JPH0448230A - Emissivity measuring instrument - Google Patents

Emissivity measuring instrument

Info

Publication number
JPH0448230A
JPH0448230A JP2156828A JP15682890A JPH0448230A JP H0448230 A JPH0448230 A JP H0448230A JP 2156828 A JP2156828 A JP 2156828A JP 15682890 A JP15682890 A JP 15682890A JP H0448230 A JPH0448230 A JP H0448230A
Authority
JP
Japan
Prior art keywords
radiometer
mirror
radiation
emissivity
photodetection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2156828A
Other languages
Japanese (ja)
Inventor
Akihiko Kuze
暁彦 久世
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2156828A priority Critical patent/JPH0448230A/en
Publication of JPH0448230A publication Critical patent/JPH0448230A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)

Abstract

PURPOSE:To measure the emissivity of infrared rays speedily with high accuracy by providing a rotary shaft which extends at right angles to the photodetection surface in the photodetection sensor of a radiometer and a mirror surface which is provided at 45 deg. to the rotary shaft opposite the photodetection surface. CONSTITUTION:This instrument is equipped with a scanning rotary mirror 1 which has the elliptic mirror surface 12 on the rotary shaft 11, the radiometer 2 which measures the radiation amount of an electromagnetic wave such as infrared rays, a low-temperature reference black body 3 for calibrating the quantity of radiation on a low-temperature side, a high-temperature reference black body 4 for calibrating the quantity of radiation on a high-temperature side, a body 5 to be tested, and a rotary mirror holder, and those are placed in a vacuum chamber held in a vacuum state. The rotary shaft 11 of the scanning rotary mirror 1 is extended at right angles to the photodetection surface 21 in the photodetection sensor which detects the electromagnetic wave in the radiometer 2 and the mirror surface 12 is fitted at 45 deg. to the rotary shaft 11 and faces the photodetection surface 21. Consequently, the emissivity of the infrared rays can be measured speedily with high accuracy.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は物体が放射する主として赤外線の放射率を測定
する放射率測定装置に間する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an emissivity measuring device that measures the emissivity of mainly infrared rays emitted by an object.

〔従来の技術〕[Conventional technology]

従来のこの種の放射率測定においては、物体から放射さ
れる赤外線等の電磁波の放射量を測定する放射計の前面
に、放射率を測定すべき供試体。
In conventional emissivity measurements of this type, the specimen whose emissivity is to be measured is placed in front of a radiometer that measures the amount of electromagnetic waves such as infrared radiation emitted from the object.

放射率校正用の高温基準黒体および低温基準黒体を交互
に置き、測定および測定値の校正を行っていた。そして
測定および校正は大気中で行われていた。
High-temperature reference black bodies and low-temperature reference black bodies for emissivity calibration were placed alternately to perform measurements and calibrate measured values. Measurements and calibrations were performed in the atmosphere.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来の放射率測定においては、以下に述べるよ
うな欠点があった。
The conventional emissivity measurement described above has the following drawbacks.

(1)  測定および校正は大気中で行われるため、供
試体から放射される電磁波が大気により吸収され、正確
な測定値を得ることが困難である。
(1) Since measurement and calibration are performed in the atmosphere, electromagnetic waves emitted from the specimen are absorbed by the atmosphere, making it difficult to obtain accurate measurement values.

この吸収は特にサブミリ波より短かい波長において顕著
になる。
This absorption is particularly noticeable at wavelengths shorter than submillimeter waves.

(2)、大気中においては対流による熱輸送があるため
、少ないエネルギの消費によって極低温あるいは高温の
基準黒体を得ることが困難である。
(2) Since there is heat transport in the atmosphere by convection, it is difficult to obtain a reference black body at an extremely low temperature or a high temperature while consuming a small amount of energy.

従って、低温基準黒体と高温基準黒体の2温度間に大き
い温度差をつけることが困難であり、正確な校正が困難
となる。
Therefore, it is difficult to create a large temperature difference between the two temperatures of the low-temperature reference blackbody and the high-temperature reference blackbody, making accurate calibration difficult.

(3)、測定に際しては供試体と校正用の基準黒体の取
り替えが必要であるため、測定に長時間を要する。
(3) During measurement, it is necessary to replace the specimen and the standard blackbody for calibration, so it takes a long time to perform the measurement.

(4)、供試体からの電磁波の出射(放射)方向による
放射量変化を表わす出射量依存性の測定を行うためには
、供試体または放射計のどちらかを動かし、両者間の対
向角度を変化させて測定する必要がある。
(4) In order to measure the radiation amount dependence, which represents the change in radiation amount depending on the emission (radiation) direction of electromagnetic waves from the specimen, move either the specimen or the radiometer and adjust the facing angle between the two. It is necessary to change and measure.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の放射率測定装置は、赤外線を含む電磁波の放射
量を測定する放射計と、前記放射計の受光センサ内の受
光面に対し垂直方向に延伸して設けられた回転軸と前記
回転軸に45°の角度且つ前記受光面に対向する側に設
けられた鏡面とを有し前記回転軸回りに走査される走査
回転鏡と、前記放射計の全体または受光センサと前記走
査回転鏡とを真空状態に保持する真空チェンバとを有し
ている。
The emissivity measuring device of the present invention includes a radiometer that measures the amount of radiation of electromagnetic waves including infrared rays, a rotating shaft provided extending perpendicularly to a light-receiving surface in a light-receiving sensor of the radiometer, and the rotating shaft. a scanning rotating mirror having an angle of 45° and a mirror surface provided on the side opposite to the light receiving surface and scanning around the rotation axis; the entire radiometer or the light receiving sensor; and the scanning rotating mirror. It has a vacuum chamber that maintains a vacuum state.

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図(a>は本発明による反射率測定装置の一実施例
の一部載欠した側面図、第1図(b)は同じく正面図で
ある。
FIG. 1(a) is a partially cutaway side view of an embodiment of the reflectance measuring device according to the present invention, and FIG. 1(b) is a front view of the same.

1は回転軸11に楕円形の鏡面12が取り付けられた走
査回転鏡、2は赤外線等の電磁波の放射量を測定する放
射計、3は低温側の放射量を校正するための低温基準黒
体、4は高温側の放射量を校正するための高温基準黒体
、5は供試体、6は回転鏡保持具である。これらは前出
の各構成要素を真空状態に保つ真空チェンバ(図示せず
)内に置かれる。放射計2は電磁波を検出する受光セン
サ部分だけ真空チェンバ内に置かれてもよい。
1 is a scanning rotary mirror with an elliptical mirror surface 12 attached to a rotating shaft 11; 2 is a radiometer that measures the amount of radiation of electromagnetic waves such as infrared rays; and 3 is a low-temperature reference blackbody for calibrating the amount of radiation on the low-temperature side. , 4 is a high temperature reference black body for calibrating the radiation amount on the high temperature side, 5 is a specimen, and 6 is a rotating mirror holder. These are placed in a vacuum chamber (not shown) that keeps each of the aforementioned components under vacuum. In the radiometer 2, only the light receiving sensor portion that detects electromagnetic waves may be placed in a vacuum chamber.

走査回転鏡1の回転軸11は、放射計2内の電磁波を検
出する受光センサ内の受光面21に対し垂直方向に延伸
して設けられ、回転鏡保持具6に取りつけられる。鏡面
12は、回転軸11に45°の角度に取り付けられ、且
つ受光面21に対向する側に設けられる0回転鏡保持具
6は走査回転鏡1の鏡面12が回転軸11の回りに回転
する回転範囲内を保護する大きさとされる。第1図(a
)、(b)においては、回転鏡保持具6は直方体の形状
である。低温基準黒体3.高温基準黒体4および供試体
5の放射量が測定されるべき被測定物は、回転鏡保持具
6の外側のそれぞれ異なる場所、即ち回転軸11に垂直
な、それぞれ異なる面に相対して置かれている。これら
の被測定物は回転鏡保持具6のそれぞれの外面に設置さ
れてよい0回転鏡保持具6の回転軸11に垂直な面を、
4面だけに限らず、−最多面体とすれば、その面の数だ
けの放射率測定のための被測定物を容易に設置すること
ができる0回転鏡保持具6は上記被測定物と鏡面12と
の間および鏡面12と受光面21との間の電磁波の通路
を妨害する構造であってはならない。
A rotating shaft 11 of the scanning rotating mirror 1 is provided to extend in a direction perpendicular to a light receiving surface 21 in a light receiving sensor that detects electromagnetic waves in the radiometer 2, and is attached to a rotating mirror holder 6. The mirror surface 12 is attached to the rotating shaft 11 at an angle of 45 degrees, and the zero-rotation mirror holder 6 provided on the side opposite the light-receiving surface 21 allows the mirror surface 12 of the scanning rotating mirror 1 to rotate around the rotating shaft 11. It is sized to protect within the rotation range. Figure 1 (a
) and (b), the rotating mirror holder 6 has a rectangular parallelepiped shape. Low temperature reference blackbody 3. The objects to be measured for which the radiation amounts of the high-temperature reference black body 4 and the specimen 5 are to be measured are placed at different locations outside the rotating mirror holder 6, that is, facing different surfaces perpendicular to the rotation axis 11. It's dark. These objects to be measured may be installed on the outer surface of each rotating mirror holder 6.
The zero-rotation mirror holder 6 can easily install as many objects to be measured for emissivity measurement as there are faces, not only with four faces, but also with the maximum number of faces. 12 and between the mirror surface 12 and the light-receiving surface 21.

ここで、鏡面12は、電磁波9例えば放射率測定される
電磁波が赤外線の場合には、磨かれたアルミニウム板あ
るいは金メツキされた板等である赤外線を損失少なく反
射する鏡である。(以下、電磁波は赤外線で代表させ、
放射光という。尚、この測定装置は電磁波の「放射量」
を測定する装置であるので「放射量」測定装置と称する
べきであるが、赤外線測定の場合においては、供試体5
から放射されるエネルギは供試体5の物性により異なる
ため、この物性値固有の値である「放射率」を測定する
ことになり、そのため「放射率」測定装置と称する。)
低温基準黒体3は、−例として、熱伝導のよい銅等の表
面に不規則な溝が設けられ且つ黒色塗装されている高放
射率の物体が用いられ、且つ液体ヘリウム等で極低温に
冷却されたものである。高温基準黒体4は、−例として
、低温基準黒体3と同様の素材を厚板にし、且つ同様の
表面処理を行い、更にヒータ加熱して温度安定化された
ものが使用される。これら冷却あるいはヒータ加熱は、
真空中で行われるため対流による熱輸送がなく、加熱・
冷却のために必要とされるエネルギは大気中より少なく
てすむ。
Here, the mirror surface 12 is a mirror that reflects infrared rays with little loss, such as a polished aluminum plate or a gold-plated plate, if the electromagnetic wave 9, for example, the electromagnetic wave whose emissivity is to be measured, is infrared rays. (Hereinafter, electromagnetic waves will be represented by infrared radiation,
It is called synchrotron radiation. This measuring device measures the "radiation amount" of electromagnetic waves.
Since it is a device that measures
Since the energy radiated from the specimen 5 differs depending on the physical properties of the specimen 5, the "emissivity" which is a value specific to this physical property value is measured, and therefore it is called an "emissivity" measuring device. )
The low-temperature reference black body 3 is, for example, a high-emissivity object made of copper or the like with good thermal conductivity, which has irregular grooves on its surface and is painted black, and which is heated to an extremely low temperature with liquid helium or the like. It is cooled. The high temperature reference black body 4 is, for example, made of a thick plate made of the same material as the low temperature reference black body 3, subjected to the same surface treatment, and further heated with a heater to stabilize the temperature. These cooling or heater heating are
Because it is carried out in a vacuum, there is no heat transport by convection, and heating and
Less energy is required for cooling than in the atmosphere.

さて、走査回転鏡1の回転軸11を、図示された回転方
向、即ち放射計2の受光面21に水平方向に回転させる
。すると鏡面12もつれて回転し、回転軸11の1回転
に対し、鏡面12が1走査される。この1走査の間に、
高温基準黒体4から放射された放射光口、低温基準黒体
3から放射された放射光イ、供試体5から放射された放
射光ハないしホが、鏡面1によって反射され、放射計2
の受光面21に到達する。そして、それぞれの放射量が
放射計2によって計測される。この放射光は、大気中に
おけるような電磁波の吸収・散乱物質のない真空中を伝
搬するため、正確な放射量が計測できる。ここで、放射
光二は、それが供試体5の赤外線放射面に垂直な面から
の角度、即ち出射角が0°の場合であり、放射光ハおよ
びホは、出射角が一定の角度を持っている場合である。
Now, the rotation shaft 11 of the scanning rotation mirror 1 is rotated in the illustrated rotation direction, that is, in the horizontal direction to the light receiving surface 21 of the radiometer 2. Then, the mirror surface 12 rotates in a tangled manner, and the mirror surface 12 is scanned once for each rotation of the rotating shaft 11. During this one scan,
The synchrotron radiation aperture emitted from the high-temperature reference blackbody 4, the synchrotron radiation A emitted from the low-temperature reference blackbody 3, and the synchrotron radiation C to H emitted from the specimen 5 are reflected by the mirror surface 1, and are reflected by the radiometer 2.
reaches the light-receiving surface 21 of. Then, each radiation amount is measured by the radiometer 2. Since this synchrotron radiation propagates in a vacuum, where there are no substances that absorb or scatter electromagnetic waves like in the atmosphere, the amount of radiation can be measured accurately. Here, the radiation beam 2 is at an angle from a plane perpendicular to the infrared radiation surface of the specimen 5, that is, the emission angle is 0°, and the radiation beams C and H have a constant emission angle. This is the case.

この放射率測定装置においては、鏡面12の走査に従っ
て、所定の角度範囲に亘り放射率が測定でき、走査方向
の放射率の出射角依存性を測定することができる。
In this emissivity measuring device, the emissivity can be measured over a predetermined angular range as the mirror surface 12 is scanned, and the dependence of the emissivity in the scanning direction on the output angle can be measured.

第2図は、第1図の実施例における、走査回転鏡1の回
転角に対する放射計2による放射量測定値を示している
0回転角0° (または360” )においては、高温
基準黒体4の1回転角90°においては低温基準黒体3
の1回転角180°においては供試体5の放射量が測定
されている。このように、走査回転鏡1の1走査の間に
全ての被測定物の放射量が測定できている。
FIG. 2 shows the radiation amount measured by the radiometer 2 with respect to the rotation angle of the scanning rotary mirror 1 in the embodiment of FIG. 4, at one rotation angle of 90°, the low temperature reference black body 3
The radiation amount of the specimen 5 is measured at one rotation angle of 180°. In this way, the radiation amount of all objects to be measured can be measured during one scan of the scanning rotary mirror 1.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、供試体の放射する
電磁波、特に赤外線の放射率を高精度且つ迅速に測定で
き、また供試体放射率の出射角依存性を簡易に測定でき
る効果がある。
As explained above, according to the present invention, the emissivity of electromagnetic waves, especially infrared rays, emitted by a specimen can be measured with high precision and quickly, and the dependence of the emissivity of the specimen on the emission angle can be easily measured. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)、(b)は本発明による一実施例の一部載
欠した側面図および正面図、第2図は実施例による放射
量測定結果を示す図である。 1・・・走査回転鏡、2・・・放射計、3・・・低温基
準黒体、4・・・高温基準黒体、5・・・供試体、6・
・・回転鏡保持体、11・・・回転軸、12・・・鏡面
、21・・・受光面、イ〜へ・・・放射光。
FIGS. 1(a) and 1(b) are a partially cutaway side view and a front view of an embodiment of the present invention, and FIG. 2 is a diagram showing the results of radiation measurement according to the embodiment. DESCRIPTION OF SYMBOLS 1... Scanning rotating mirror, 2... Radiometer, 3... Low temperature reference black body, 4... High temperature reference black body, 5... Specimen, 6...
...Rotating mirror holder, 11...Rotating shaft, 12...Mirror surface, 21...Light-receiving surface, A~F...Radiant light.

Claims (1)

【特許請求の範囲】 1、赤外線を含む電磁波の放射量を測定する放射計と、
前記放射計の受光センサ内の受光面に対し垂直方向に延
伸して設けられた回転軸と前記回転軸に45゜の角度且
つ前記受光面に対向する側に設けられた鏡面とを有し前
記回転軸回りに走査される走査回転鏡と、前記放射計の
全体または受光センサと前記走査回転鏡とを真空状態に
保持する真空チェンバとを有することを特徴とする放射
率測定装置。 2、請求項1記載の放射率測定装置と、前記走査回転鏡
の回転範囲の外側に複数の放射量の被測定物を配置する
手段とを有することを特徴とする放射率測定装置。
[Claims] 1. A radiometer that measures the amount of radiation of electromagnetic waves including infrared radiation;
The radiometer has a rotating shaft extending perpendicularly to the light receiving surface in the light receiving sensor of the radiometer, and a mirror surface provided at an angle of 45° to the rotating shaft and on a side opposite to the light receiving surface. An emissivity measurement device comprising: a scanning rotating mirror that scans around a rotation axis; and a vacuum chamber that maintains the entire radiometer or the light receiving sensor and the scanning rotating mirror in a vacuum state. 2. An emissivity measuring device comprising: the emissivity measuring device according to claim 1; and means for arranging objects having a plurality of radiation amounts outside the rotation range of the scanning rotating mirror.
JP2156828A 1990-06-15 1990-06-15 Emissivity measuring instrument Pending JPH0448230A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2156828A JPH0448230A (en) 1990-06-15 1990-06-15 Emissivity measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2156828A JPH0448230A (en) 1990-06-15 1990-06-15 Emissivity measuring instrument

Publications (1)

Publication Number Publication Date
JPH0448230A true JPH0448230A (en) 1992-02-18

Family

ID=15636243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2156828A Pending JPH0448230A (en) 1990-06-15 1990-06-15 Emissivity measuring instrument

Country Status (1)

Country Link
JP (1) JPH0448230A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015203637A (en) * 2014-04-15 2015-11-16 日本電気株式会社 infrared imaging device
JP6019508B1 (en) * 2016-02-09 2016-11-02 大学共同利用機関法人 高エネルギー加速器研究機構 Radiometer
CN110411578A (en) * 2019-08-29 2019-11-05 河南师范大学 A kind of low temperature spectra emissivity measurement device based on off-axis ellipsoidal mirror

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015203637A (en) * 2014-04-15 2015-11-16 日本電気株式会社 infrared imaging device
JP6019508B1 (en) * 2016-02-09 2016-11-02 大学共同利用機関法人 高エネルギー加速器研究機構 Radiometer
WO2017138579A1 (en) * 2016-02-09 2017-08-17 大学共同利用機関法人高エネルギー加速器研究機構 Radiation measurement device
EP3415884A4 (en) * 2016-02-09 2019-10-23 Inter-University Research Institute Corporation High Energy Accelerator Research Organization Radiation measurement device
CN110411578A (en) * 2019-08-29 2019-11-05 河南师范大学 A kind of low temperature spectra emissivity measurement device based on off-axis ellipsoidal mirror
CN110411578B (en) * 2019-08-29 2022-08-09 河南师范大学 Low-temperature spectral emissivity measuring device based on off-axis ellipsoidal reflector

Similar Documents

Publication Publication Date Title
Ng et al. Use of a multiwavelength pyrometer in several elevated temperature aerospace applications
US5659397A (en) Method and apparatus for measuring total specular and diffuse optical properties from the surface of an object
KR960026525A (en) Substrate temperature measuring method and apparatus
PL193509B1 (en) Method of and device for measuring wall thickness of a heated up glass vessel
US5347128A (en) Directional emittance surface measurement system and process
JPH06341905A (en) Measuring method of wafer temperature
US4789788A (en) Optically pumped radiation source
US3492869A (en) Means of measuring surface temperature by reflection
US3794838A (en) Compensation means for ambient temperature changes of a radiation chopper in a radiometer
Vuelban et al. Radiometric techniques for emissivity and temperature measurements for industrial applications
Dai et al. Fourier transform spectrometer for spectral emissivity measurement in the temperature range between 60 and 1500° C
Yamada et al. Toward reliable industrial radiation thermometry
Yoon et al. Thermodynamic radiation thermometry using radiometers calibrated for radiance responsivity
CN108168709A (en) A kind of Tokamak divertor target plate temperature accurate measurement method
Clarke et al. Measurement of total reflectance, transmittance and emissivity over the thermal IR spectrum
Gunn Volume‐absorbing calorimeters for high‐power laser pulses
JPH0448230A (en) Emissivity measuring instrument
Zhao et al. Fast Emissivity Measuring Apparatus With Adjustable Focusing and Field Calibration
CN106525249A (en) Infrared temperature measurement device and temperature measurement method for mirror surfaces
Dunn et al. Ellipsoidal mirror reflectometer
Ishii et al. Fourier transform spectrometer for thermal-infrared emissivity measurements near room temperatures
Hartmann et al. Calibration and investigation of infrared camera systems applying blackbody radiation
Krapez et al. A double-wedge reflector for emissivity enhanced pyrometry
Ishii et al. A Fourier‐Transform Spectrometer for Accurate Thermometric Applications at Low Temperatures
RU2247339C2 (en) Method and device for measuring emissive power of inner surfaces of non-uniformly heated space