JP2001050818A - Non-contact temperature-measuring sensor - Google Patents

Non-contact temperature-measuring sensor

Info

Publication number
JP2001050818A
JP2001050818A JP11223386A JP22338699A JP2001050818A JP 2001050818 A JP2001050818 A JP 2001050818A JP 11223386 A JP11223386 A JP 11223386A JP 22338699 A JP22338699 A JP 22338699A JP 2001050818 A JP2001050818 A JP 2001050818A
Authority
JP
Japan
Prior art keywords
optical lens
infrared
infrared light
contact temperature
diffractive optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11223386A
Other languages
Japanese (ja)
Inventor
Takeshi Masutani
武 増谷
Kazuhiko Fujikawa
和彦 藤川
Koji Nomura
幸治 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP11223386A priority Critical patent/JP2001050818A/en
Publication of JP2001050818A publication Critical patent/JP2001050818A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain an accurate non-contact temperature-measuring sensor by arranging an optical filter with characteristic for cutting the long-wavelength side for the fundamental wavelength of a diffraction optical lens on an optical axis. SOLUTION: A diffraction optical lens 3 for condensing infrared rays is provided inside an enclosure 1 on the optical axis of an infrared light reception part 2. Also, a filter 5 for cutting a long-wavelength side for the fundamental wavelength of the optical lens 3 is arranged at incidence light-limiting window 4 on the optical axis of infrared rays at the other end of the enclosure 1. Infrared rays emitted from an object to be measured pass through the filter 5, are condensed by the optical lens 3, and enter the infrared light reception part 2. In this manner, the long-wavelength side is relaxed by the filter 5 for cutting the long-wavelength side. Further, by relaxing the short-wavelength side with the incidence light-limiting window, a visual field is narrowed, thus using an inexpensive diffraction-type lens and at the same tiem acquiring a small visual field angle and improving measurement accuracy.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、赤外線センサを用
いた非接触測温センサに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-contact temperature sensor using an infrared sensor.

【0002】[0002]

【従来の技術】近年赤外線センサは非接触で物体の検知
や温度の検出ができる点を活かして自動ドアや警報装
置、エアコンの室内温度制御などに利用されており、今
後その応用範囲は拡大していく。物体はその温度に応じ
た赤外線を放射しており、このセンサを用いることによ
り物体の位置や温度を検出できる。特に非接触測温セン
サとしての耳孔式体温計に対しては、短時間に体温が測
定できる点が期待されている。
2. Description of the Related Art In recent years, infrared sensors have been used for automatic doors, alarms, indoor temperature control of air conditioners, and the like, taking advantage of the fact that they can detect objects and detect temperatures in a non-contact manner. To go. An object emits infrared rays according to its temperature, and by using this sensor, the position and temperature of the object can be detected. In particular, an ear canal thermometer as a non-contact temperature sensor is expected to be able to measure body temperature in a short time.

【0003】耳孔式体温計の受光部は、従来一般的にサ
ーモバイルなどの赤外線センサとこれに直結された金属
性の導波管から構成されている。赤外線センサには固有
の視野角がありこの範囲から取入れる赤外線のエネルギ
ーを電気信号に変換して温度を求めており、被測定物の
面積がこの範囲を越えているときはその被測定物の温度
を正しく示すが、この範囲よりも小さい場合は被測定物
の周囲温度も含めた平均温度となってしまい測定誤差が
大きくなる。このため導波管を用いて被測定物(この場
合、鼓膜)に等価的に近づけて視野角範囲に占める鼓膜
の面積を出来るだけ大きくしようとしている。しかし導
波管の入口を鼓膜にあまり近づけることは危険であり5
〜10mm離しているのが実態である。この場合、鼓膜と
その周辺温度との差が測定誤差となりまた放射体温計を
耳孔に挿入する深さのばらつきも誤差となる。さらに放
射体温計を耳孔に挿入した直後から耳孔に当接する外装
部(プローブ)には耳孔からの熱が伝わりこれが内部の
導波管に伝わることにより導波管の温度は徐々に上昇し
これもまた測定誤差となる。これを解決するためプロー
ブをあらかじめ体温付近に加熱しておくなどの方法が提
案されているが携帯用機器としてふさわしくない。
[0003] The light receiving part of the ear canal thermometer is conventionally generally composed of an infrared sensor such as a thermomobile and a metallic waveguide directly connected thereto. Infrared sensors have a unique viewing angle and convert the energy of infrared rays taken from this range into electrical signals to determine the temperature.If the area of the measured object exceeds this range, the Although the temperature is correctly indicated, if the temperature is lower than this range, the average temperature including the ambient temperature of the object to be measured is obtained, and the measurement error increases. For this reason, an attempt is made to make the area of the eardrum occupying the viewing angle range as large as possible by equivalently approaching the object to be measured (the eardrum in this case) using a waveguide. However, it is dangerous to bring the entrance of the waveguide too close to the eardrum.
It is actually 10 mm apart. In this case, the difference between the eardrum and the surrounding temperature becomes a measurement error, and the variation in the depth at which the radiation thermometer is inserted into the ear canal also becomes an error. Immediately after the radiation thermometer is inserted into the ear canal, heat from the ear canal is transmitted to the exterior part (probe) in contact with the ear canal, and this is transmitted to the internal waveguide, so that the temperature of the waveguide gradually increases. A measurement error results. In order to solve this, a method has been proposed in which the probe is heated to near body temperature in advance, but it is not suitable as a portable device.

【0004】[0004]

【発明が解決しようとする課題】赤外線センサの視野角
は一般的に50〜90゜と広く鼓膜の直径をφ5mmとす
ると距離として5〜2.5mmまで接近させないと上記の
問題が発生する。しかし視野角が3゜程度となれば距離
は飛躍的に大きくなり95゜程度まで延ばせる。視野角
を小さくするためにレンズが用いられるがこの場合レン
ズの特性が問題となる。
The viewing angle of the infrared sensor is generally as wide as 50 to 90 °, and if the diameter of the eardrum is φ5 mm, the above problem occurs unless the distance is reduced to 5 to 2.5 mm. However, when the viewing angle is about 3 °, the distance is greatly increased and can be extended to about 95 °. A lens is used to reduce the viewing angle, but in this case, the characteristics of the lens are problematic.

【0005】本発明は上記問題点を解決するもので、高
精度な非接触測温センサを提供することを目的とする。
An object of the present invention is to solve the above problems and to provide a highly accurate non-contact temperature sensor.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
本発明は、回折光学レンズの基本波長に対して長波長側
をカットする特性を有する光学フィルタを光軸上に配置
したものである。
According to the present invention, there is provided an optical filter having a characteristic of cutting a long wavelength side with respect to a fundamental wavelength of a diffractive optical lens on an optical axis.

【0007】[0007]

【発明の実施の形態】本発明の請求項1に記載の発明
は、被測定物から放射される赤外線を検出して電気信号
を発生する赤外線受光部と、被測定物から放射される赤
外線を集光して前記赤外線受光部へ送る回折光学レンズ
と、前記赤外線受光部、回折光学レンズを取り付け支持
する匡体を有する非接触測温センサにおいて、前記回折
光学レンズの基本波長に対して長波長側をカットする特
性を有する光学フィルタを光軸上に配置したものであ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The invention according to claim 1 of the present invention is directed to an infrared light receiving section for detecting an infrared ray radiated from an object to be measured and generating an electric signal, and an infrared ray radiating from the object to be measured. A diffractive optical lens for condensing and sending the light to the infrared light receiving unit, and a non-contact temperature sensor having a housing for mounting and supporting the infrared light receiving unit and the diffractive optical lens; An optical filter having a characteristic of cutting the side is arranged on the optical axis.

【0008】請求項2に記載の発明は、回折光学レンズ
の反対側に、入射光量を制限する部材を有し、前記部材
は前記赤外線受光部と熱的に結合されているものであ
る。
According to a second aspect of the present invention, a member for limiting the amount of incident light is provided on the opposite side of the diffractive optical lens, and the member is thermally coupled to the infrared light receiving portion.

【0009】請求項3に記載の発明は、入射光量を制限
する部材と回折光学レンズとの間に、レンズ側に収斂す
るテーパ状の内面を持つ導光器を有するものである。
According to a third aspect of the present invention, a light guide having a tapered inner surface converging toward the lens is provided between the member for limiting the amount of incident light and the diffractive optical lens.

【0010】請求項4に記載の発明は、導光器の内表面
は断面形状が鋸歯状であるものである。
According to a fourth aspect of the present invention, the inner surface of the light guide has a sawtooth cross section.

【0011】請求項5に記載の発明は、赤外線受光部と
回折光学レンズとの間は光学的にほぼ閉ざされた内腔を
形成し、この内腔の表面は断面形状が鋸歯状であるもの
である。
According to a fifth aspect of the present invention, a substantially optically closed lumen is formed between the infrared ray receiving section and the diffractive optical lens, and the surface of the lumen has a sawtooth cross section. It is.

【0012】上記構成により短波長側の光に対してはメ
カニカルな制限器で排除し、長波長側に対しては光学フ
ィルタにて排除することで視野特性を改善するという作
用を有するものである。
With the above-described structure, the short wavelength light is eliminated by a mechanical limiter, and the long wavelength light is eliminated by an optical filter, thereby improving the visual field characteristics. .

【0013】以下、本発明の一実施の形態における非接
触測温センサについて、図面を参照しながら説明する。
Hereinafter, a non-contact temperature measurement sensor according to an embodiment of the present invention will be described with reference to the drawings.

【0014】図1は本発明の一実施の形態における非接
触測温センサの断面図である。
FIG. 1 is a sectional view of a non-contact temperature sensor according to an embodiment of the present invention.

【0015】図において、1は円筒型の匡体である。こ
の匡体1の一端には、赤外線受光部2を備えている。こ
の赤外線受光部2の光軸上の匡体1の内部に光学線を集
光する光学レンズ3を備えている。また、匡体1の他端
である赤外線の光軸上である入射光制限窓4には、赤外
線の長波長側をカットするフィルタ5を備えている。
In FIG. 1, reference numeral 1 denotes a cylindrical housing. One end of the housing 1 is provided with an infrared light receiving section 2. An optical lens 3 for condensing optical lines is provided inside the housing 1 on the optical axis of the infrared light receiving section 2. The incident light limiting window 4 on the optical axis of the infrared light, which is the other end of the housing 1, is provided with a filter 5 for cutting off the long wavelength side of the infrared light.

【0016】以下に、動作原理を説明する。The principle of operation will be described below.

【0017】被測定物(図示せず)から放射された赤外
線はフィルタ5を通り、回折原理を用いた光学レンズ3
に導かれ、この光学レンズ3により集光され赤外線受光
部2に入射する。
Infrared light radiated from an object to be measured (not shown) passes through a filter 5 and passes through an optical lens 3 using the principle of diffraction.
And the light is condensed by the optical lens 3 and enters the infrared light receiving unit 2.

【0018】レンズと赤外線受光部のみを取出したもの
を図2に示す。ここでAは被測定物(図示せず)と光学
レンズ3との距離、Bは光学レンズ3と赤外線受光部2
との距離、Cは赤外線受光部2の大きさを示し、BとC
によって決る角度を延長した線が被測定物の位置にDの
大きさの視野を構成する。被測定物と光学レンズ3の間
の視野はDと光学レンズ3の外径を結ぶ線で表せる。光
学レンズ3の焦点距離をfとするとA,B,fの間にB
=1/(1/f−1/A)関係があるとき赤外線受光部
2の位置に結像する。ここで視野Dの範囲外の点Xから
のビームを考えると距離B上の点Yに結像するがレンズ
から結像点に向うビーム(破線)を見ても赤外線受光部
に入射していない。
FIG. 2 shows only the lens and the infrared ray receiving section. Here, A is the distance between the object to be measured (not shown) and the optical lens 3, and B is the optical lens 3 and the infrared light receiving unit 2.
, C indicates the size of the infrared light receiving unit 2, and B and C
The line extending the angle determined by the above forms a field of view having a size of D at the position of the measured object. The visual field between the measured object and the optical lens 3 can be represented by a line connecting D and the outer diameter of the optical lens 3. Assuming that the focal length of the optical lens 3 is f, B between A, B, and f
When there is a relation of = 1 / (1 / f-1 / A), an image is formed at the position of the infrared receiving section 2. Here, considering a beam from a point X outside the range of the visual field D, an image is formed at a point Y on a distance B, but the beam (broken line) from the lens toward the image forming point does not enter the infrared light receiving unit. .

【0019】この時、回折原理を用いた回折レンズに於
ては集光特性に波長依存性がある。入射光の波長をλと
するとλ×f=一定であり、このため設計波長即ち基本
波に対して異なった波長の光が入射すると本来の結像点
と異なる位置に結像してしまう。図2では基本波による
入力はYに結像したが、基本波よりも長波長の入力に対
しては図3のようにBよりも短い距離Eの点Y1に結像
する。この時、結像点以降のビームは図の網目のように
発散するので赤外線受光部2に入射する場合が発生す
る。一方、本波よりも短波長の入力に対しては図4のよ
うにBよりも長い距離Gの点Y2に結像する。この場合
もビームは赤外線受光部に入射する。これらはどちらも
視野が広がったことを意味する。
At this time, in a diffractive lens using the principle of diffraction, the light condensing characteristic has wavelength dependence. Assuming that the wavelength of the incident light is λ, λ × f = constant. Therefore, when light having a different wavelength from the design wavelength, that is, the fundamental wave, is incident, an image is formed at a position different from the original image forming point. In FIG. 2, the input by the fundamental wave is imaged on Y, but the input with a longer wavelength than the fundamental wave is imaged on a point Y1 at a distance E shorter than B as shown in FIG. At this time, since the beams after the image forming point diverge as shown by the meshes in the figure, there is a case where the beams enter the infrared receiving unit 2. On the other hand, an input with a wavelength shorter than the main wave forms an image at a point Y2 at a distance G longer than B as shown in FIG. Also in this case, the beam is incident on the infrared receiving unit. Both of these indicate that the field of view has expanded.

【0020】本実施の形態の図1では長波長側をカット
するフィルタ5によって長波長側を緩和している。さら
に入射光制限窓4によって図5の如く短波長側を緩和す
ることにより視野を狭めた効果になる。
In FIG. 1 of the present embodiment, the long wavelength side is alleviated by the filter 5 for cutting the long wavelength side. Further, by reducing the short wavelength side by the incident light limiting window 4, as shown in FIG.

【0021】また、匡体1は光学レンズ3、赤外線受光
部2、フィルタ3などを支持しているだけでなく熱的に
結合させる機能も併せ持つ。匡体1の内面は反射を防ぐ
ために黒化処理が施されている。反射があると図6のよ
うに入射光制限窓4により視野を狭めた効果が半減して
しまう。黒化処理によって反射は抑制されるが放射は大
きくなるので匡体1の温度が赤外線受光部2と異なると
温度誤差となる。このため、これらを熱的に結合させる
ことにより匡体1と赤外線受光部2との温度差を小さく
でき、匡体1が放射するエネルギーの影響を緩和するこ
とができる。このため匡体1は低熱伝導率の金属材料で
構成することが望ましい。
The housing 1 not only supports the optical lens 3, the infrared ray receiving section 2, the filter 3, and the like, but also has a function of thermally coupling. The inner surface of the housing 1 is subjected to a blackening process to prevent reflection. If there is reflection, the effect of narrowing the field of view by the incident light limiting window 4 as shown in FIG. 6 is reduced by half. Although the reflection is suppressed by the blackening process, the radiation increases, so that if the temperature of the housing 1 is different from that of the infrared light receiving unit 2, a temperature error occurs. Therefore, by thermally coupling them, the temperature difference between the housing 1 and the infrared receiving unit 2 can be reduced, and the influence of the energy radiated by the housing 1 can be reduced. For this reason, it is desirable that the housing 1 be made of a metal material having a low thermal conductivity.

【0022】図7は本発明の実施の形態2で、実施の形
態1との違いは匡体1の内面形状が円筒から円錐になっ
ていることである。内面形状を円筒から円錐にすること
により、僅かな反射に対しても反射を繰返すことで角度
が変りレンズに入射しにくくすることができる。この結
果、広い視野に対する僅かな感度を更に減少させること
ができる。
FIG. 7 shows a second embodiment of the present invention. The difference from the first embodiment is that the inner surface shape of the housing 1 is changed from a cylinder to a cone. By changing the shape of the inner surface from a cylinder to a cone, the angle is changed by repeating the reflection even for a slight reflection, thereby making it difficult to enter the lens. As a result, the slight sensitivity for a wide field of view can be further reduced.

【0023】また、図8は本発明の実施の形態3で、実
施の形態2の円錐状内面形状を鋸歯状にしたものであ
る。本実施の形態は、円錐状内面形状にしたことで匡体
21の外径寸法が大きくなってしまう。これを改善する
ために円錐状内面形状を輪切にして断面形状を鋸歯状に
並べたものである。これにより円錐状内面形状の効果を
維持しつつ実施の形態1とほぼ同等の外径寸法にするこ
とができる。
FIG. 8 shows a third embodiment of the present invention, in which the conical inner surface of the second embodiment has a saw-tooth shape. In the present embodiment, the outer diameter of the housing 21 increases due to the conical inner surface shape. In order to improve this, the conical inner surface shape is sliced and the cross-sectional shape is arranged in a sawtooth shape. Thus, the outer diameter can be made substantially the same as that of the first embodiment while maintaining the effect of the conical inner surface shape.

【0024】また、図9は本発明の実施の形態4で、実
施の形態3について光学レンズ3と赤外線受光部2との
間の内腔部も鋸歯状円錐状内面形状にしたものである。
これにより外乱光が赤外線受光部2に入射することを減
少させることができる。
FIG. 9 shows a fourth embodiment of the present invention. In the third embodiment, the inner cavity between the optical lens 3 and the infrared receiver 2 has a sawtooth conical inner surface.
Thereby, it is possible to reduce disturbance light from entering the infrared light receiving unit 2.

【0025】[0025]

【発明の効果】以上のように本発明は、長波長を側をカ
ットするフィルタと入射光制限窓により安価な回折型レ
ンズを用いながら小さい視野角を獲得して測定精度を向
上させた非接触測温センサを実現するものである。
As described above, the present invention improves the measurement accuracy by obtaining a small viewing angle while using an inexpensive diffractive lens with a filter that cuts the long wavelength side and an incident light limiting window. This is to realize a temperature measurement sensor.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態1における非接触センサの
断面図
FIG. 1 is a cross-sectional view of a non-contact sensor according to Embodiment 1 of the present invention.

【図2】同原理を説明する模式図FIG. 2 is a schematic diagram illustrating the principle.

【図3】同原理を説明する模式図FIG. 3 is a schematic view illustrating the principle.

【図4】同原理を説明する模式図FIG. 4 is a schematic view illustrating the principle.

【図5】同原理を説明する模式図FIG. 5 is a schematic view illustrating the principle.

【図6】本発明の他の実施の形態における非接触センサ
の断面図
FIG. 6 is a sectional view of a non-contact sensor according to another embodiment of the present invention.

【図7】本発明の実施の形態2における非接触センサの
断面図
FIG. 7 is a cross-sectional view of a non-contact sensor according to Embodiment 2 of the present invention.

【図8】本発明の実施の形態3における非接触センサの
断面図
FIG. 8 is a sectional view of a non-contact sensor according to Embodiment 3 of the present invention.

【図9】本発明の実施の形態4における非接触センサの
断面図
FIG. 9 is a sectional view of a non-contact sensor according to a fourth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 匡体 2 赤外線受光部 3 光学レンズ 4 入射光制限窓 5 フィルタ DESCRIPTION OF SYMBOLS 1 Housing 2 Infrared light receiving part 3 Optical lens 4 Incident light limiting window 5 Filter

───────────────────────────────────────────────────── フロントページの続き (72)発明者 野村 幸治 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 2G065 AB02 AB24 BA11 BA36 BA37 BB04 BB26 BB46 CA01 CA11 DA10 2G066 AC13 BA08 BA22 BA23 BA30 BA57 BB01  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Koji Nomura, Inventor 1006 Kazuma Kadoma, Kazuma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. F-term (reference) 2G065 AB02 AB24 BA11 BA36 BA37 BB04 BB26 BB46 CA01 CA11 DA10 2G066 AC13 BA08 BA22 BA23 BA30 BA57 BB01

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 被測定物から放射される赤外線を検出し
て電気信号を発生する赤外線受光部と、被測定物から放
射される赤外線を集光して前記赤外線受光部へ送る回折
光学レンズと、前記赤外線受光部、回折光学レンズを取
り付け支持する匡体を有する非接触測温センサにおい
て、前記回折光学レンズの基本波長に対して長波長側を
カットする特性を有する光学フィルタを光軸上に配置し
た非接触測温センサ。
1. An infrared light receiving section for detecting an infrared ray emitted from an object to be measured and generating an electric signal, and a diffractive optical lens for condensing infrared light emitted from the object to be sent to the infrared light receiving section. In the non-contact temperature measurement sensor having a housing for mounting and supporting the infrared light receiving section and the diffractive optical lens, an optical filter having a characteristic of cutting a long wavelength side with respect to a fundamental wavelength of the diffractive optical lens is provided on an optical axis. Non-contact temperature measurement sensor arranged.
【請求項2】 回折光学レンズの反対側に、入射光量を
制限する部材を有し、前記部材は前記赤外線受光部と熱
的に結合されている請求項1記載の非接触測温センサ。
2. The non-contact temperature sensor according to claim 1, further comprising a member on the opposite side of the diffractive optical lens for limiting the amount of incident light, wherein the member is thermally coupled to the infrared light receiving unit.
【請求項3】 入射光量を制限する部材と回折光学レン
ズとの間に、レンズ側に収斂するテーパ状の内面を持つ
導光器を有する請求項2記載の非接触測温センサ。
3. The non-contact temperature sensor according to claim 2, further comprising a light guide having a tapered inner surface converging on the lens side between the member for limiting the amount of incident light and the diffractive optical lens.
【請求項4】 導光器の内表面は断面形状が鋸歯状であ
る請求項3記載の非接触測温センサ。
4. The non-contact temperature sensor according to claim 3, wherein the inner surface of the light guide has a sawtooth cross section.
【請求項5】 赤外線受光部と回折光学レンズとの間は
光学的にほぼ閉ざされた内腔を形成し、この内腔の表面
は断面形状が鋸歯状である請求項1記載の非接触測温セ
ンサ。
5. The non-contact measurement method according to claim 1, wherein a substantially optically closed lumen is formed between the infrared ray receiving section and the diffractive optical lens, and the surface of the lumen has a sawtooth cross section. Temperature sensor.
JP11223386A 1999-08-06 1999-08-06 Non-contact temperature-measuring sensor Pending JP2001050818A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11223386A JP2001050818A (en) 1999-08-06 1999-08-06 Non-contact temperature-measuring sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11223386A JP2001050818A (en) 1999-08-06 1999-08-06 Non-contact temperature-measuring sensor

Publications (1)

Publication Number Publication Date
JP2001050818A true JP2001050818A (en) 2001-02-23

Family

ID=16797344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11223386A Pending JP2001050818A (en) 1999-08-06 1999-08-06 Non-contact temperature-measuring sensor

Country Status (1)

Country Link
JP (1) JP2001050818A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2417071A (en) * 2004-08-13 2006-02-15 Rolls Royce Plc Temperature measuring system
JP2008116463A (en) * 2007-11-16 2008-05-22 Mitsubishi Cable Ind Ltd Sunshine sensor
EP2482049A1 (en) * 2011-01-31 2012-08-01 Microlife Intellectual Property GmbH IR thermometer baffles
JP2014119280A (en) * 2012-12-13 2014-06-30 Mitsubishi Materials Corp Temperature sensor
WO2014125800A1 (en) * 2013-02-14 2014-08-21 旭化成エレクトロニクス株式会社 Filter member for infrared sensors, method for producing same, infrared sensor and method for manufacturing infrared sensor
JP2015175636A (en) * 2014-03-13 2015-10-05 旭化成エレクトロニクス株式会社 infrared sensor device
JP2017201328A (en) * 2012-11-19 2017-11-09 カズ ヨーロッパ エス・アー・エール・エル Medical thermometer having improved optics system
WO2019203161A1 (en) * 2018-04-16 2019-10-24 パナソニックIpマネジメント株式会社 Laser-light-output-monitoring device, laser device in which same is used, and laser machining device

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2417071B (en) * 2004-08-13 2006-12-20 Rolls Royce Plc Temperature measuring system
US7303331B2 (en) 2004-08-13 2007-12-04 Rolls-Royce Plc Temperature measuring system
GB2417071A (en) * 2004-08-13 2006-02-15 Rolls Royce Plc Temperature measuring system
JP2008116463A (en) * 2007-11-16 2008-05-22 Mitsubishi Cable Ind Ltd Sunshine sensor
EP2482049A1 (en) * 2011-01-31 2012-08-01 Microlife Intellectual Property GmbH IR thermometer baffles
WO2012104144A1 (en) * 2011-01-31 2012-08-09 Microlife Intellectual Property Gmbh Ir thermometer baffles
CN103429998A (en) * 2011-01-31 2013-12-04 百略智慧财产责任有限公司 Ir thermometer baffles
JP2017201328A (en) * 2012-11-19 2017-11-09 カズ ヨーロッパ エス・アー・エール・エル Medical thermometer having improved optics system
US10054490B2 (en) 2012-11-19 2018-08-21 Helen Of Troy Limited Medical thermometer having an improved optics system
JP2014119280A (en) * 2012-12-13 2014-06-30 Mitsubishi Materials Corp Temperature sensor
WO2014125800A1 (en) * 2013-02-14 2014-08-21 旭化成エレクトロニクス株式会社 Filter member for infrared sensors, method for producing same, infrared sensor and method for manufacturing infrared sensor
JPWO2014125800A1 (en) * 2013-02-14 2017-02-02 旭化成エレクトロニクス株式会社 Infrared sensor and manufacturing method thereof
US9638576B2 (en) 2013-02-14 2017-05-02 Asahi Kasei Microdevices Corporation Infrared-sensor filter member, manufacturing method thereof, infrared sensor, and manufacturing method thereof
JP6039789B2 (en) * 2013-02-14 2016-12-07 旭化成エレクトロニクス株式会社 Infrared sensor and manufacturing method thereof
JP2015175636A (en) * 2014-03-13 2015-10-05 旭化成エレクトロニクス株式会社 infrared sensor device
WO2019203161A1 (en) * 2018-04-16 2019-10-24 パナソニックIpマネジメント株式会社 Laser-light-output-monitoring device, laser device in which same is used, and laser machining device

Similar Documents

Publication Publication Date Title
JP5054523B2 (en) Sensor
US5820264A (en) Tympanic thermometer arrangement
KR20130018801A (en) Insertion detector for a medical probe
JPH10137195A (en) Radiation clinical thermometer
Ishizuya et al. Optically readable bi-material infrared detector
JP2010537177A (en) Sensor cap assembly, sensor, circuit
JP2001050818A (en) Non-contact temperature-measuring sensor
CA2028352A1 (en) High temperature sensor
JP2009002739A (en) Radiation thermometer
US20070206657A1 (en) Probe structure
US20060198424A1 (en) Probe structure for an ear thermometer
US4884896A (en) Production line emissivity measurement system
KR101903510B1 (en) Medical radiation thermometer having an improved optics system
WO2006114490A3 (en) Photothermal test camera provided with an optical device for extending a laser beam section
JPH10227697A (en) Noncontact temperature measuring sensor
EP1729102B1 (en) Detector with miniature optics for constant energy collection from different distances
JPH11188008A (en) Ear drum thermometer
US6408651B1 (en) Method of manufacturing optical fibers using thermopiles to measure fiber energy
JPH08275925A (en) Radiative clinical thermometer
JPS6255529A (en) Radiation thermometer
JP4006804B2 (en) Radiation thermometer
JPH11281484A (en) Ear type thermometer
CN211668645U (en) Thermopile infrared sensor device
JP2001174326A (en) Light receiving device
JP4126792B2 (en) Radiation thermometer