JPH08275925A - Radiative clinical thermometer - Google Patents
Radiative clinical thermometerInfo
- Publication number
- JPH08275925A JPH08275925A JP7082235A JP8223595A JPH08275925A JP H08275925 A JPH08275925 A JP H08275925A JP 7082235 A JP7082235 A JP 7082235A JP 8223595 A JP8223595 A JP 8223595A JP H08275925 A JPH08275925 A JP H08275925A
- Authority
- JP
- Japan
- Prior art keywords
- optical lens
- eardrum
- light receiving
- sensor
- diameter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Radiation Pyrometers (AREA)
- Measuring And Recording Apparatus For Diagnosis (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は赤外線センサを用いた放
射体温計に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a radiation thermometer using an infrared sensor.
【0002】[0002]
【従来の技術】人の体温を最も忠実に反映しているとさ
れる鼓膜の温度を赤外線センサにより非接触で測定する
放射体温計の受光部は、従来一般的にサーモパイルなど
の赤外線センサとこれに直結された金属製の導波管から
構成されている。赤外線センサには固有の視野角があ
り、この視野角の範囲から取入れる赤外線のエネルギー
を電気信号に変換して温度を求めているが、被測定物の
面積がこの範囲を越えているときはその被測定物の温度
を正しく示すが、この範囲よりも小さい場合は被測定物
の周囲温度も含めた平均温度となってしまい測定誤差が
大きくなる。2. Description of the Related Art The light receiving part of a radiation thermometer that measures the temperature of the eardrum, which is said to reflect the body temperature of a person most faithfully, by an infrared sensor is conventionally a thermopile infrared sensor and the like. It is composed of a metal waveguide directly connected. The infrared sensor has a unique viewing angle, and the infrared energy taken in from this viewing angle range is converted to an electrical signal to determine the temperature, but when the area of the DUT exceeds this range. Although the temperature of the object to be measured is indicated correctly, if it is smaller than this range, it becomes an average temperature including the ambient temperature of the object to be measured, and the measurement error increases.
【0003】このため図3に示すように筐体10内にシ
ャーシ11を介して取付けた赤外線センサ12の前に内
面を鏡面状とした導波管13を用いて、被測定物14
(この場合鼓膜)に等価的に近づけて視野角範囲に占め
る鼓膜の面積をできるだけ大きくしようとしている。し
かし導波管13の出口を鼓膜14にあまり近づけること
は身体に対して危険であり5〜10mm離しているのが
実態である。この場合、鼓膜とその周辺温度との差が測
定誤差となり、また放射体温計を耳孔に挿入する深さの
ばらつきも誤差となる。さらに放射体温計を耳孔に挿入
した直後から耳孔に当接する筐体10には耳孔からの熱
が伝わりこれが内部の導波管13に伝わることにより、
導波管13の温度は徐々に上昇しこれもまた測定誤差と
なる。これを解決するため筐体10をあらかじめ体温付
近に加熱しておくなどの方法が提案されているが携帯用
機器としてふさわしくないことは明らかである。Therefore, as shown in FIG. 3, an object to be measured 14 is provided by using a waveguide 13 having an inner surface of a mirror surface in front of an infrared sensor 12 mounted in a housing 10 via a chassis 11.
(In this case, the eardrum) is approached equivalently and the area of the eardrum occupying the viewing angle range is made to be as large as possible. However, it is dangerous for the body to bring the outlet of the waveguide 13 too close to the eardrum 14, and the distance is 5 to 10 mm. In this case, the difference between the eardrum and its surrounding temperature causes a measurement error, and the variation in the depth at which the radiation thermometer is inserted into the ear canal also causes an error. Further, immediately after inserting the radiation thermometer into the ear canal, the heat from the ear canal is transferred to the housing 10 that abuts on the ear canal, and this is transferred to the internal waveguide tube 13.
The temperature of the waveguide 13 gradually rises, which also causes a measurement error. In order to solve this, a method has been proposed in which the housing 10 is heated in advance to around the body temperature, but it is obvious that it is not suitable as a portable device.
【0004】[0004]
【発明が解決しようとする課題】赤外線センサの視野角
は一般的に50〜90°と広く鼓膜の直径をφ5とする
と距離として5〜2.5mmまで接近させないと上記の
問題が発生する。しかし視野角が3°程度となれば距離
は飛躍的に大きくなり約95mmとなる。視野角を小さ
くするためにレンズが用いられるが、この場合赤外線セ
ンサの受光部の大きさが問題となる。すなわち、前記サ
ーモパイルの受光部サイズは約φ1mmであり、鼓膜と
光学レンズとの距離を40mm、鼓膜上の視野をφ3m
mとすると視野角は約4.3°となり、光学レンズと受
光部との距離は約13mmとなるが、このときφ5mm
の鼓膜を距離5mmで直接見る場合と同等の感度を得る
には約φ15mmの光学レンズ径が必要となる。しかし
このような大きな光学レンズを鼓膜用体温計に組込むこ
とは困難である。The infrared sensor generally has a wide viewing angle of 50 to 90 °, and assuming that the eardrum has a diameter of φ5, the above problem occurs unless the distance is approached to 5 to 2.5 mm. However, when the viewing angle is about 3 °, the distance is dramatically increased to about 95 mm. A lens is used to reduce the viewing angle, but in this case, the size of the light receiving portion of the infrared sensor becomes a problem. That is, the size of the light receiving portion of the thermopile is about 1 mm, the distance between the eardrum and the optical lens is 40 mm, and the visual field on the eardrum is 3 m.
When m, the viewing angle is about 4.3 °, and the distance between the optical lens and the light receiving part is about 13 mm. At this time, φ5 mm
An optical lens diameter of about φ15 mm is required to obtain the same sensitivity as when directly viewing the eardrum at a distance of 5 mm. However, it is difficult to incorporate such a large optical lens in the eardrum thermometer.
【0005】本発明は上記問題点を解決するもので光学
レンズを用いながら小形で高精度な放射体温計を提供す
ることを目的とする。An object of the present invention is to solve the above problems and to provide a small and highly accurate radiation thermometer using an optical lens.
【0006】[0006]
【課題を解決するための手段】上記目的を達成するため
本発明は、センサ受光部寸法が直径0.3mm以下の赤
外線センサを用い直径6mm以下の光学レンズを有する
構成とする。In order to achieve the above-mentioned object, the present invention comprises an infrared sensor having a sensor light receiving portion having a diameter of 0.3 mm or less and an optical lens having a diameter of 6 mm or less.
【0007】[0007]
【作用】以上の構成とすることにより、視野角はセンサ
受光部の大きさと、この受光部と光学レンズとの距離に
よって決まり、被測定物上での視野の大きさはこの視野
角と、被測定物と光学レンズとの距離によって決まるた
め、受光直径0.3mm以下の赤外線センサと直径6m
m以下の光学レンズの組合わせにより鼓膜に対して十分
小さな視野と十分な光学感度が得られ、外乱の影響を受
けにくい高精度の放射体温計が実現できる。With the above configuration, the viewing angle is determined by the size of the sensor light-receiving part and the distance between the light-receiving part and the optical lens, and the size of the field of view on the object to be measured is Since it depends on the distance between the object to be measured and the optical lens, an infrared sensor with a light receiving diameter of 0.3 mm or less and a diameter of 6 m
By combining optical lenses of m or less, a sufficiently small field of view and sufficient optical sensitivity can be obtained for the eardrum, and a highly accurate radiation thermometer that is not easily affected by disturbance can be realized.
【0008】[0008]
【実施例】以下本発明の実施例について図を参照しなが
ら説明する。Embodiments of the present invention will be described below with reference to the drawings.
【0009】(実施例1)図1は本発明の第1の実施例
における側断面図である。1は赤外線センサ、2はセン
サ受光部、3は光学レンズ、4はチョッパ、5はシャー
シ、6は筐体、7は鼓膜である。赤外線センサ1には開
口部8が設けられている。(Embodiment 1) FIG. 1 is a side sectional view of a first embodiment of the present invention. 1 is an infrared sensor, 2 is a sensor light receiving part, 3 is an optical lens, 4 is a chopper, 5 is a chassis, 6 is a housing, and 7 is an eardrum. The infrared sensor 1 is provided with an opening 8.
【0010】鼓膜7から放射された赤外線は光学レンズ
3を通して集光させられ開口部8から赤外線センサ1に
入りセンサ受光部2に結像する。この赤外線により赤外
線センサ1は電圧を発生し、この電圧は図示しないリー
ド線によって図示しない電子回路に接続され、この電子
回路はセンサ電圧を増幅・変換・演算処理をして温度に
変換して同じく図示しない表示器に温度として表示す
る。Infrared rays emitted from the eardrum 7 are condensed through the optical lens 3 and enter the infrared sensor 1 through the opening 8 and form an image on the sensor light receiving section 2. This infrared ray causes the infrared sensor 1 to generate a voltage, and this voltage is connected to an electronic circuit (not shown) by a lead wire (not shown). This electronic circuit amplifies / converts / calculates the sensor voltage to convert it into temperature and The temperature is displayed on a display (not shown).
【0011】開口部8はセンサ受光部2とともに赤外線
センサ1自体の視野角を決定し、ここではほぼ光学レン
ズ3の有効径をカバーしている。赤外線センサ1として
はサーモパイル、焦電センサなどがあるがここでは薄膜
型焦電センサを用いている。このため、入射する赤外線
を断続する必要が生じチョッパ4にて開口部8に入射す
る直前の赤外線の束を断続させている。赤外線センサ
1、光学レンズ3、チョッパ4はほぼ同一のシャーシ5
に支持され、さらにシャーシ5は筐体6に内蔵されてい
る。筐体6は赤外線の入射方向に筒状部9を形成してお
り、この筒状部9を体温測定時に耳孔に挿入する。The opening 8 determines the viewing angle of the infrared sensor 1 itself together with the sensor light receiving portion 2, and here covers substantially the effective diameter of the optical lens 3. As the infrared sensor 1, there are a thermopile, a pyroelectric sensor and the like, but a thin film type pyroelectric sensor is used here. For this reason, it is necessary to interrupt the incident infrared rays, and the chopper 4 interrupts the infrared ray bundle immediately before entering the opening 8. The infrared sensor 1, the optical lens 3, and the chopper 4 are almost the same chassis 5
The chassis 5 is built in the housing 6. The casing 6 has a tubular portion 9 formed in the direction of incidence of infrared rays, and the tubular portion 9 is inserted into the ear canal when measuring the body temperature.
【0012】光学レンズ系としての視野角はセンサ受光
部2の大きさとセンサ受光部2と光学レンズ3との距離
で決まる。図2はレンズ光学系の模式図である。ここで
aは鼓膜7の被測定物と光学レンズ3との距離、bはセ
ンサ受光部2と光学レンズ3との距離、fは光学レンズ
3の焦点距離、θはレンズ系の視野角、dはセンサ受光
部2の直径、Dは光学レンズ3の有効径、eは被測定物
上での視野径、ωは赤外線センサ1から見た光学レンズ
3の立体角である。結像条件を満すとすると各パラメー
タの間には次の関係が成立つ。The viewing angle of the optical lens system is determined by the size of the sensor light receiving portion 2 and the distance between the sensor light receiving portion 2 and the optical lens 3. FIG. 2 is a schematic diagram of the lens optical system. Here, a is the distance between the object to be measured on the eardrum 7 and the optical lens 3, b is the distance between the sensor light receiving unit 2 and the optical lens 3, f is the focal length of the optical lens 3, θ is the viewing angle of the lens system, and d is the viewing angle of the lens system. Is the diameter of the sensor light receiving portion 2, D is the effective diameter of the optical lens 3, e is the field diameter on the object to be measured, and ω is the solid angle of the optical lens 3 viewed from the infrared sensor 1. If the image forming conditions are satisfied, the following relationships are established among the parameters.
【0013】すなわち、センサ受光部2と光学レンズ3
との距離bは(数1)、レンズ系の視野角θは(数
2)、赤外線センサ1から見た光学レンズ3の立体角ω
は(数3)に示すようになる。That is, the sensor light receiving portion 2 and the optical lens 3
And the viewing angle θ of the lens system is (Equation 2), the solid angle ω of the optical lens 3 seen from the infrared sensor 1 is
Becomes as shown in (Equation 3).
【0014】[0014]
【数1】 [Equation 1]
【0015】[0015]
【数2】 [Equation 2]
【0016】[0016]
【数3】 (Equation 3)
【0017】ここでa=40mm、f=6mm、d=
0.24mm、D=5mmとするとθ=1.95°、ω
=0.394となる。このとき赤外線センサ1としてサ
ーモパイルやバルク型セラミック焦電センサのように受
光素子の大きなものを想定してD=1mmとするとθ=
9.1となり、eはφ5.66となって鼓膜7をφ5m
mとするとこれをカバーすることはできない。ここでθ
=1.95に近づけるにはf=16.9mmにすれば良
いが、このときω=0.023と極端に減少してしま
う。立体角ωは光学感度を決定するのでωを0.394
に近づけるにはD=20.7にする必要がある。しかし
このような大きな光学レンズ3を体温計に搭載するとこ
れに伴い筐体6の耳孔に挿入する筒状部9の径も太くす
る必要が生じるため耳孔への挿入が不可能になる。Here, a = 40 mm, f = 6 mm, d =
If 0.24 mm and D = 5 mm, θ = 1.95 °, ω
= 0.394. At this time, assuming that the infrared sensor 1 has a large light receiving element such as a thermopile or a bulk-type ceramic pyroelectric sensor, and D = 1 mm, θ =
9.1, e becomes φ5.66 and the eardrum 7 becomes φ5 m
If m, this cannot be covered. Where θ
In order to approach = 1.95, f = 16.9 mm may be set, but at this time, ω = 0.023, which is extremely reduced. Since the solid angle ω determines the optical sensitivity, ω is 0.394.
In order to get closer to, it is necessary to set D = 20.7. However, if such a large optical lens 3 is mounted on a thermometer, the diameter of the tubular portion 9 to be inserted into the ear canal of the housing 6 needs to be increased accordingly, so that it cannot be inserted into the ear canal.
【0018】一方従来の放射体温計は図3に示すように
赤外線センサ12、導波管13、筐体10などから成立
っているが、導波管13の内面は研磨及びめっきにより
鏡面状に仕上げられており、光学的にはこの長さ分だけ
空間を短縮する効果がある。したがって赤外線センサ1
2は導波管13の入口から直接被測定物14を覗いてい
るのとほぼ同じことになる。このときの光学感度を決定
する項は次の通りである。On the other hand, the conventional radiation thermometer is composed of an infrared sensor 12, a waveguide 13, a casing 10 and the like as shown in FIG. 3, but the inner surface of the waveguide 13 is mirror-finished by polishing and plating. However, it is optically effective to shorten the space by this length. Therefore, infrared sensor 1
2 is almost the same as looking directly into the DUT 14 from the entrance of the waveguide 13. The terms that determine the optical sensitivity at this time are as follows.
【0019】導波管13の入口と被測定物14との距離
をL、赤外線センサ12自身の視野角をθとすると感度
係数Aは(数4)、光学レンズの有効径Dは(数5)と
なる。When the distance between the inlet of the waveguide 13 and the object 14 to be measured is L and the viewing angle of the infrared sensor 12 itself is θ, the sensitivity coefficient A is (Equation 4) and the effective diameter D of the optical lens is (Equation 5). ).
【0020】[0020]
【数4】 [Equation 4]
【0021】[0021]
【数5】 (Equation 5)
【0022】L=10mm、鼓膜の径をφ5mmとする
とこれをカバーする視野角はθ=28°となりA=0.
059となる。When L = 10 mm and the eardrum diameter is φ5 mm, the viewing angle covering this is θ = 28 ° and A = 0.
It becomes 059.
【0023】これと前記レンズ系とを比較するには、レ
ンズ系の場合は前記ωのほかにレンズ効率と1/πがか
かるためレンズ効率を0.6として前記ω=0.394
を用いるとレンズ系の感度係数は0.075となり、本
実施例の方が感度においても有利であることがわかる。To compare this with the lens system, in the case of the lens system, 1 / π is added to the lens efficiency in addition to the above ω, so that the lens efficiency is set to 0.6 and the above ω = 0.394.
Is used, the sensitivity coefficient of the lens system becomes 0.075, and it can be seen that this embodiment is more advantageous in terms of sensitivity.
【0024】また、導波管13の場合、前記のように研
磨やめっき処理をしても反射率は完全に1とはならない
ため導波管自体の温度情報も赤外線センサ12に入る。
このとき導波管13の温度が赤外線センサ12と同一で
あれば問題にはならないが、一端を熱結合していても多
端は離れているために外周部から筐体10を通して外乱
熱が伝熱して同一にはなりにくい。このため体温計を耳
孔に挿入した直後としばらく時間が経過したあとでは測
定値に変化が生じ、これが再現性の悪さとして認識され
てしまう。本実施例では同様に筒状部9は温度変化をす
るが光学レンズ3により視野角を絞っているため筒状部
9の内面は視野には入らずこの影響は排除される。Further, in the case of the waveguide 13, even if the polishing or plating treatment is performed as described above, the reflectance does not become completely 1, so that the temperature information of the waveguide itself also enters the infrared sensor 12.
At this time, if the temperature of the waveguide 13 is the same as that of the infrared sensor 12, there is no problem. However, even if one end is thermally coupled, the other end is distant from the outer peripheral portion and the disturbance heat is transferred through the housing 10. Hard to be the same. For this reason, the measured value changes immediately after inserting the thermometer into the ear canal and after a while, which is recognized as poor reproducibility. In the present embodiment, similarly, the temperature of the tubular portion 9 changes, but since the viewing angle is narrowed by the optical lens 3, the inner surface of the tubular portion 9 does not enter the visual field and this influence is eliminated.
【0025】開口部8は前記のごとく赤外線センサ1自
体の視野角を限定するが、これは光学レンズ3から入射
する以外の熱情報が混入することを防止する効果があ
り、本実施例では30°としている。チョッパ4を使用
する場合はこの視野によりチョッパ4の振幅の必要値を
小さくできる効果もある。The opening 8 limits the viewing angle of the infrared sensor 1 itself as described above, but this has the effect of preventing the entry of thermal information other than the incident from the optical lens 3, and in the present embodiment it is 30. It is supposed to be °. When using the chopper 4, there is also an effect that the required value of the amplitude of the chopper 4 can be reduced by this visual field.
【0026】光学レンズ3としては一般的にシリコンや
ゲルマなどの磨きレンズを用いるが、本発明のように小
形レンズの場合回折原理を応用した平板レンズは有効で
ある。これは大判のウエハより切り出して作るため面積
の縮小はコストに直結するためである。A polished lens made of silicon or germanium is generally used as the optical lens 3, but a flat lens applying the diffraction principle is effective in the case of a small lens as in the present invention. This is because the area is directly linked to the cost because it is cut out from a large-sized wafer.
【0027】[0027]
【発明の効果】以上のように本発明は光学レンズにより
小さい視野角を獲得して鼓膜の範囲内に視野を限定して
鼓膜以外の温度情報を排除することにより測定精度を向
上させ、小さなセンサ受光部を有する赤外線センサによ
り小さな光学レンズで従来と同等以上の感度を確保する
という特徴を有した放射体温計を実現するものである。As described above, the present invention improves the measurement accuracy by obtaining a smaller viewing angle in the optical lens, limiting the field of view within the range of the eardrum, and excluding temperature information other than the eardrum, and a small sensor. The infrared thermometer having a light receiving section realizes a radiation thermometer having a feature that a sensitivity equal to or higher than that of a conventional one is secured with a small optical lens.
【図1】本発明の実施例の放射体温計の構成を示す側断
面図FIG. 1 is a side sectional view showing a configuration of a radiation thermometer according to an embodiment of the present invention.
【図2】同実施例の動作を示す模式図FIG. 2 is a schematic diagram showing the operation of the embodiment.
【図3】従来の放射体温計の構成を示す側断面図FIG. 3 is a side sectional view showing a configuration of a conventional radiation thermometer.
1 赤外線センサ 2 センサ受光部 3 光学レンズ 4 チョッパ 5 シャーシ 6 筐体 7 鼓膜 8 開口部 9 筒状部 1 infrared sensor 2 sensor light receiving part 3 optical lens 4 chopper 5 chassis 6 housing 7 eardrum 8 opening 9 tubular part
Claims (4)
て体温を測定する放射体温計において、センサ受光部の
寸法が直径0.3mm以下または一辺が0.3mm以下
の方形の赤外線センサと、直径6mm以下の光学レンズ
を有する放射体温計。1. A radiation thermometer for detecting body temperature by detecting infrared rays radiated from an object to be measured, and a rectangular infrared sensor having a sensor light-receiving portion having a diameter of 0.3 mm or less or one side of 0.3 mm or less, A radiation thermometer having an optical lens with a diameter of 6 mm or less.
板レンズを用いた請求項1記載の放射体温計。2. The radiation thermometer according to claim 1, wherein a flat plate lens utilizing a diffraction effect is used as the optical lens.
求項1記載の放射体温計。3. The radiation thermometer according to claim 1, wherein a pyroelectric thin film is used as the infrared sensor.
である請求項1記載の放射体温計。4. The radiation thermometer according to claim 1, wherein the infrared sensor has a viewing angle of 30 ° or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7082235A JPH08275925A (en) | 1995-04-07 | 1995-04-07 | Radiative clinical thermometer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7082235A JPH08275925A (en) | 1995-04-07 | 1995-04-07 | Radiative clinical thermometer |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08275925A true JPH08275925A (en) | 1996-10-22 |
Family
ID=13768751
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7082235A Pending JPH08275925A (en) | 1995-04-07 | 1995-04-07 | Radiative clinical thermometer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08275925A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999005489A1 (en) * | 1997-07-28 | 1999-02-04 | Matsushita Electric Industrial Co., Ltd. | Radiation clinical thermometer |
CN103732133A (en) * | 2011-08-03 | 2014-04-16 | 索尼公司 | Distance detection device, distance detection method, computer program, and computer-readable recording medium |
JP2017201328A (en) * | 2012-11-19 | 2017-11-09 | カズ ヨーロッパ エス・アー・エール・エル | Medical thermometer having improved optics system |
-
1995
- 1995-04-07 JP JP7082235A patent/JPH08275925A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999005489A1 (en) * | 1997-07-28 | 1999-02-04 | Matsushita Electric Industrial Co., Ltd. | Radiation clinical thermometer |
US6371925B1 (en) | 1997-07-28 | 2002-04-16 | Matsushita Electric Industrial Co., Ltd. | Radiation clinical thermometer |
KR100353380B1 (en) * | 1997-07-28 | 2002-09-18 | 마쯔시다덴기산교 가부시키가이샤 | Radiation clinical thermometer |
CN100385215C (en) * | 1997-07-28 | 2008-04-30 | 松下电器产业株式会社 | Radiation clinical thermometer |
CN103732133A (en) * | 2011-08-03 | 2014-04-16 | 索尼公司 | Distance detection device, distance detection method, computer program, and computer-readable recording medium |
JP2017201328A (en) * | 2012-11-19 | 2017-11-09 | カズ ヨーロッパ エス・アー・エール・エル | Medical thermometer having improved optics system |
US10054490B2 (en) | 2012-11-19 | 2018-08-21 | Helen Of Troy Limited | Medical thermometer having an improved optics system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2826337B2 (en) | Radiation thermometer | |
JP3805039B2 (en) | Radiation thermometer | |
US20110228811A1 (en) | Non-contact medical thermometer with stray radiation shielding | |
CN100402999C (en) | Infrared thermometer | |
JPH0741026B2 (en) | Thermometer | |
JPH1075934A (en) | Radiation thermometer | |
JPH08275925A (en) | Radiative clinical thermometer | |
US6980708B2 (en) | Device for fibre optic temperature measurement with an optical fibre | |
JPH0235322A (en) | Radiation clinical thermometer | |
JP3085830B2 (en) | Radiant heat sensor | |
JP2813331B2 (en) | Radiation thermometer | |
JPH10227697A (en) | Noncontact temperature measuring sensor | |
US6408651B1 (en) | Method of manufacturing optical fibers using thermopiles to measure fiber energy | |
JP3775034B2 (en) | Infrared detector and radiation thermometer using the same | |
JP2002048637A (en) | Infrared detector and temperature measuring instrument equipped with it | |
CN220223594U (en) | TO packaging type MEMS chip infrared detector | |
JP4006804B2 (en) | Radiation thermometer | |
JP3103338B2 (en) | Radiation thermometer | |
JP2002333370A (en) | Infrared detector and radiant thermometer using the same | |
JPS6344134A (en) | Image guide type radiation thermometer | |
JP2002333369A (en) | Infrared detector and radiant thermometer using the same | |
JP2000139849A (en) | Infrared detector and radiation clinical thermometer using the same | |
JPH06213724A (en) | Infrared sensor | |
JPH04223239A (en) | Radiometer for low temperature | |
JPH07243916A (en) | Radiation thermometer |