JPH0236286B2 - - Google Patents

Info

Publication number
JPH0236286B2
JPH0236286B2 JP58145541A JP14554183A JPH0236286B2 JP H0236286 B2 JPH0236286 B2 JP H0236286B2 JP 58145541 A JP58145541 A JP 58145541A JP 14554183 A JP14554183 A JP 14554183A JP H0236286 B2 JPH0236286 B2 JP H0236286B2
Authority
JP
Japan
Prior art keywords
condensate
water flow
overflow
over
desalination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58145541A
Other languages
Japanese (ja)
Other versions
JPS6038016A (en
Inventor
Tetsuro Adachi
Toshio Ogawa
Katsuya Ebara
Kiichi Shindo
Seiichi Numazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58145541A priority Critical patent/JPS6038016A/en
Publication of JPS6038016A publication Critical patent/JPS6038016A/en
Publication of JPH0236286B2 publication Critical patent/JPH0236286B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Filtration Of Liquid (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、復水過脱塩装置の運転法に係り、
特に原子力発電所の復水浄化に使用するに好適な
復水過脱塩装置の過寿命を延長する最適運転
法に関する。 〔発明の背景〕 BWR型原子力発電所の復水浄化システムの代
表例を第1図に示す。原子1で発生した蒸気2
は蒸気タービン3を回転させ発電を行つた後、復
水器4により復水5となる。この復水中には機器
の腐食や海水リークによる固型状やイオン状の不
純物が含まれており、発電所の安全性、信頼性向
上のためにはこれらの原子1への持込量を低減
する必要がある。過脱塩器6および脱塩器7は
このために上記の不純物を除去する装置である。 過脱塩器6は、その構造の概略を第2図に断
面図として示したように、粉状のイオン交換樹脂
(陽および陰イオン交換樹脂を混合したもの)を
プリコートした繊維又はステンレススチール製の
直径50mm、高さ1500〜1800mmの過エレメント8
を塔内に1塔当り200〜300本内蔵したものであつ
て、特に固型状の不純物を過分離することを主
目的とするものである。脱塩器7は粒状のイオン
交換樹脂(混床型)を塔内に充填したものであつ
て、イオン状の不純物の除去を主目的とするもの
である。 この復水浄化システムはデユアルシステムと呼
ばれ、極めて高い除去性能を有するためプラント
の線量率低減効果が著しく、定期検査時の作業者
の被曝低減に大きく貢献している。 しかしながら、過脱塩器6に使用する粉状イ
オン交換樹脂は、再生が難しいため現状では1回
の使用で廃棄している。1サイクルの期間は過
差圧の上限設定値(実装置では1.75Kg/cm2)で決
まり、鉄クラツド(配管の腐食生成物)と呼ばれ
る不純物の捕捉に伴なう過差圧の上昇速度が大
きいと粉状イオン交換樹脂の交換を頻繁に行なわ
なければならない。実プラントの実績では1サイ
クルが10日前後であり、過脱塩器6は約10塔が
並列運転しているため、1日1塔の割で廃樹脂
(乾燥重量50〜100Kg)が発生する。廃樹脂は放射
性廃棄物であるためその処理、処分が難しく、現
状ではドラムカンに詰めて貯蔵施設に保管してい
る。したがつて、その数は増加の一途をたどつて
おり、発生廃棄物の低減が早急の課題となつてい
る。 廃棄物量の低減には過脱塩器の過寿命の延
長が必要であり、過寿命に影響する代表的な因
子は樹脂の材質、装置の構造、運用法および水質
であるから、これら各因子の検討が必要である。
このうち、樹脂については現在最もよく検討が加
えられており、種々の改良樹脂が開発され始めて
いる。しかしながら、装置および運用法に関して
は従来通りであり、ほとんど検討されていない。
又、水質に関しては現状では任意に変化させるこ
とが困難なことから、鉄クラツドの量の低減にと
どまつており、質(例えば鉄クラツドの化学形
態、粒径等)の改善には到つていない。 〔発明の目的〕 本発明は、前述した実情に鑑みてなされたもの
で、その目的は、BWR型原子力発電所の復水浄
化システムにおいて、復水過脱塩器の運用法に
着目し、その過寿命を増大して廃樹脂による放
射性廃棄物量を極力抑えることのできる、復水
過脱塩装置の最適運転法を提供することにある。 〔発明の概要〕 本発明の特徴は、過助剤をプリコートした
過エレメント内蔵して液中の不純物を除去する復
水過脱塩器を複数基並列してなる復水過脱塩
装置の運転法であつて、各復水過脱塩器は、そ
れぞれ通水の前期は過流速を全通水期間の平均
流速よりも小さくして体積過を行ない、通水の
後期は逆に過流速を全通水期間の平均流速より
も大きくして表面過を行なうことにあり、これ
によつて各復水過脱塩器の過寿命を増大する
ことができる。 従来、復水過脱塩器は処理水量一定、即ち定
速過で運転されており、過差圧ΔPの上昇特
性は第3図に示すようになる。すなわち、同図か
ら通水初期は過差圧の上昇速度が小さいが、あ
る時期から急激に大きくなる特性を有することが
理解される。 過差圧の上昇速度が小さい領域は体積過領
域と考えられ、復水中の鉄クラツドが樹脂層内部
で捕捉される機構が主体的となる。これに対して
過差圧の上昇速度が大きい領域は表面過領域
と考えられ、鉄クラツドが樹脂層表面で捕捉され
る機構が主体的となる。これらの鉄クラツド捕捉
機構を第4図にまとめて示した。この鉄クラツド
捕捉モデルは、第5図に示す樹脂層厚さの経時変
化および第6図に示すXMA(X線マイクロアナ
ライザ)観察結果から導き出したものである。第
6図におけるX線強度は鉄濃度の指標とみなし得
るものであり、またLVは線速度(Iinear
velocity)の意である。第5図と第6図から、通
水初期は樹脂層が粗になつているため鉄クラツド
が樹脂層内部で捕捉されるが、次第に樹脂層が密
になり樹脂層表面の鉄クラツド捕捉量が増加する
のが認められ、表面過が主体的になつてくるの
がわかる。このように、過機構は通水初期体積
過が主体であるが次第に表面過に移行する。 放射性廃棄物量低減の方法として過寿命の延
長があげられるが、上記したように過差圧上昇
は過機構を密接な関係があり、体積過領域は
表面過領域に比べて過差圧上昇が少ないこと
から、過機構をできるだけ体積過にすれば
過寿命が延長できると推測される。 ここで、第3図からわかるように、過差圧上
昇は大部分表面過領域に依存するため、過特
性の定量的評価に下記の表面過式(定速過) (ΔP−ΔP01-n=a×θ a:定数 n:クラツド圧縮性指数 ΔP:過差圧 ΔP0:初期差圧 θ:通水日数 の適用を検討したところ、第7図に示すように表
面過領域でΔP−ΔP0と通水日数の間で直線関
係が得られ、表面過式が過特性の評価に使え
ることがわかつた。この直線の傾きはクラツド圧
縮性指数nに関係し、鉄クラツドの化学形態が主
たる支配因子である。したがつて、復水水質が一
定であればば直線の傾きはほぼ同じ値を示す。
又、表面過に移行する迄の助走区間が体積過
領域であり、表面過式の適用は体積過領域と
表面過領域を分離できる効果がある。 第7図から、過寿命を延長するには体積過
時間又は表面過時間を延ばせば良いことがわか
る。表面過時間を支配するクラツド圧縮性指数
nは復水の水質でほぼ決まるため、n値の低減に
は復水の水質改善が必要であり、現実的にはかな
り難しい問題である。したがつて、体積過時間
の延長の方が可能性が高い。ここで極めて重要な
ことは第7図に示す通水日数は対数目盛りである
ため、体積過時間の延長は過寿命の延長を2
〜3倍増幅する効果があるということである。 体積過時間に影響する代表的な因子を第1表
に示す。表中LVは線速度(linear velocity)を
意味する。復水の水質と過流速(通水流速)は
鉄クラツド負荷量に関係し、樹脂物性とプリコー
ト条件は樹脂層粗密および圧縮強度に関係する。
体積過時間はクラツド負荷量が少ない程、又は
樹脂層が粗でかつ圧縮強度が大きい程長くなる。
The present invention relates to a method of operating a condensate over-desalination equipment,
In particular, the present invention relates to an optimal operating method for extending the life of a condensate over-desalination device suitable for use in condensate purification in nuclear power plants. [Background of the Invention] Figure 1 shows a typical example of a condensate purification system for a BWR type nuclear power plant. vapor generated by atom 1 2
rotates the steam turbine 3 to generate electricity, and then becomes condensed water 5 in the condenser 4. This condensate contains solid and ionic impurities due to corrosion of equipment and seawater leaks, and in order to improve the safety and reliability of power plants, it is necessary to reduce the amount of these impurities brought into the atom 1. There is a need to. The over-demineralizer 6 and the demineralizer 7 are devices for removing the above-mentioned impurities for this purpose. The over-desalination device 6 is made of fiber or stainless steel pre-coated with powdered ion exchange resin (a mixture of cationic and anionic exchange resins), as shown in the schematic cross-sectional view of FIG. 2. Over element 8 with a diameter of 50 mm and a height of 1500 to 1800 mm
The tower contains 200 to 300 of these per tower, and its main purpose is to excessively separate solid impurities. The demineralizer 7 is a tower filled with granular ion exchange resin (mixed bed type), and its main purpose is to remove ionic impurities. This condensate purification system is called a dual system, and because it has extremely high removal performance, it has a remarkable effect on reducing the dose rate of the plant, making a major contribution to reducing the radiation exposure of workers during periodic inspections. However, the powdered ion exchange resin used in the over-demineralizer 6 is difficult to regenerate, so currently it is discarded after one use. The period of one cycle is determined by the upper limit set value of the differential pressure (1.75Kg/cm 2 in the actual device), and the rate of increase in the differential pressure due to the capture of impurities called iron crud (corrosion products of piping) If the size is large, the powdered ion exchange resin must be replaced frequently. According to actual plant results, one cycle takes about 10 days, and about 10 towers of super desalination unit 6 are operated in parallel, so waste resin (dry weight 50 to 100 kg) is generated per tower per day. . Because waste resin is radioactive waste, it is difficult to process and dispose of it, so currently it is packed in drums and stored in storage facilities. Therefore, their number continues to increase, and reducing the amount of waste generated has become an urgent issue. To reduce the amount of waste, it is necessary to extend the overlife of the over-desalination equipment, and the typical factors that influence overlife are the resin material, equipment structure, operating method, and water quality. Needs consideration.
Of these, resins are currently the most studied, and various improved resins are beginning to be developed. However, the equipment and operating methods are the same as before, and have hardly been studied.
Furthermore, since it is currently difficult to arbitrarily change water quality, the amount of iron cladding has only been reduced, and the quality (for example, the chemical form of iron cladding, particle size, etc.) has not been improved. . [Purpose of the Invention] The present invention has been made in view of the above-mentioned circumstances, and its purpose is to focus on the operating method of a condensate over-desalinator in a condensate purification system of a BWR type nuclear power plant, and to develop the method. The object of the present invention is to provide an optimal operating method for a condensate over-desalination device that can increase the overlife and minimize the amount of radioactive waste generated from waste resin. [Summary of the Invention] The present invention is characterized by the operation of a condensate over-desalination device which is constructed by paralleling a plurality of condensate over-desalination devices that have a built-in over-element pre-coated with a super-aid agent and remove impurities from the liquid. In the first stage of water flow, each condensate over-desalinator performs volumetric filtration by making the overflow velocity smaller than the average flow velocity of the entire water flow period, and conversely, in the latter half of water flow, the overflow velocity is reduced. Surface filtration is carried out at a flow rate higher than the average flow rate during the entire water flow period, thereby increasing the overlife of each condensate demineralizer. Conventionally, condensate demineralizers have been operated with a constant amount of water to be treated, that is, at a constant speed, and the rise characteristics of the differential pressure ΔP are as shown in FIG. That is, it can be understood from the figure that the rate of increase in differential pressure is small at the beginning of water flow, but it rapidly increases after a certain point. The region where the rate of increase in differential pressure is low is considered to be the volume excess region, and the main mechanism is that iron crud in the condensate is trapped inside the resin layer. On the other hand, the region where the rate of increase in differential pressure is high is considered to be a surface excess region, and the main mechanism is that iron cladding is captured on the surface of the resin layer. These iron clad capture mechanisms are summarized in Figure 4. This iron cladding trapping model was derived from the changes in resin layer thickness over time shown in Figure 5 and the results of XMA (X-ray microanalyzer) observation shown in Figure 6. The X-ray intensity in Figure 6 can be regarded as an index of iron concentration, and LV is the linear velocity (Iinear
velocity). Figures 5 and 6 show that at the beginning of water flow, the resin layer is rough and iron crud is trapped inside the resin layer, but as the resin layer gradually becomes denser, the amount of iron crud trapped on the surface of the resin layer decreases. An increase is observed, and it can be seen that the surface irradiation is becoming more dominant. In this way, the filtration mechanism is primarily volume filtration at the initial stage of water flow, but gradually shifts to surface filtration. Extending the overlife is one way to reduce the amount of radioactive waste, but as mentioned above, the increase in differential pressure is closely related to the overload mechanism, and the increase in differential pressure is smaller in the volumetric overload area than in the surface overload area. Therefore, it is presumed that the overlife span can be extended by increasing the volume of the overload mechanism as much as possible. As can be seen from Fig. 3, the rise in differential pressure depends mostly on the surface area, so the following surface area formula (constant speed area) (ΔP - ΔP 0 ) 1 is used to quantitatively evaluate the area. -n = a×θ a: constant n: cladding compressibility index ΔP: differential pressure ΔP 0 : initial differential pressure θ: number of days of water flow When we considered the application of A linear relationship was obtained between −ΔP 0 and the number of days of water flow, indicating that the surface permeability equation can be used to evaluate the permeability characteristics. The slope of this straight line is related to the cladding compressibility index n, and the chemical form of the iron cladding is the main controlling factor. Therefore, if the condensate water quality is constant, the slopes of the straight lines will have approximately the same value.
Furthermore, the run-up section before transitioning to the surface area is the volume area, and application of the surface area method has the effect of separating the volume area and the surface area. From FIG. 7, it can be seen that the overlife can be extended by increasing the volume elapsed time or the surface elapsed time. Since the cladding compressibility index n, which governs the surface time, is almost determined by the water quality of condensate, reducing the n value requires improving the water quality of condensate, which is a very difficult problem in reality. Therefore, an extension of the volume transit time is more likely. What is extremely important here is that the number of water passage days shown in Figure 7 is on a logarithmic scale, so extending the volume elapsed time will increase the overlife by 2.
This means that it has the effect of amplifying up to 3 times. Typical factors that affect volume elapsed time are shown in Table 1. LV in the table means linear velocity. The quality of condensate water and overflow rate (water flow rate) are related to the load on the iron cladding, and the resin physical properties and precoating conditions are related to the density and compressive strength of the resin layer.
The volume elapsed time becomes longer as the cladding load is smaller or the resin layer is coarser and the compressive strength is larger.

〔発明の実施例〕[Embodiments of the invention]

以下第11図を参照して、本発明の一実施例に
つき詳細に説明する。 第11図において、復水ポンプ9で送り込まれ
る復水は、復水母管10を経て各過脱塩器6に
分岐するが、過脱塩器6の上流側にはおのおの
流量調整弁11が設置されている。過脱塩器6
の下流側には流量計12が設けられており、処理
水量即ち過流速(LV)が監視できる。過流
速の制御は制御装置13が行ない、この制御装置
13は、各過脱塩器6の過流速が設定通りの
パターンになるよう、流量計12で検出された
過流速の信号を受けて流量調整弁11を自動的に
駆動し、夫々の過流速を調整する。 過流速のパターンの設定はプラントにより最
適値に決定する必要があるが、一般的には過流
速の変化幅は平均値に対して±12.5%が望まし
く、通水初期即ち体積過領域において過流速
を通水全領域の平均値より低くし、通水後期すな
わち表面過領域で高くする。過流速を変える
時期は、通水開始からの時間又は過差圧から決
定する。 第11図に準じた実験装置を製作し効果を確認
する実験を行つた。この実験における過脱塩器
は、実機に使用されている過エレメント(直径
50mm、高さ1500mm、ナイロン製)を三本内蔵して
いる。実験条件は、第12図に示すように、従来
例として過流速(LV)を7m/h一定とし、
本発明例として通水初期LV7m/h、後期LV8.5
m/hを選定し、過流速を変化させる時期は体
積過から表面過へ移行する時とした。実験結
果を第13図に示す。本発明例による場合は従来
例に比べて過寿命が43%延びた。 第2表に体積過、表面過の各領域における
寿命の延長効果をまとめた。通水初期の低流速運
転の効果が表面過時間に顕著に出ることが確認
され、また、表面過領域における高流速運転は
本実験の範囲では影響が少いことも確認された。 本実験から、通水初期は低流速運転、後期は高
流速運転し、平均として従来と同じ過流速にな
るような過流速のパターンに従う過脱塩器の
運用方法は過寿命の延長に大きい効果のあるこ
とが確認された。
An embodiment of the present invention will be described in detail below with reference to FIG. In FIG. 11, the condensate sent by the condensate pump 9 is branched to each super-demineralizer 6 via the condensate main pipe 10, but a flow rate adjustment valve 11 is installed on the upstream side of the super-demineralizer 6. has been done. Super desalination device 6
A flow meter 12 is provided on the downstream side of the flow rate, and the amount of treated water, that is, the overflow velocity (LV) can be monitored. The control device 13 controls the overflow rate in response to the overflow rate signal detected by the flow meter 12 so that the overflow rate of each overdemineralizer 6 follows the set pattern. The regulating valves 11 are automatically driven to adjust the respective overflow speeds. The setting of the overflow rate pattern needs to be determined to the optimum value depending on the plant, but in general, it is desirable that the variation width of the overflow rate be ±12.5% from the average value. The water flow rate should be lower than the average value for the entire water flow area, and be higher in the later stages of water flow, that is, the surface flow area. The timing to change the excess flow rate is determined from the time from the start of water flow or the excess pressure differential. An experimental device similar to that shown in FIG. 11 was manufactured and an experiment was conducted to confirm the effect. The over-desalination device used in this experiment was the over-element (diameter
50mm, height 1500mm, made of nylon). As shown in Figure 12, the experimental conditions were a conventional example where the overflow velocity (LV) was constant at 7 m/h;
As an example of the present invention, initial water flow LV7m/h, late water flow LV8.5
m/h was selected, and the time to change the overflow rate was set at the time of transition from volume flow to surface flow. The experimental results are shown in FIG. In the case of the example of the present invention, the overlife was extended by 43% compared to the conventional example. Table 2 summarizes the life extension effects in each area of volume overload and surface overload. It was confirmed that the effect of low flow rate operation at the initial stage of water flow was noticeable on the surface overtime, and it was also confirmed that high flow rate operation in the surface overflow area had little effect within the scope of this experiment. From this experiment, we found that operating the over-desalinator according to an over-flow rate pattern of low flow rate operation in the early stage of water flow and high flow rate operation in the later stages, with the same over-flow rate as before on average, has a great effect on extending the over-life. It was confirmed that there is.

【表】【table】

【表】 時の比率
〔発明の効果〕 本発明の運転法によれば、復水過脱塩器の
過寿命を従来よりも大巾に延長することが可能で
あり、従つて、これを原子力発電所の復水浄化に
用いれば、復水過脱塩器の廃樹脂による放射性
廃棄物の量を極力抑えることができ、しかも、本
発明の運転法は、平均としては従来と同じ過流
速を保つことができプラントの操業に制約を与え
ない利点がある。
[Table] Time ratio [Effects of the invention] According to the operating method of the present invention, it is possible to extend the overlife of the condensate demineralizer to a greater extent than in the past. If used for condensate purification at power plants, the amount of radioactive waste produced by waste resin from condensate over-desalination equipment can be minimized, and the operating method of the present invention can maintain the same overflow rate as conventional methods on average. This has the advantage of not placing any restrictions on plant operation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はBWR型原子力発電所の復水浄化設備
の一例を示す略線図、第2図は復水過脱塩器の
構造を説明する縦断面図、第3図は復水過脱塩
器の過差圧上昇特性を示す図、第4図は鉄クラ
ツド捕捉機構をまとめて示した図表、第5図は樹
脂層厚さの経時変化を示す図、第6図は樹脂層断
面のXMA観察結果を示す図、第7図は過差圧
データを表面過式で整理した結果を示す図、第
8図は過流速(LV)と体積過時間の関係を
示す図、第9図は従来の復水過脱塩器の運用方
法(過流速)を説明する図、第10図は過流
速(LV)と表面過時間の関係を示す図、第1
1図は本発明の一実施例を説明する略線図、第1
2図は本発明の一実施例の運転条件を従来例と比
較して説明する図、第13図は本発明の一実施例
の効果を示す図である。 1…原子、2…蒸気、3…蒸気タービン、4
…復水路、5…復水、6…復水過脱塩器、7…
復水脱塩器、8…過エレメント、9…復水ポン
プ、10…復水母管、11…流量調整弁、12…
流量計、13…制御装置。
Figure 1 is a schematic diagram showing an example of condensate purification equipment for a BWR type nuclear power plant, Figure 2 is a vertical cross-sectional view explaining the structure of a condensate over-desalinator, and Figure 3 is a condensate over-desalinator. Fig. 4 is a diagram showing the iron clad capture mechanism, Fig. 5 is a diagram showing the change in resin layer thickness over time, and Fig. 6 is an XMA of the cross section of the resin layer. Figure 7 is a diagram showing the observation results, Figure 7 is a diagram showing the results of arranging excess pressure data using the surface flow equation, Figure 8 is a diagram showing the relationship between excess flow velocity (LV) and volume transit time, and Figure 9 is the conventional Figure 10 is a diagram illustrating the operation method (overflow rate) of the condensate super-demineralizer, and Figure 10 is a diagram showing the relationship between overflow velocity (LV) and surface time.
Figure 1 is a schematic diagram illustrating one embodiment of the present invention.
FIG. 2 is a diagram illustrating the operating conditions of one embodiment of the present invention in comparison with a conventional example, and FIG. 13 is a diagram showing the effects of one embodiment of the present invention. 1...Atom, 2...Steam, 3...Steam turbine, 4
...Condensate channel, 5...Condensate, 6...Condensate over-desalinator, 7...
Condensate demineralizer, 8... Passing element, 9... Condensate pump, 10... Condensate main pipe, 11... Flow rate adjustment valve, 12...
Flow meter, 13...control device.

Claims (1)

【特許請求の範囲】 1 過助剤をプリコートした過エレメントを
内蔵して液中の不純物を除去する復水過脱塩器
を複数基並列してなる復水過脱塩装置の運転法
であつて、各復水過脱塩器は、それぞれ通水の
前期は過流速を全通水期間の平均流速よりも小
さくして体積過を行ない、通水の後期は逆に
過流速を全通水期間の平均流速よりも大きくして
表面過を行なうことを特徴とする復水過脱塩
装置の最適運転法。 2 前記通水の前期と通水の後期における過流
速の変化幅を平均流速に対して±12.5%とするこ
とを特徴とする特許請求の範囲第1項に記載の復
水過脱塩装置の最適運転法。
[Scope of Claims] 1. A method of operating a condensate over-desalination device in which a plurality of condensate over-desalination devices are installed in parallel and each includes a built-in per-element pre-coated with a super-aid and removes impurities from the liquid. Therefore, each condensate over-desalination device performs volumetric overflow by reducing the overflow rate to a value lower than the average flow rate during the entire water flow period during the first period of water flow, and conversely lowers the overflow speed to the total flow rate during the latter half of water flow. An optimal operating method for a condensate over-desalination equipment characterized by performing surface filtration at a flow rate higher than the average flow rate for the period. 2. The condensate over-desalination apparatus according to claim 1, characterized in that the range of change in the overflow velocity between the early period of the water flow and the latter half of the water flow is set to ±12.5% with respect to the average flow velocity. Optimal driving method.
JP58145541A 1983-08-09 1983-08-09 Optimum operation of condensate filtering and desalting apparatus Granted JPS6038016A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58145541A JPS6038016A (en) 1983-08-09 1983-08-09 Optimum operation of condensate filtering and desalting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58145541A JPS6038016A (en) 1983-08-09 1983-08-09 Optimum operation of condensate filtering and desalting apparatus

Publications (2)

Publication Number Publication Date
JPS6038016A JPS6038016A (en) 1985-02-27
JPH0236286B2 true JPH0236286B2 (en) 1990-08-16

Family

ID=15387567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58145541A Granted JPS6038016A (en) 1983-08-09 1983-08-09 Optimum operation of condensate filtering and desalting apparatus

Country Status (1)

Country Link
JP (1) JPS6038016A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5387064A (en) * 1977-01-10 1978-08-01 Hitachi Ltd Method of operating desalting filter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5387064A (en) * 1977-01-10 1978-08-01 Hitachi Ltd Method of operating desalting filter

Also Published As

Publication number Publication date
JPS6038016A (en) 1985-02-27

Similar Documents

Publication Publication Date Title
JP2808970B2 (en) Nuclear power plant, its water quality control method and its operation method
US4395335A (en) Reproduction method of filter demineralizer in condensate cleanup system of reactor
JPH0236286B2 (en)
JP3020573B2 (en) Spent fuel pool cooling system
JPS5876116A (en) Optimum operation of filtering and desalting vessel
JPH0214114B2 (en)
JPS6333680B2 (en)
JPS6148798A (en) Sight bunker pool water purifying facility
JP2950664B2 (en) Condensate desalination equipment
JPH07128488A (en) Reactor power plant
JPH0212635B2 (en)
JPS61212381A (en) Shell and tube filtering and desalting apparatus
JPS642237B2 (en)
JPS61245093A (en) Feedwater system of nuclear power generating plant
JPH0447280B2 (en)
JPS59138992A (en) Condensed water clean-up device
JPS6193996A (en) Method of reducing radioactivity of nuclear power plant
JPH06106166A (en) Keeping of ion exchange resin in condensed water desalting tower
JPS60152991A (en) Purifier for condensate from steam turbine plant
JPS61213693A (en) Condensate and feedwater system for nuclear power plant
JPH0479439B2 (en)
JPS6239794A (en) Pool-water purifier in radioactive solid waste storage facility
Oryshaka et al. Water chemistry of Ignalina NPP. Optimisation of purification system and non-reagent decontamination of Primary cooling system
JPS5892438A (en) Electromagnetic filter
JPH05215892A (en) Feed water iron concentration control device