JPH0437396B2 - - Google Patents

Info

Publication number
JPH0437396B2
JPH0437396B2 JP58044069A JP4406983A JPH0437396B2 JP H0437396 B2 JPH0437396 B2 JP H0437396B2 JP 58044069 A JP58044069 A JP 58044069A JP 4406983 A JP4406983 A JP 4406983A JP H0437396 B2 JPH0437396 B2 JP H0437396B2
Authority
JP
Japan
Prior art keywords
condensate
ion exchange
demineralizers
purification device
demineralizer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58044069A
Other languages
Japanese (ja)
Other versions
JPS59170796A (en
Inventor
Shigeru Nishikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP58044069A priority Critical patent/JPS59170796A/en
Publication of JPS59170796A publication Critical patent/JPS59170796A/en
Publication of JPH0437396B2 publication Critical patent/JPH0437396B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Water Treatment By Sorption (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Water By Ion Exchange (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の技術分野〕 本発明は原子力あるいは火力発電プラントの復
水配管系統に設けられる復水浄化装置の運転方法
に係り、特に復水濾過装置および復水脱塩装置を
復水配管系統にシリーズに設けた復水浄化装置の
運転方法に関する。 〔発明の技術的背景とその問題点〕 一般に、原子力発電プラントや火力発電プラン
トには復水器からの復水を浄化する復水浄化装置
が設けられており、この復水浄化装置で復水中に
含まれる不純物を除去するようになつている。復
水浄化装置は、初期の原子力発電プラントにおい
ては、復水脱塩装置のみから構成され、この復水
脱塩装置で復水中に含まれるクラツド等の不溶解
性ならびに溶解性の不純物を取り除くようになつ
ている。復水中のクラツドの除去処理は作業員の
被曝低減を図る上で有効であることが判明してい
る。 しかしながら、復水脱塩装置だけではクラツド
の除去処理に脱塩性能上の限界があり、充分な処
理を行なうことができなかつたり、またクラツド
の影響で溶解性不純物の除去を目的としたイオン
交換性能にも支障をきたす等の問題があつた。 この問題から、復水脱塩装置の上流側に復水濾
過装置を設置して復水浄化装置を構成し、復水濾
過装置でクラツド等の不溶解性不純物を除去し、
クラツド等が除去された復水を復水脱塩装置内を
低速で流して、脱塩処理し、溶解性不純物を取り
除くようにしたものがある。 この復水浄化装置を設置すると、復水の水質は
下表のようになる。
[Technical Field of the Invention] The present invention relates to a method of operating a condensate purification device installed in a condensate piping system of a nuclear power or thermal power plant, and particularly relates to a method of operating a condensate purification device installed in a condensate piping system of a nuclear power plant or a thermal power plant. This invention relates to a method of operating a condensate purification device installed in [Technical background of the invention and its problems] Generally, nuclear power plants and thermal power plants are equipped with a condensate purification device that purifies condensate from a condenser. It is designed to remove impurities contained in In early nuclear power plants, condensate purification equipment consisted only of condensate desalination equipment, which removed insoluble and soluble impurities such as crud contained in condensate. It's getting old. Removal of crud in condensate water has been found to be effective in reducing radiation exposure to workers. However, condensate desalination equipment alone has limitations in terms of desalination performance in removing crud, and may not be able to perform sufficient treatment. There were also problems such as performance problems. To solve this problem, a condensate filtration device is installed upstream of the condensate desalination device to form a condensate purification device, and the condensate filtration device removes insoluble impurities such as crud.
There is a system in which the condensate from which crud has been removed is allowed to flow at low speed through a condensate desalination device to undergo desalination treatment and remove soluble impurities. When this condensate purification device is installed, the quality of condensate water will be as shown in the table below.

〔発明の目的〕[Purpose of the invention]

本発明は、上述した点を考慮し、復水脱塩装置
内を通過する復水の流速を高速化することによ
り、復水脱塩器の必要塔数を削減し、発電プラン
ト建設コストの低減を確実に図るようにした復水
浄化装置の運転方法を提供することを主な目的と
する。 本発明の他の目的は、復水脱塩装置に使用され
るイオン交換樹脂量を減少させるとともにイオン
交換樹脂の再生頻度を減らすことができ、放射性
廃液等の放射性廃棄物の発生量低減を図ることが
できる、原子力発電プラント用復水浄化装置の運
転方法を提供するにある。 〔発明の概要〕 上述した目的を達成するために、本発明に係る
復水浄化装置の運転方法は、復水器からの復水系
統に、クラツド等の不溶解性不純物を除去する復
水濾過装置とイオン交換作用により溶解性不純物
を除去する復水脱塩装置とを、シリーズに配設す
るとともに、上記復水脱塩装置は互いに並設され
た複数の復水脱塩器を有するものにおいて、上記
各復水脱塩器内を流れる復水の線流速を130m/
hr〜150m/hrに設定したものである。 〔発明の実施例〕 以下、本発明に係る復水浄化装置の運転方法の
一実施例について添付図面を参照して説明する。 第1図は本発明に適用する復水浄化装置を原子
力発電プラントに適用した例を示す系統図であ
り、図中符号10は原子力発電プラントの沸騰水
型原子炉を示す。この原子炉10の炉心部で発生
した蒸気は蒸気供給系統11を通つて蒸気タービ
ン12に供給され、ここでタービンを廻し、仕事
をする。仕事をした蒸気は続いて復水器13に案
内されて凝縮され、復水となる。復水器13で凝
縮された復水は、復水系統14に導かれ、低圧復
水ポンプ15等を経て復水浄化装置18に案内さ
れ、この復水浄化装置18で復水中のクラツド等
の不溶解性不純物および溶解性不純物が分離除去
され、清浄な復水となる。この復水は、高圧復水
ポンプ19から低圧給水加熱器20、給水ポンプ
21および高圧給水加熱器22を経て原子炉10
に給水され、1つのサイクルが終了する。 復水浄化装置18は、上流側に設けられた復水
濾過装置24とその下流側にシリーズに設置され
た復水脱塩装置25とを有する。復水濾過装置2
4および復水脱塩装置25には、復水濾過器24
a…および復水脱塩器25a…がそれぞれ複数塔
づつ予備を含めて並設される。通常運転時には、
予備塔各1塔を除き、各復水濾過器24a…およ
び復水脱塩器25a…が復水浄化のために通水運
転に入つている。このうち、復水濾過器24a…
は復水中のクラツドを濾過作用により除去するも
ので、粉末状のイオン交換樹脂が充填される。ま
た、復水脱塩器25a…は主に復水中の溶解性不
純物を、ビーズ状のイオン交換樹脂のイオン交換
作用により除去するものである。この復水脱塩器
は復水濾過器24a…より劣るが、クラツドなど
の不溶解性不純物をも濾過し、吸着するようにな
つている。 実際の110万KWクラスの原子力発電プラント
においては、復水浄化装置18の復水脱塩装置2
5に組み込まれる復水脱塩器25a,25b…2
5jは、第2図に示すように例えば10塔設けられ
ている。各復水脱塩器25a,25b…25j
は、復水系統14の復水入口母管26から復水入
口ヘツダ27を介して分岐された各分岐管28
a,28b…28jに設置される。復水脱塩器2
5a,25b…25jの出口側には出口ストレー
ナ29a…29jが介装され、復水出口ヘツダ3
0を介して復水は合流される。なお、各分岐管2
8a,28b…28jには、入口弁31a…31
j、および出口弁32a…32jがそれぞれ取付
けられる。 しかして、復水濾過装置24でクラツドが除去
された復水は、復水入口ヘツダ27から各分岐管
28a,28b…に分配され、予備の復水脱塩器
1塔を除く各復水脱塩器25a,25b…に案内
され、各復水脱塩器25a,25b…に充填され
たビーズ状イオン交換樹脂のイオン交換作用によ
り脱塩処理され、浄化される。この浄化により溶
解性不純物が除去された復水は出口ストレーナ2
9a…を経て復水出口ヘツダ30で集められ、下
流側に設置された高圧復水ポンプ19に案内され
る。 復水脱塩装置の各復水脱塩器25a,25b…
を通過する復水の線流速(復水脱塩器1塔当りに
流れる復水流量/イオン交換樹脂床平均断面積)
は、従来の原子力発電プラントでは120m/hr前
後が採用されている。この流速値は、復水浄化装
置に復水濾過装置が採用されない当時の流速と同
じである。しかしながら、第3図に示すように、
復水脱塩器25a,25b…に充填されるイオン
交換樹脂のイオン交換性能は、流速を多少上げて
も性能上問題がないことが判明している。したが
つて、復水中のクラツドは復水濾過装置でほぼ完
全に除去され、クラツドの除去が不要となつた復
水脱塩器25a,25b…においては、器内を流
れる復水流速をイオン交換性能上問題のない範囲
で最大限に向上させることができ、流速130m/
hr〜150m/hrの範囲を採用しても問題がない。 復水脱塩器25a,25b…内を流れる復水流
速を従来の120m/hr程度から150m/hr程度まで
向上させると、例えば110万KWクラスの原子力
発電プラントに必要な復水脱塩器数は次のように
して計算される。 復水脱塩器の必要塔数=復水流量/1塔/イ
オン交換樹脂床平均断面積・イオン交換樹脂床流速 =7540m3/hr/6.8m2・150m/hr=7.4塔 従来の120m/hr程度の線流速では、 復水脱塩器の必要塔数 =7540m3/hr/6.8m2・120m/hr=9.24塔 このため、従来の復水脱塩装置においては、必
要な復水脱塩器は予備塔1塔を含めて10〜11塔必
要であつたものが、復水脱塩器25a,25b…
内を流れる流速を上昇させることにより、予備塔
1塔を含めて9塔あればよく、1塔乃至2塔の低
減を図ることができる。実際には、従来10塔設け
られていたので1塔の低減となる。 復水脱塩器を1塔低減させることにより、復水
脱塩器並びにその廻りの配管、各弁、計装機器、
電気関係が1塔分削除することができるので、原
子力発電プラントのプラント建設コストを押し下
げることができる。また、復水脱塩器の塔数削減
は、プラント運転時における故障発生箇所の低減
に通じ、プラントの信頼性が向上する。 なお、一実施例の説明においては、復水脱塩器
のイオン交換樹脂床の平均断面積を6.8m2とした
例について述べたけれども、これを7m2以上とす
ることにより、第4図に示すように復水脱塩器の
必要塔数削減をさらに図ることができ、原子力発
電プラントの建設コスト低減や信頼性の向上によ
り一層役立つ。 また、本発明の一実施例の説明においては、復
水浄化装置を原子力発電プラントに適用した例に
ついて述べたけれども、この装置を火力発電プラ
ントに適用することもできる。 〔発明の効果〕 以上に述べたように本発明に係る復水浄化装置
の運転方法においては、復水脱塩装置の復水脱塩
器内を流れる復水の線流速を高速としたから、復
水脱塩器の必要設置塔数の削減を図ることがで
き、発電プラントのプラント建設コストの低減や
プラントの信頼性向上を確実に図ることができ
る。 また、この復水浄化装置の運転方法を原子力発
電プラントに適用した場合には、復水濾過装置で
復水中に含まれるクラツド等の不溶解性不純物を
ほぼ完全に除去することができるので、復水脱塩
装置は溶解性不純物の分離除去をイオン交換作用
により行なえばよいから、復水脱塩装置に使用さ
れるイオン交換樹脂量を減少させることができ、
かつイオン交換樹脂の再生頻度を減らすことがで
きるから、放射性廃液等の放射性廃棄物の発生量
の低減を確実に図ることができる。
In consideration of the above-mentioned points, the present invention reduces the number of towers required for the condensate desalter by increasing the flow rate of condensate passing through the condensate desalter, thereby reducing power plant construction costs. The main purpose of this invention is to provide a method of operating a condensate purification device that reliably achieves the following. Another object of the present invention is to reduce the amount of ion exchange resin used in the condensate desalination equipment and reduce the frequency of regeneration of the ion exchange resin, thereby reducing the amount of radioactive waste such as radioactive waste liquid. An object of the present invention is to provide a method of operating a condensate purification device for a nuclear power plant. [Summary of the Invention] In order to achieve the above-mentioned object, a method of operating a condensate purification device according to the present invention includes a condensate filtration system for removing insoluble impurities such as crud in a condensate system from a condenser. The device and a condensate demineralizer for removing soluble impurities by ion exchange action are arranged in series, and the condensate demineralizer has a plurality of condensate demineralizers arranged in parallel with each other. , the linear flow velocity of condensate flowing in each of the above condensate demineralizers is 130 m/
It is set at hr~150m/hr. [Embodiments of the Invention] Hereinafter, an embodiment of a method of operating a condensate purification apparatus according to the present invention will be described with reference to the accompanying drawings. FIG. 1 is a system diagram showing an example in which the condensate purification apparatus according to the present invention is applied to a nuclear power plant, and reference numeral 10 in the figure indicates a boiling water reactor of the nuclear power plant. Steam generated in the core of the nuclear reactor 10 is supplied to a steam turbine 12 through a steam supply system 11, where it rotates the turbine and performs work. The steam that has done the work is then guided to the condenser 13 where it is condensed and becomes condensate. The condensate condensed in the condenser 13 is guided to the condensate system 14, passes through the low-pressure condensate pump 15, etc., and is guided to the condensate purification device 18, which removes crud, etc. in the condensate. Insoluble impurities and soluble impurities are separated and removed, resulting in clean condensate. This condensate is transferred from the high pressure condensate pump 19 to the reactor 10 via the low pressure feed water heater 20, the feed water pump 21 and the high pressure feed water heater 22.
water is supplied, and one cycle is completed. The condensate purification device 18 includes a condensate filtration device 24 provided on the upstream side and a condensate desalination device 25 installed in series on the downstream side thereof. Condensate filtration device 2
4 and the condensate desalination device 25, the condensate filter 24
a... and condensate demineralizers 25a... are each installed in parallel, including a plurality of towers and spares. During normal operation,
Except for one standby tower, each condensate filter 24a and condensate demineralizer 25a are in water flow operation for condensate purification. Among these, the condensate filter 24a...
The method removes crud in condensate by filtration, and is filled with powdered ion exchange resin. The condensate demineralizers 25a mainly remove soluble impurities in condensate through the ion exchange action of bead-shaped ion exchange resins. Although this condensate demineralizer is inferior to the condensate filter 24a, it is designed to filter and adsorb insoluble impurities such as crud. In an actual 1.1 million KW class nuclear power plant, the condensate desalination device 2 of the condensate purification device 18
Condensate demineralizers 25a, 25b...2 incorporated in 5
For example, ten towers of 5j are provided as shown in FIG. Each condensate demineralizer 25a, 25b...25j
are each branch pipe 28 branched from the condensate inlet main pipe 26 of the condensate system 14 via the condensate inlet header 27.
a, 28b...28j. Condensate demineralizer 2
Outlet strainers 29a...29j are interposed on the outlet sides of the condensate outlet headers 3 and 5a, 25b...25j, respectively.
The condensate is combined via 0. In addition, each branch pipe 2
8a, 28b...28j have inlet valves 31a...31
j, and outlet valves 32a...32j are respectively attached. Thus, the condensate from which the crud has been removed in the condensate filtration device 24 is distributed from the condensate inlet header 27 to each branch pipe 28a, 28b, etc., and is distributed to each condensate demineralizer except for the standby condensate demineralizer 1 column. The water is guided to the salters 25a, 25b, and is desalted and purified by the ion exchange action of the bead-shaped ion exchange resin filled in each of the condensate demineralizers 25a, 25b. The condensate from which soluble impurities have been removed through this purification is transferred to the outlet strainer 2.
9a..., collected at the condensate outlet header 30, and guided to the high-pressure condensate pump 19 installed on the downstream side. Each condensate demineralizer 25a, 25b of the condensate demineralizer...
Linear flow rate of condensate passing through (flow rate of condensate flowing per condensate demineralizer tower/average cross-sectional area of ion exchange resin bed)
Conventional nuclear power plants use a rate of around 120m/hr. This flow rate value is the same as the flow rate at the time when a condensate filtration device was not employed in the condensate purification device. However, as shown in Figure 3,
It has been found that there is no problem in the ion exchange performance of the ion exchange resin filled in the condensate demineralizers 25a, 25b, . . . even if the flow rate is increased somewhat. Therefore, the crud in the condensate is almost completely removed by the condensate filtration device, and in the condensate demineralizers 25a, 25b, where the removal of crud is no longer necessary, the flow rate of the condensate flowing inside the container is changed by ion exchange. Maximum improvement can be achieved without causing performance problems, with a flow rate of 130m/
There is no problem in adopting the range of hr to 150m/hr. If the flow rate of condensate flowing through the condensate demineralizers 25a, 25b is increased from the conventional 120 m/hr to 150 m/hr, the number of condensate demineralizers required for a 1.1 million KW class nuclear power plant, for example, will be reduced. is calculated as follows. Required number of columns for condensate demineralizer = condensate flow rate / 1 column / average cross-sectional area of ion exchange resin bed / ion exchange resin bed flow rate = 7540 m 3 /hr / 6.8 m 2 150 m / hr = 7.4 towers Conventional 120 m / At a linear flow rate of about hr, the required number of columns for a condensate demineralizer = 7540m 3 /hr / 6.8m 2・120m/hr = 9.24 columns Therefore, in conventional condensate desalination equipment, the necessary number of condensate demineralizers The salters used to require 10 to 11 towers, including one backup tower, but the condensate demineralizers 25a, 25b...
By increasing the flow rate inside, there are only nine towers including one preliminary tower, and it is possible to reduce the number of towers by one to two. In reality, 10 towers were previously installed, so this is a reduction of one tower. By reducing the number of condensate demineralizers by one tower, the condensate demineralizer, its surrounding piping, valves, instrumentation equipment,
Since one electrical tower can be removed, the construction cost of a nuclear power plant can be reduced. Furthermore, reducing the number of condensate demineralizer columns reduces the number of failure points during plant operation, improving plant reliability. In the explanation of one embodiment, an example was described in which the average cross-sectional area of the ion exchange resin bed of the condensate demineralizer was 6.8 m 2 . As shown, it is possible to further reduce the number of towers required for condensate demineralizers, further contributing to lower construction costs and improved reliability of nuclear power plants. Further, in the description of one embodiment of the present invention, an example was described in which the condensate purification device was applied to a nuclear power plant, but this device can also be applied to a thermal power plant. [Effects of the Invention] As described above, in the operating method of the condensate purification device according to the present invention, the linear flow velocity of the condensate flowing through the condensate demineralizer of the condensate desalination device is set to high speed. It is possible to reduce the number of towers required to install condensate desalters, and it is possible to reliably reduce the plant construction cost of the power plant and improve the reliability of the plant. Furthermore, when this method of operating a condensate purification device is applied to a nuclear power plant, the condensate filtration device can almost completely remove insoluble impurities such as crud contained in the condensate. Since the water desalination equipment can separate and remove soluble impurities through ion exchange action, the amount of ion exchange resin used in the condensate desalination equipment can be reduced.
Moreover, since the frequency of regeneration of the ion exchange resin can be reduced, it is possible to reliably reduce the amount of radioactive waste such as radioactive waste liquid.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明に係る復水浄化装置を備えた
原子力発電プラントを示す系統図、第2図は復水
浄化装置に組み込まれる復水脱塩装置を示す配置
図、第3図は復水脱塩器内を流れる復水の線流速
とイオン交換性能の関係を示すグラフ、第4図は
復水脱塩器のイオン交換樹脂床平均断面積と復水
脱塩器の必要塔数との関係を示すグラフである。 10…原子炉、12…蒸気タービン、13…復
水器、14…復水配管系統、15…低圧復水ポン
プ、18…復水浄化装置、19…高圧復水ポン
プ、20…低圧給水加熱器、21…給水ポンプ、
22…高圧給水加熱器、24…復水濾過装置、2
5…復水脱塩装置、25a…29j…出口ストレ
ーナ、30…復水出口ヘツダ。
FIG. 1 is a system diagram showing a nuclear power plant equipped with a condensate purification device according to the present invention, FIG. 2 is a layout diagram showing a condensate desalination device incorporated in the condensate purification device, and FIG. A graph showing the relationship between the linear flow rate of condensate flowing through the water demineralizer and ion exchange performance. It is a graph showing the relationship between. 10...Nuclear reactor, 12...Steam turbine, 13...Condenser, 14...Condensate piping system, 15...Low pressure condensate pump, 18...Condensate purification device, 19...High pressure condensate pump, 20...Low pressure feed water heater , 21...water supply pump,
22... High pressure feed water heater, 24... Condensate filtration device, 2
5... Condensate desalination device, 25a... 29j... Outlet strainer, 30... Condensate outlet header.

Claims (1)

【特許請求の範囲】[Claims] 1 復水器からの復水系統に、クラツド等の不溶
解性不純物を除去する復水濾過装置とイオン交換
作用により溶解性不純物を除去する復水脱塩装置
とを、シリーズに配設するとともに、上記復水脱
塩装置は互いに並設された複数の復水脱塩器を有
する復水浄化装置において、運転時における上記
各復水脱塩器内を流れる復水の線流速を130m/
hr〜150m/hrに設定して成ることを特徴とする
復水浄化装置の運転方法。
1 In the condensate system from the condenser, a condensate filtration device that removes insoluble impurities such as crud and a condensate desalination device that removes soluble impurities through ion exchange are installed in series. The condensate desalination device is a condensate purification device having a plurality of condensate demineralizers arranged in parallel, and the linear flow velocity of condensate flowing through each of the condensate demineralizers during operation is 130 m/min.
A method of operating a condensate purification device characterized by setting the rate between hr and 150 m/hr.
JP58044069A 1983-03-18 1983-03-18 Condensed water clean-up device Granted JPS59170796A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58044069A JPS59170796A (en) 1983-03-18 1983-03-18 Condensed water clean-up device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58044069A JPS59170796A (en) 1983-03-18 1983-03-18 Condensed water clean-up device

Publications (2)

Publication Number Publication Date
JPS59170796A JPS59170796A (en) 1984-09-27
JPH0437396B2 true JPH0437396B2 (en) 1992-06-19

Family

ID=12681336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58044069A Granted JPS59170796A (en) 1983-03-18 1983-03-18 Condensed water clean-up device

Country Status (1)

Country Link
JP (1) JPS59170796A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52132297A (en) * 1976-04-30 1977-11-05 Hitachi Ltd Operating method of purifying system of reactor
JPS53120093A (en) * 1977-03-30 1978-10-20 Hitachi Ltd Reactor coolant purification device
JPS5556882A (en) * 1978-10-25 1980-04-26 Hitachi Ltd Controller for desalter groups
JPS5643594A (en) * 1979-09-18 1981-04-22 Tokyo Shibaura Electric Co Control device for recombined water desalting device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52132297A (en) * 1976-04-30 1977-11-05 Hitachi Ltd Operating method of purifying system of reactor
JPS53120093A (en) * 1977-03-30 1978-10-20 Hitachi Ltd Reactor coolant purification device
JPS5556882A (en) * 1978-10-25 1980-04-26 Hitachi Ltd Controller for desalter groups
JPS5643594A (en) * 1979-09-18 1981-04-22 Tokyo Shibaura Electric Co Control device for recombined water desalting device

Also Published As

Publication number Publication date
JPS59170796A (en) 1984-09-27

Similar Documents

Publication Publication Date Title
EP0078499B1 (en) Method and apparatus for purifying liquid
JP3800571B2 (en) Secondary water treatment system for pressurized water nuclear power plant
JP3667525B2 (en) Steam generator-attached nuclear power generation turbine facility
JPH0437396B2 (en)
JP2738473B2 (en) Method and apparatus for monitoring turbine through which steam in condensate circulation system passes
JP2892827B2 (en) Nuclear power plant desalination equipment
JP3226604B2 (en) Condensate desalination equipment
JPH08152496A (en) Nuclear power generation facilities
JPH0422489A (en) Water treatment method of power plant
JP3562624B2 (en) Condensate desalination apparatus and method
JPH07155757A (en) Mixed bed desalting device
JPS6265785A (en) Treatment of condensate
JPH0213758B2 (en)
JPS613093A (en) Radioactive waste-liquor treating system
JPH08313692A (en) Recovery method and device for ion exchange resin in demineralizing device
JPH0140672B2 (en)
JPH0448198B2 (en)
JPS6275391A (en) Condensate filtration desalting device for boiling water type nuclear power facility
JPS5916546A (en) Desalting column for condensate
JP2519306B2 (en) Drain recovery system purification device
JPS59139988A (en) Desalinator for condensed water
JPS60201295A (en) Reducer for radiation dose
JPH0477879B2 (en)
JPS6333680B2 (en)
JPS62132584A (en) Condensate desalting tower