en) | 1988-07-26 | 1988-07-26 | Cavity type black body for calibrating radiation thermometer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63187192A JPH0236324A (en) | 1988-07-26 | 1988-07-26 | Cavity type black body for calibrating radiation thermometer |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0236324A true JPH0236324A (en) | 1990-02-06 |
JPH0583851B2 JPH0583851B2 (en) | 1993-11-29 |
Family
ID=16201714
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63187192A Granted JPH0236324A (en) | 1988-07-26 | 1988-07-26 | Cavity type black body for calibrating radiation thermometer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0236324A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007194590A (en) * | 2005-11-23 | 2007-08-02 | Asml Netherlands Bv | Radiation system and lithography apparatus |
JP2008053066A (en) * | 2006-08-25 | 2008-03-06 | Sukegawa Electric Co Ltd | Back electron impact heating device |
JP2009106704A (en) * | 2007-11-01 | 2009-05-21 | Panasonic Corp | Cooker |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN212254375U (en) * | 2020-05-19 | 2020-12-29 | 深圳市商汤科技有限公司 | Blackbody radiation device |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59162633U (en) * | 1983-04-15 | 1984-10-31 | 東京精工株式会社 | Low-temperature blackbody furnace |
JPS60250223A (en) * | 1984-05-26 | 1985-12-10 | Kawasaki Steel Corp | Black body furnace |
-
1988
- 1988-07-26 JP JP63187192A patent/JPH0236324A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59162633U (en) * | 1983-04-15 | 1984-10-31 | 東京精工株式会社 | Low-temperature blackbody furnace |
JPS60250223A (en) * | 1984-05-26 | 1985-12-10 | Kawasaki Steel Corp | Black body furnace |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007194590A (en) * | 2005-11-23 | 2007-08-02 | Asml Netherlands Bv | Radiation system and lithography apparatus |
JP2008053066A (en) * | 2006-08-25 | 2008-03-06 | Sukegawa Electric Co Ltd | Back electron impact heating device |
JP2009106704A (en) * | 2007-11-01 | 2009-05-21 | Panasonic Corp | Cooker |
Also Published As
Publication number | Publication date |
---|---|
JPH0583851B2 (en) | 1993-11-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6447160B1 (en) | Blackbody cavity for calibration of infrared thermometers | |
ES2283264T3 (en) | APPLIANCE HEATING AND APPLIANCE PROCEDURE. | |
JPH0236324A (en) | Cavity type black body for calibrating radiation thermometer | |
US5153426A (en) | Radiation meter for radiation emerging from an optical fiber with a diffusely reflecting body and cavity | |
US4789788A (en) | Optically pumped radiation source | |
GB2290378A (en) | Temperature measurement device | |
TWI497042B (en) | Apparatus for calibrating pyrometer | |
JP5738813B2 (en) | Calibration blackbody standard for submillimeter frequency band | |
JPS60250223A (en) | Black body furnace | |
Dunn et al. | Ellipsoidal mirror reflectometer | |
US3279257A (en) | Adjustable thermometer | |
JP2001050818A (en) | Non-contact temperature-measuring sensor | |
JPS589914B2 (en) | spherical furnace | |
JPS6086432A (en) | Black body furnace | |
JPS6038198Y2 (en) | pseudo blackbody radiation source | |
TWI497043B (en) | Apparatus for calibrating pyrometer | |
SU1239528A1 (en) | Calorimetric transducer of laser radiation energy | |
SU1165138A1 (en) | Meter of power parameters of laser beam | |
JPH0448230A (en) | Emissivity measuring instrument | |
RU1774193C (en) | Blackbody-type furnace | |
JPS5526464A (en) | Calibration method of radiation thermometer | |
JPS6118431Y2 (en) | ||
JPS6133539Y2 (en) | ||
KR101278903B1 (en) | Small blackbody for ear thermometers | |
JP2826176B2 (en) | Single crystal manufacturing equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081129 Year of fee payment: 15 |