JP2009002739A - Radiation thermometer - Google Patents

Radiation thermometer Download PDF

Info

Publication number
JP2009002739A
JP2009002739A JP2007162613A JP2007162613A JP2009002739A JP 2009002739 A JP2009002739 A JP 2009002739A JP 2007162613 A JP2007162613 A JP 2007162613A JP 2007162613 A JP2007162613 A JP 2007162613A JP 2009002739 A JP2009002739 A JP 2009002739A
Authority
JP
Japan
Prior art keywords
infrared sensor
infrared
radiation thermometer
light receiving
inner peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007162613A
Other languages
Japanese (ja)
Inventor
Naohiro Osuga
直博 大須賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Original Assignee
Horiba Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd filed Critical Horiba Ltd
Priority to JP2007162613A priority Critical patent/JP2009002739A/en
Publication of JP2009002739A publication Critical patent/JP2009002739A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a radiation thermometer capable of acquiring fully satisfactory result, from the viewpoint of not only high-speed response performance but also measurement accuracy and measurement reproducibility by organizing and using the optimum optical system for an infrared sensor having a large light receiving domain, and realizing high-speed and high-accuracy measurement. <P>SOLUTION: A circular conical condensing mirror 7, having an inner circumferential surface 7a with a gradually widened opening toward the infrared lens 5 side, is arranged between a high-speed response thermopile type infrared sensor 1 and an infrared lens 5 for refracting infrared light from a measuring object toward the light-receiving domain of the infrared sensor 1, so that the narrow opening end of the inner circumferential surface is in contact with or is very close to the light-receiving region of the infrared sensor 1. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、例えば食品や飲料水など接触を避けたいものや、工場内の稼動部のように接触式での測定が困難な各種物体の表面温度を非接触で測定する場合に用いられるもので、測定対象物の表面から放出される赤外線量を測定することにより、その測定対象物の表面温度を計測する放射温度計に関する。   The present invention is used when, for example, measuring the surface temperature of various objects that are difficult to measure in a contact type, such as food or drinking water, or that are difficult to measure in a contact manner, such as an operating part in a factory. The present invention relates to a radiation thermometer that measures the surface temperature of an object to be measured by measuring the amount of infrared rays emitted from the surface of the object to be measured.

この種の放射温度計としては、動体の計測用途において応答速度の高速化が望まれている。例えば飲料水を連続製造しつつ温度管理する高速ラインでは1サンプルに対する測定可能時間が30〜40msecであり、このような条件下で、95%以上の応答特性を発揮させるためには10msec以下の応答速度が要求される。放射温度計の応答速度は、内部に搭載されている赤外線センサの応答速度に依存するものであり、かかる観点に立って、赤外線センサの応答速度を高速化するための種々の研究が行われ、飲料水の連続製造高速ラインにも十分に対応する応答速度を有する赤外線センサが開発され現在既に実用化レベルにまで達している。   As this type of radiation thermometer, it is desired to increase the response speed in moving object measurement applications. For example, in a high-speed line that continuously controls the temperature while continuously producing drinking water, the measurable time for one sample is 30 to 40 msec. Under such conditions, a response of 10 msec or less is required to exhibit a response characteristic of 95% or more. Speed is required. The response speed of the radiation thermometer depends on the response speed of the infrared sensor mounted inside. From this point of view, various researches have been conducted to increase the response speed of the infrared sensor. An infrared sensor having a response speed sufficiently corresponding to a continuous production high-speed line of drinking water has been developed and has already reached a practical level.

一方、高速応答性能を有する赤外線センサは、その構造上、受光領域が比較的大きくならざるを得ないのであり、このような大きな受光領域の赤外線センサを用いる放射温度計において指示値のふらつき及び視野特性に満足できる効率的な集光が行える光学系は開発されていない。したがって、高速応答性能を有する赤外線センサの光学系としては、従来よりごく一般的に知られている光学系、すなわち、図5に概略的に示すように、赤外線センサ21の前面側にその大きな受光領域21aに対応する大きさの赤外線レンズ22を配置したもの(例えば、特許文献1参照)や、図6に概略的に示すように、赤外線センサ21の受光領域21aの直前部に円錐形状の内周面を有する集光ミラー23のみを配置したものが用いられているのが実状である。   On the other hand, an infrared sensor having a high-speed response performance has a relatively large light receiving area due to its structure. In the radiation thermometer using the infrared sensor having such a large light receiving area, the fluctuation of the indicated value and the field of view. An optical system that can efficiently collect light with satisfactory characteristics has not been developed. Therefore, as an optical system of an infrared sensor having high-speed response performance, an optical system generally known from the past, that is, a large light reception on the front side of the infrared sensor 21, as schematically shown in FIG. An infrared lens 22 having a size corresponding to the region 21a (see, for example, Patent Document 1) or a cone-shaped inner portion immediately before the light receiving region 21a of the infrared sensor 21 as schematically shown in FIG. The actual condition is that only the condensing mirror 23 having a peripheral surface is arranged.

特開平4−104080号公報JP-A-4-104080

しかし、図5に示すように、大きな赤外線レンズ22のみを光学系として用いる放射温度計の場合は、大きいだけでなく分厚いレンズが必要で、高価であるのみならず厚さに対応して透過損失が増えるために、測定対象物からの赤外光の取り込み効率はせいぜい30%程度であり、高速応答性能に優れた赤外線センサを用いつつも、測定精度及び測定再現性の面では満足のゆく結果が得られない。また、図6に示すような円錐形状の集光ミラー23のみを光学系として用いる放射温度計の場合は、赤外線センサの受光領域に適合する絞った視野特性が得られず、測定精度及び測定再現性の面で満足のゆく結果が得られないという問題がある。   However, as shown in FIG. 5, in the case of a radiation thermometer using only a large infrared lens 22 as an optical system, not only a large but thick lens is required, which is not only expensive but also transmission loss corresponding to the thickness. As a result, the efficiency of capturing infrared light from the object to be measured is at most about 30%, which is satisfactory in terms of measurement accuracy and measurement reproducibility while using an infrared sensor with excellent high-speed response performance. Cannot be obtained. In addition, in the case of a radiation thermometer using only the conical condensing mirror 23 as shown in FIG. 6 as an optical system, a narrow visual field characteristic suitable for the light receiving region of the infrared sensor cannot be obtained, and measurement accuracy and measurement reproduction are achieved. There is a problem that satisfactory results cannot be obtained in terms of sex.

本発明は上述の実情に鑑みてなされたもので、その目的は、大きな受光領域の赤外線センサに最適な光学系を構築することにより、高速応答性能に優れているだけでなく、測定精度及び測定再現性の面でも満足のゆく結果が得られ、高速かつ高精度測定を実現できる放射温度計を提供することにある。   The present invention has been made in view of the above circumstances, and its purpose is not only to have excellent high-speed response performance by constructing an optimal optical system for an infrared sensor having a large light receiving area, but also to provide measurement accuracy and measurement. An object is to provide a radiation thermometer that can achieve satisfactory results in terms of reproducibility and can realize high-speed and high-accuracy measurement.

上記目的を達成するために、本発明に係る放射温度計は、測定対象物の表面から放出される赤外線量を測定してその測定対象物の表面温度を計測する放射温度計であって、赤外線センサと前記測定対象物からの赤外光を前記赤外線センサの受光領域に向けて屈折させる赤外線レンズとの間に、該赤外線レンズ側ほど漸次広い開口の内周面を有する錘体形状の集光ミラーをその内周面の狭い開口端が赤外線センサの受光領域に接触もしくは極近接する状態に配置していることを特徴としている。   In order to achieve the above object, a radiation thermometer according to the present invention is a radiation thermometer for measuring the surface temperature of an object to be measured by measuring the amount of infrared light emitted from the surface of the object to be measured. Condensation in the form of a weight having an inner peripheral surface with a gradually wider opening toward the infrared lens side between the sensor and an infrared lens that refracts infrared light from the measurement object toward the light receiving region of the infrared sensor. The mirror is characterized in that the narrow opening end of its inner peripheral surface is in contact with or in close proximity to the light receiving region of the infrared sensor.

上記のような特徴構成を有する本発明によれば、受光領域の大きな赤外線センサを使用することにより、放射温度計の応答速度を高速化して動体の計測用途にも十分に対応することができるとともに、赤外線センサの大きな受光領域に対する光学系として、赤外線レンズと錘体形状の集光ミラーとの組み合わせからなる光学系を用い、レンズの厚みや曲率及び集光ミラーの開き角や長さなどに関して、測定対象物からの赤外光を100%近く取り込める効率よい集光特性及び絞った視野特性が得られるようにするための光学シミュレーションによる選択と実験による検証を行い、その結果、大きな受光領域に最適な光学系の構築を完成することができたのである。したがつて、高速応答性能に優れているだけでなく、その高速応答赤外線センサに最適な光学系の構築(採用)により、測定精度及び測定再現性の面でも十分満足のゆく結果が得られ、高速かつ高精度測定が実現可能な放射温度計を得ることができるという効果を奏する。   According to the present invention having the above-described characteristic configuration, by using an infrared sensor having a large light receiving area, the response speed of the radiation thermometer can be increased, and the moving object can be sufficiently measured. As an optical system for the large light receiving area of the infrared sensor, an optical system consisting of a combination of an infrared lens and a weight-shaped condensing mirror is used, and the thickness and curvature of the lens, the opening angle and the length of the condensing mirror, etc. Selection by optical simulation and verification by experiment to obtain efficient condensing characteristics that can capture nearly 100% of infrared light from the measurement object and narrowed field of view characteristics. As a result, it is optimal for a large light receiving area. The construction of a simple optical system was completed. Therefore, not only is it excellent in high-speed response performance, but by constructing (adopting) an optical system that is optimal for the high-speed response infrared sensor, sufficiently satisfactory results can be obtained in terms of measurement accuracy and measurement reproducibility. There is an effect that a radiation thermometer capable of realizing high-speed and high-precision measurement can be obtained.

本発明に係る放射温度計における赤外線センサとしては、請求項2に記載のように、基板上に短冊状の細長い薄膜部を互いに平行に複数列配置し、これら複数列の細長い薄膜部の各長辺に沿ってそれぞれ複数の熱電対を直列に接続して設けたサーモパイルから構成されたものを使用することが好ましい。   As an infrared sensor in the radiation thermometer according to the present invention, as described in claim 2, a plurality of strip-like thin thin film portions are arranged in parallel to each other on a substrate, and each length of the plurality of thin thin film portions is arranged. It is preferable to use a thermopile provided with a plurality of thermocouples connected in series along the side.

上記構成のサーモパイル型赤外線センサは、薄膜部とヒートシンクである基板との熱コンダクタンスが短辺方向のサイズで規定されるので、応答速度を速くすることができる一方、薄膜部の長辺方向に沿った熱電対の設置段数を増やすことにより、応答速度が速くなればなるほど後述のトレードオフの関係から感熱部の到達温度が低くなり、それに伴う感度低下を補うことができ、二律背反の関係にある応答速度と実用レベル感度の性能を両立させることが可能である。このような高速応答でかつ感度の高いサーモパイル型赤外線センサとそれに最適な光学系との組み合せによって、例えば飲料水を連続製造しつつ温度管理する高速ラインなどの動体の計測用途に非常に有効に適用することができる。   In the thermopile infrared sensor having the above configuration, the thermal conductance between the thin film portion and the substrate that is the heat sink is defined by the size in the short side direction, so that the response speed can be increased while the long side direction of the thin film portion is aligned. By increasing the number of installed thermocouples, the faster the response speed, the lower the temperature reached by the heat sensitive part due to the trade-off relationship described later, which can compensate for the decrease in sensitivity, and the response is in a trade-off relationship. It is possible to achieve both speed and practical level sensitivity. By combining a thermopile infrared sensor with such a high-speed response and high sensitivity with an optimal optical system, it can be used effectively for measuring moving objects such as high-speed lines that control temperature while continuously producing drinking water. can do.

なお、前記応答速度と感度とのトレードオフの関係とは、感熱部の熱容量をC、基板との熱コンダクタンスをGとした時の熱時定数τが、
τ=C/G …(1)
で表わされ、応答速度を速くしようとすると、熱容量Cを小さく熱コンダクタンスGを大きくする必要がある一方、熱コンダクタンスGが大きくなると感度が低下する関係にあることをいうものである。
Note that the trade-off relationship between the response speed and the sensitivity is that the thermal time constant τ when C is the heat capacity of the heat sensitive portion and G is the thermal conductance with the substrate,
τ = C / G (1)
In order to increase the response speed, it is necessary to decrease the heat capacity C and increase the thermal conductance G. On the other hand, when the thermal conductance G increases, the sensitivity decreases.

また、上記サーモパイル型赤外線センサを用いる放射温度計において、請求項3に記載のように、前記赤外線センサの受光領域を円形またはほぼ円形に形成し、かつ、前記集光ミラーの内周面を円錐形状に形成することが望ましい。この場合は、測定対象物がどのような形状のものであっても、高感度かつ高速度に、しかも高精度に測定することができるとともに、汎用性を高めることができる。   Further, in the radiation thermometer using the thermopile type infrared sensor, as described in claim 3, a light receiving region of the infrared sensor is formed in a circular shape or a substantially circular shape, and an inner peripheral surface of the condenser mirror is a cone. It is desirable to form in a shape. In this case, regardless of the shape of the object to be measured, it is possible to measure with high sensitivity, high speed, and high accuracy, and to improve versatility.

また、本発明に係る放射温度計において、請求項4に記載のように、前記集光ミラーを、その内周面の広い開口端と赤外線レンズとの間に空間を形成するように配置する場合は、レンズによって屈折された赤外光が集光ミラーの広い開口端側の内周面で乱反射されて視野特性が悪化することを回避することが可能で、集光特性及び視野特性を一層優れたものとすることができる。   Further, in the radiation thermometer according to the present invention, as described in claim 4, the condensing mirror is disposed so as to form a space between the wide opening end of the inner peripheral surface and the infrared lens. It is possible to avoid that the infrared light refracted by the lens is diffusely reflected on the inner peripheral surface on the wide opening end side of the condensing mirror and deteriorate the visual field characteristic, and the condensing characteristic and the visual field characteristic are further improved. Can be.

以下、本発明の実施の形態を、図面を参照しながら説明する。
図1は、本発明に係る放射温度計の要部である鏡筒部の縦断面図である。図1において、1は赤外線センサで、鏡筒2内の底部に取付座板3及びボルト4を介して着脱自在に組付け固定されている。前記鏡筒2の開口端側には測定対象物からの赤外光IRを前記赤外線センサ1の受光領域に向けて屈折させる赤外線レンズ5が環状押え6を介して固定されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a longitudinal sectional view of a lens barrel portion which is a main part of a radiation thermometer according to the present invention. In FIG. 1, reference numeral 1 denotes an infrared sensor, which is detachably assembled and fixed to the bottom of the lens barrel 2 via a mounting seat plate 3 and a bolt 4. An infrared lens 5 that refracts infrared light IR from a measurement object toward a light receiving region of the infrared sensor 1 is fixed to the opening end side of the lens barrel 2 via an annular presser 6.

前記赤外線センサ1と前記赤外線レンズ5との間の鏡筒2内には、赤外線レンズ5側ほど漸次広い開口の内周面7aを有する円錐形状の集光ミラー7が配置されている。この集光ミラー7は、その内周面7aの最も広い開口端に前記赤外線センサ1の受光領域(後述する)の約15倍の面積の仮想受光面8を形成するように構成されているとともに、その内周面7aの最も狭い開口端が前記赤外線センサ1を収容するキャン9に接触されるように固定して赤外線センサ1の受光領域との間の距離を可及的に短くしている。また、前記集光ミラー7は、その内周面7aの最も広い開口端、すなわち、仮想受光面8と赤外線レンズ5との間に空間が存在するように長さLの短いものに形成されている。   In the lens barrel 2 between the infrared sensor 1 and the infrared lens 5, a conical condensing mirror 7 having an inner peripheral surface 7a having an opening gradually wider toward the infrared lens 5 side is disposed. The condensing mirror 7 is configured to form a virtual light receiving surface 8 having an area approximately 15 times as large as a light receiving region (described later) of the infrared sensor 1 at the widest opening end of the inner peripheral surface 7a. The narrowest opening end of the inner peripheral surface 7a is fixed so as to be in contact with the can 9 that accommodates the infrared sensor 1, and the distance from the light receiving region of the infrared sensor 1 is made as short as possible. . The condensing mirror 7 is formed to have the shortest length L so that there is a space between the widest opening end of the inner peripheral surface 7 a, that is, the virtual light receiving surface 8 and the infrared lens 5. Yes.

前記鏡筒2底部の取付座板3の外面には、赤外線センサ1のヒートシンクとなるシリコン基板10から導出されたリードピン11を電気的に接続する導電性のプリント基板12が前記ボルト4により共締め固定されている。   On the outer surface of the mounting base plate 3 at the bottom of the lens barrel 2, a conductive printed circuit board 12 for electrically connecting lead pins 11 led out from a silicon substrate 10 serving as a heat sink of the infrared sensor 1 is fastened together with the bolts 4. It is fixed.

前記赤外線センサ1は、図2及び図3の原理構成図に示すように、シリコン基板10の上面にSiO2 等の絶縁膜13を形成した上、前記シリコン基板10の裏面をエッチングすることにより、ダイヤフラム構造で短冊状の3列の細長い薄膜部14a,14b,14cを互いに平行に並べ形成して感熱部とし、これら薄膜部14a,14b,14cにより略円形の受光領域1Aが形成されている。 The infrared sensor 1 is formed by forming an insulating film 13 such as SiO 2 on the upper surface of the silicon substrate 10 and etching the back surface of the silicon substrate 10 as shown in the principle configuration diagrams of FIGS. Three thin strips of thin strips 14a, 14b, 14c having a diaphragm structure are arranged in parallel with each other to form a heat sensitive part, and these thin film parts 14a, 14b, 14c form a substantially circular light receiving region 1A.

そして、前記3列の薄膜部14a,14b,14cの各長辺に沿って、アルミニウムと多結晶シリコンとで構成される複数個、例えば合計で144個の熱電対15をそれらの各温接点15hが薄膜部14a,14b,14c上に位置し、かつ、各冷接点15cがシリコン基板10上に位置するように一定パターン幅に並設するとともに、これら各熱電対15を直列に接続した高速応答サーモパイルから構成されている。   Then, along each long side of the three rows of thin film portions 14a, 14b, and 14c, a plurality of, for example, a total of 144 thermocouples 15 made of aluminum and polycrystalline silicon are connected to their hot junctions 15h. Is located on the thin film portions 14a, 14b, 14c, and the cold junctions 15c are arranged in parallel so as to be located on the silicon substrate 10, and the thermocouples 15 are connected in series. It consists of a thermopile.

放射温度計は、上記した高速応答サーモパイル型の赤外線センサ1及び赤外線レンズ5と集光ミラー7の組み合せからなる光学系を搭載した鏡筒部に、警報出力機能や、ゲート入力によるピークホールド・ボトムホールド、移動平均機能、外部とのインターフェイス回路などを内蔵したケース本体が接合されていいるが、それらは周知であるため、詳細な説明は省略する。   The radiation thermometer has an alarm output function and a peak hold / bottom by gate input in a lens barrel portion on which an optical system composed of a combination of the above-described high-speed response thermopile infrared sensor 1 and infrared lens 5 and condenser mirror 7 is mounted. A case body incorporating a hold, a moving average function, an interface circuit with the outside, and the like are joined. However, since these are well known, detailed description thereof is omitted.

上記のように構成された放射温度計においては、赤外線センサ1として、短冊状の細長い薄膜部14a,14b,14cを互いに平行に3列並べた構造を感熱部とし、その感熱部に複数個、例えば合計144個の熱電対15を直列接続したサーモパイル型赤外線センサが用いられていることにより、既述のトレードオフの関係式(1)からも明らかなように、2msec以上、10msec以下の速い応答速度と実用レベル感度を両立させることが可能となり、例えば飲料水を連続製造しつつ温度管理する高速ラインなどの動体の計測用途にも有効に適用することができる。   In the radiation thermometer configured as described above, as the infrared sensor 1, a structure in which strip-like long thin film portions 14a, 14b, and 14c are arranged in parallel to each other as a heat sensitive portion, and a plurality of heat sensitive portions, For example, by using a thermopile type infrared sensor in which a total of 144 thermocouples 15 are connected in series, a rapid response of 2 msec or more and 10 msec or less is evident from the trade-off relational expression (1) described above. It is possible to achieve both speed and practical level sensitivity, and for example, it can be effectively applied to moving object measurement applications such as a high-speed line for temperature control while continuously producing drinking water.

その上、上述のような高速応答高感度なサーモパイル型赤外線センサ1の比較的大きな受光領域1Aに対する光学系として、赤外線レンズ5と円錐形状の集光ミラー7とを組み合わせたもので、レンズ5の厚みや曲率及び集光ミラー7の開き角や長さなどに関して、測定対象物からの赤外光IRを100%近く取り込める効率よい集光特性及び絞った視野特性が得られるようにするための光学シミュレーションによる選択と実験による検証を行い、大きな受光領域1Aに対しても指示値のふらつき及び視野特性が満足できるように構築された最適な光学系を用いることによって、高速応答性能に優れているだけでなく、測定精度が±2℃(0〜200℃)以内、測定再現性が1℃以内という高精度測定を実現可能な放射温度計を得ることができる。   In addition, as an optical system for the relatively large light receiving area 1A of the thermopile type infrared sensor 1 having a high-speed response and high sensitivity as described above, an infrared lens 5 and a conical condensing mirror 7 are combined. Optics for obtaining an efficient condensing characteristic and a narrow visual field characteristic capable of capturing nearly 100% of the infrared light IR from the measurement object with respect to the thickness, curvature, opening angle and length of the condensing mirror 7, etc. By selecting by simulation and verifying by experiment, and using an optimal optical system constructed so that the fluctuation of the indicated value and the visual field characteristics can be satisfied even for a large light receiving area 1A, it has only excellent high-speed response performance. In addition, it is possible to obtain a radiation thermometer capable of realizing high-precision measurement with a measurement accuracy within ± 2 ° C (0 to 200 ° C) and a measurement reproducibility within 1 ° C That.

また、上記実施の形態のように、前記サーモパイル型赤外線センサ1の受光領域1Aを略円形または円形に形成し、かつ、前記集光ミラー7の内周面7aを円錐形状に形成することにより、測定対象物がどのような形状のものであっても、高感度かつ高速度に、しかも高精度に測定することができるとともに、汎用性を高めることができる。   Further, as in the above embodiment, the light receiving region 1A of the thermopile infrared sensor 1 is formed in a substantially circular or circular shape, and the inner peripheral surface 7a of the condenser mirror 7 is formed in a conical shape. Regardless of the shape of the object to be measured, it can be measured with high sensitivity, high speed and high accuracy, and versatility can be enhanced.

さらに、前記集光ミラー7としては、図1の仮想線で示すように、その円錐形状の内周面7aの最も広い開口端が赤外線レンズ5に接触するような長さに形成してもよいが、特に、上記実施の形態で示したように、内周面7aの最も広い開口端と赤外線レンズ5との間に空間が存在する長さLの短いものに形成することによって、レンズ5によって屈折された赤外光IRが集光ミラー7の広い開口端側の内周面7aで乱反射されて視野特性が悪化することを回避することが可能で、集光特性及び視野特性を一層優れたものとすることができる。   Further, the condensing mirror 7 may be formed in such a length that the widest open end of the conical inner peripheral surface 7a contacts the infrared lens 5 as shown by the phantom line in FIG. However, as shown in the above-described embodiment, the lens 5 is formed with a short length L in which a space exists between the widest opening end of the inner peripheral surface 7a and the infrared lens 5. It is possible to avoid that the refracted infrared light IR is irregularly reflected by the inner peripheral surface 7a on the wide opening end side of the condensing mirror 7 to deteriorate the visual field characteristic, and the condensing characteristic and the visual field characteristic are further improved. Can be.

なお、上記実施の形態では、シリコン基板10上にダイヤフラム構造で短冊状の3列の細長い薄膜部14a,14b,14cを互いに平行に並べて感熱部とし、これら薄膜部14a,14b,14cにより略円形の受光領域1Aを形成してなるサーモパイル型赤外線センサ1を使用したが、これに代えて、図4に示すように、ダイヤフラム構造で短冊状の同長の細長い薄膜部14a,14bを2列平行に並べて感熱部とし、これら2列の薄膜部14a,14bの各長辺に沿ってアルミニウムと多結晶シリコンとで構成される複数個の熱電対15を並設するとともに、これら各熱電対15を直列に接続してなる長方形の受光領域1Aを有する高速応答サーモパイル型赤外線センサ1を使用してもよい。   In the above embodiment, three rows of strip-like thin thin film portions 14a, 14b, 14c having a diaphragm structure on the silicon substrate 10 are arranged in parallel with each other to form a heat sensitive portion, and the thin film portions 14a, 14b, 14c are substantially circular. The thermopile infrared sensor 1 formed with the light receiving region 1A is used, but instead of this, as shown in FIG. 4, two rows of elongated thin film portions 14a, 14b having the same length as the strip structure are arranged in parallel. A plurality of thermocouples 15 made of aluminum and polycrystalline silicon are juxtaposed along the long sides of the two rows of thin film portions 14a and 14b. A fast response thermopile type infrared sensor 1 having a rectangular light receiving region 1A connected in series may be used.

本発明に係る放射温度計の要部である鏡筒部の縦断面図である。It is a longitudinal cross-sectional view of the lens-barrel part which is the principal part of the radiation thermometer which concerns on this invention. 本発明に係る放射温度計に用いる赤外線センサの原理構成を示す平面図である。It is a top view which shows the principle structure of the infrared sensor used for the radiation thermometer which concerns on this invention. 本発明に係る放射温度計に用いる赤外線センサの原理構成を示す断面図である。It is sectional drawing which shows the principle structure of the infrared sensor used for the radiation thermometer which concerns on this invention. 本発明に係る放射温度計に用いる他の赤外線センサの原理構成を示す平面図である。It is a top view which shows the principle structure of the other infrared sensor used for the radiation thermometer which concerns on this invention. 従来の放射温度計に用いられていた赤外線センサの光学系の一例を示す概略図である。It is the schematic which shows an example of the optical system of the infrared sensor used for the conventional radiation thermometer. 従来の放射温度計に用いられていた赤外線センサの光学系の他の例を示す概略図である。It is the schematic which shows the other example of the optical system of the infrared sensor used for the conventional radiation thermometer.

符号の説明Explanation of symbols

1 赤外線センサ(サーモパイル型赤外線センサ)
1A 受光領域
5 赤外線レンズ
7 集光ミラー
7a 円錐形状の内周面
14a,14b,14c 短冊状の細長い薄膜部
15 熱電対
IR 赤外光
1 Infrared sensor (thermopile infrared sensor)
1A Light-receiving area 5 Infrared lens 7 Condensing mirror 7a Conical inner peripheral surface 14a, 14b, 14c Strip-shaped elongated thin film portion 15 Thermocouple IR Infrared light

Claims (4)

測定対象物の表面から放出される赤外線量を測定してその測定対象物の表面温度を計測する放射温度計であって、
赤外線センサと前記測定対象物からの赤外光を前記赤外線センサの受光領域に向けて屈折させる赤外線レンズとの間に、該赤外線レンズ側ほど漸次広い開口の内周面を有する錘体形状の集光ミラーをその内周面の狭い開口端が赤外線センサの受光領域に接触もしくは極近接する状態に配置していることを特徴とする放射温度計。
A radiation thermometer that measures the surface temperature of the measurement object by measuring the amount of infrared rays emitted from the surface of the measurement object,
Between the infrared sensor and the infrared lens that refracts infrared light from the object to be measured toward the light receiving region of the infrared sensor, a weight-shaped collection having an inner peripheral surface with an opening gradually wider toward the infrared lens side. A radiation thermometer characterized in that the optical mirror is arranged in such a manner that the narrow opening end of its inner peripheral surface is in contact with or in close proximity to the light receiving region of the infrared sensor.
前記赤外線センサが、基板上に短冊状の細長い薄膜部を互いに平行に複数列配置し、これら複数列の細長い薄膜部の各長辺に沿ってそれぞれ複数の熱電対を直列に接続して設けたサーモパイルから構成されている請求項1に記載の放射温度計。   The infrared sensor has a plurality of strips of thin thin film portions arranged in parallel to each other on a substrate, and a plurality of thermocouples are connected in series along each long side of the thin film portions of the plurality of rows. The radiation thermometer according to claim 1, wherein the radiation thermometer is composed of a thermopile. 前記サーモパイルから構成される赤外線センサの受光領域が、円形またはほぼ円形に形成され、かつ、前記集光ミラーの内周面が円錐形状に形成されている請求項2に記載の放射温度計。   The radiation thermometer according to claim 2, wherein a light receiving region of an infrared sensor constituted by the thermopile is formed in a circular shape or a substantially circular shape, and an inner peripheral surface of the condenser mirror is formed in a conical shape. 前記集光ミラーは、その内周面の広い開口端と赤外線レンズとの間に空間を形成するように配置されている請求項1ないし3のいずれかに記載の放射温度計。
The radiation thermometer according to any one of claims 1 to 3, wherein the condensing mirror is disposed so as to form a space between an open end having a large inner peripheral surface and an infrared lens.
JP2007162613A 2007-06-20 2007-06-20 Radiation thermometer Pending JP2009002739A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007162613A JP2009002739A (en) 2007-06-20 2007-06-20 Radiation thermometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007162613A JP2009002739A (en) 2007-06-20 2007-06-20 Radiation thermometer

Publications (1)

Publication Number Publication Date
JP2009002739A true JP2009002739A (en) 2009-01-08

Family

ID=40319290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007162613A Pending JP2009002739A (en) 2007-06-20 2007-06-20 Radiation thermometer

Country Status (1)

Country Link
JP (1) JP2009002739A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011214893A (en) * 2010-03-31 2011-10-27 Yamatake Corp Flame sensor
JP2011232183A (en) * 2010-04-28 2011-11-17 Miura Co Ltd Flame sensor, flame detector and combustion apparatus
JP2012177556A (en) * 2011-02-25 2012-09-13 Chino Corp Heat equilibrium structure for radiation pyrometer sensor element
JP2014155932A (en) * 2013-02-14 2014-08-28 Toyota Motor Corp Laser irradiation device and laser irradiation method
JP2015525342A (en) * 2012-05-30 2015-09-03 アイピージー フォトニクス コーポレーション Laser power sensor
CN105318973A (en) * 2015-11-13 2016-02-10 深圳通感微电子有限公司 A self-focusing lens thermopile sensor and an assembly process therefor
US9366575B2 (en) 2013-05-17 2016-06-14 Panasonic Intellectual Property Corporation Of America Temperature measuring apparatus and temperature measuring method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06102090A (en) * 1992-09-17 1994-04-12 Nippon Soken Inc Light detecting device
JPH0862039A (en) * 1994-08-26 1996-03-08 Matsushita Electric Ind Co Ltd Light receiving device for optical space transmission
JPH0862036A (en) * 1994-06-15 1996-03-08 Nikon Corp Infrared detector
JPH0926361A (en) * 1995-07-13 1997-01-28 Mitsubishi Electric Corp Detecting device for radiant temperature
JP2001174326A (en) * 1999-12-15 2001-06-29 Tokyo Gas Co Ltd Light receiving device
JP2004095314A (en) * 2002-08-30 2004-03-25 Matsushita Electric Ind Co Ltd Induction heating cooker
JP2005308551A (en) * 2004-04-21 2005-11-04 Horiba Ltd Thermopile type infrared sensor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06102090A (en) * 1992-09-17 1994-04-12 Nippon Soken Inc Light detecting device
JPH0862036A (en) * 1994-06-15 1996-03-08 Nikon Corp Infrared detector
JPH0862039A (en) * 1994-08-26 1996-03-08 Matsushita Electric Ind Co Ltd Light receiving device for optical space transmission
JPH0926361A (en) * 1995-07-13 1997-01-28 Mitsubishi Electric Corp Detecting device for radiant temperature
JP2001174326A (en) * 1999-12-15 2001-06-29 Tokyo Gas Co Ltd Light receiving device
JP2004095314A (en) * 2002-08-30 2004-03-25 Matsushita Electric Ind Co Ltd Induction heating cooker
JP2005308551A (en) * 2004-04-21 2005-11-04 Horiba Ltd Thermopile type infrared sensor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011214893A (en) * 2010-03-31 2011-10-27 Yamatake Corp Flame sensor
JP2011232183A (en) * 2010-04-28 2011-11-17 Miura Co Ltd Flame sensor, flame detector and combustion apparatus
JP2012177556A (en) * 2011-02-25 2012-09-13 Chino Corp Heat equilibrium structure for radiation pyrometer sensor element
JP2015525342A (en) * 2012-05-30 2015-09-03 アイピージー フォトニクス コーポレーション Laser power sensor
JP2014155932A (en) * 2013-02-14 2014-08-28 Toyota Motor Corp Laser irradiation device and laser irradiation method
US9366575B2 (en) 2013-05-17 2016-06-14 Panasonic Intellectual Property Corporation Of America Temperature measuring apparatus and temperature measuring method
CN105318973A (en) * 2015-11-13 2016-02-10 深圳通感微电子有限公司 A self-focusing lens thermopile sensor and an assembly process therefor

Similar Documents

Publication Publication Date Title
US9171885B2 (en) Infrared detector and infrared image sensor including the same
JP2009002739A (en) Radiation thermometer
JP2001349787A5 (en)
US9851253B2 (en) Infrared thermal sensor with good SNR
EP3408629B1 (en) An ir detector array device
WO2010029488A1 (en) Planar thermopile infrared microsensor
JP5001007B2 (en) Infrared sensor utilizing optimized surface
JP6095856B2 (en) Electromagnetic wave detector and gas analyzer
JP2008145133A (en) Radiation thermometer
JP2007121047A (en) Infrared sensor
EP2778636A2 (en) Infrared sensor of rear surface irradiation type
US20050034749A1 (en) Structure of thermopile sensor
JP2002048649A5 (en)
CN111307296A (en) Infrared temperature measurement module, infrared temperature measurement device and infrared temperature measurement method
US9528881B1 (en) Stress isolated detector element and microbolometer detector incorporating same
JPH075047A (en) Radiation heat sensor
JP2003149045A (en) Thermal type infrared detector
JP4932613B2 (en) Radiation thermometer
KR101935016B1 (en) Non-dispersive Infrared gas sensor using multi internal reflection
JP2015135316A (en) temperature measuring device
CN213148115U (en) Infrared detection chip, module and electronic device
US20060289721A1 (en) Device for detecting optical parameters of a laser beam
JP2005268660A (en) Infrared array sensor
JP2014149300A (en) Temperature sensor
CN211740404U (en) Infrared temperature measurement module, infrared temperature measurement rifle and security door

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091224

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121120