JPS5876116A - Optimum operation of filtering and desalting vessel - Google Patents

Optimum operation of filtering and desalting vessel

Info

Publication number
JPS5876116A
JPS5876116A JP56172739A JP17273981A JPS5876116A JP S5876116 A JPS5876116 A JP S5876116A JP 56172739 A JP56172739 A JP 56172739A JP 17273981 A JP17273981 A JP 17273981A JP S5876116 A JPS5876116 A JP S5876116A
Authority
JP
Japan
Prior art keywords
layer
resin
filtering
density
filtration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56172739A
Other languages
Japanese (ja)
Other versions
JPH0155887B2 (en
Inventor
Shigeoki Nishimura
西村 成興
Tetsuro Adachi
安達 哲朗
Katsuya Ebara
江原 勝也
Toshio Ogawa
敏雄 小川
Sankichi Takahashi
燦吉 高橋
Kenkichi Izumi
健吉 和泉
Shoji Kubota
昌治 久保田
Yoshie Takashima
高島 義衛
Seiichi Numazaki
沼崎 誠一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP56172739A priority Critical patent/JPS5876116A/en
Publication of JPS5876116A publication Critical patent/JPS5876116A/en
Publication of JPH0155887B2 publication Critical patent/JPH0155887B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Filtration Of Liquid (AREA)

Abstract

PURPOSE:To prolong the filtering life of a filtering and desalting vessel, in the condensed water filtering and desalting vessel of an atomic power plant, by a method wherein precoating operation is carried out one time or more during water sampling and the density of a precoated layer after a second layer is made lower than that of a first layer. CONSTITUTION:After a turbine is rotated by steam generated in a nuclear reactor to carry out the production of electric power, said steam is recovered as condensed water from a condenser and impurities in the condensed water are removed by a filtering and desalting vessel and a desalting vessel. In this filtering and desalting vessel, an element is precoated with a powdery ion exchange resin to filter solid substance but precoating operation is carried out one time or more during water sampling and the density of a precoated layer after a second layer is made lower than that of a first layer. That is, the resin density of the first layer is adjusted to 0.15g/cm<2> or more and the resin amount thereof is adjusted to 0.045g/cm<2> and the concn. of a precoating resin in a liquid above the second layer is adjusted to 0.05wt%. By this method, clad is perfectly removed and the utilization efficiency of the resin can be enhanced.

Description

【発明の詳細な説明】 本発明は、復水の浄化装置に係シ、特に原子力発電所復
水の濾過脱塩器の最適運転法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a condensate purification device, and particularly to an optimal operating method for a filtration demineralizer for condensate in a nuclear power plant.

従来の原子力発電所の復水浄化システムの代表的な一例
を第1図に示す。原子炉1で発生した蒸気2は蒸気ター
ビン3を回転させ、発電を行なった後、復水器4によシ
復水5として回収される。
Figure 1 shows a typical example of a conventional condensate purification system for a nuclear power plant. Steam 2 generated in the nuclear reactor 1 rotates a steam turbine 3 to generate electricity, and then is recovered as condensate 5 by a condenser 4.

復水中には固形分(クラツド二酸化鉄)やイオン状の不
純物が含まれており、発電所の安全性、信頼上向上のた
め、これらを除去する必要がある。
Condensate contains solids (clad iron dioxide) and ionic impurities, which must be removed to improve the safety and reliability of power plants.

レメントにプリコートして特に固形物を濾過する。Precoat the element and filter especially solids.

又、脱塩器は粒状のイオン交換樹脂を充填したもので、
イオン状の不純物の除去を目的とする。このシステムに
おいて現在問題となっているのは、−過脱塩器6の寿命
が短かいことである。濾過寿命が短かいため、一過剤の
廃棄物量が大賞に発生し、その処理、処分に苦慮してお
り、対策が急がnている。対策として1つは濾過寿命で
あシ、もう1つは濾過剤の再利用である。
In addition, the desalter is filled with granular ion exchange resin.
The purpose is to remove ionic impurities. The current problem with this system is that - the over-demineralizer 6 has a short lifespan. Due to the short filtration life, a large amount of fugitive waste is generated, and it is difficult to treat and dispose of it, so countermeasures are urgently needed. One countermeasure is to limit the life of the filtration, and the other is to reuse the filter agent.

本発明の目的は、この長寿命濾過方式を効果的に運用す
ることにより、良好な復水浄化システムを提供すること
にある。
An object of the present invention is to provide a good condensate purification system by effectively operating this long-life filtration system.

一過剤の長寿命化に関して、効果的な濾過方法を提案す
る。これは、第2図に示すように、採水中に再度プリコ
ート操作を行なうものであシ、これによシ、内部濾過時
間(p過器の出入口における差圧ΔPの上昇が緩“やか
な部分)が長くなり。
We propose an effective filtration method to extend the life of the temporary agent. As shown in Fig. 2, this pre-coat operation is performed again during sampling, which increases the internal filtration time (the part where the differential pressure ΔP at the inlet and outlet of the filter slowly rises). ) becomes longer.

濾過寿命が増大する効果がある。This has the effect of increasing filtration life.

濾過脱塩器の長寿命化のためには、樹脂の利用率の向上
があげられ、クラッドをできるだけプリコート層内部に
てとらえる必要があるが、樹脂層をクラッドがつきぬけ
てしまっては、濾過脱塩器としての性能を向上させるこ
とが不可能である。
In order to extend the life of the filtration demineralizer, it is necessary to improve the utilization rate of the resin, and it is necessary to capture the crud as much as possible inside the precoat layer, but if the crud penetrates the resin layer, the filtration demineralization It is impossible to improve the performance as a salter.

第2図および第3図に示した実験装置を用いて樹脂1f
iに取シ込まれるクラッドの量等を測定し、本発明に至
った。以下にその具体的な結果について説明する。第3
図は第2図中の破線部Ω拡大図である。
Using the experimental equipment shown in Figs. 2 and 3, resin 1f was measured.
The present invention was achieved by measuring the amount of crud taken into i. The specific results will be explained below. Third
The figure is an enlarged view of the broken line Ω in FIG. 2.

第2図において、原水はポンプ8によって濾過塔9内に
送られる。一方、コンプレッサ10よりエアチャンバ1
1を経て濾過塔9に送られ、原水を圧送する。濾過塔9
の底部の詳細を第3図にて説明する。濾過塔9の濾過面
積はl 9.6 cm”とし、透過水量は0.26t/
分(流速=8m/時)とする。底部に、直径5亀の穴を
有するSUS板を設け、その上に1紙2枚をおき、さら
にその上に樹脂を置く。
In FIG. 2, raw water is sent into a filter tower 9 by a pump 8. On the other hand, from the compressor 10 to the air chamber 1
1 and sent to a filter tower 9, where the raw water is pumped. Filtration tower 9
The details of the bottom part will be explained with reference to FIG. The filtration area of the filtration tower 9 is 19.6 cm", and the amount of permeated water is 0.26 t/
minutes (flow rate = 8 m/hour). A SUS plate with a 5-diameter hole was provided at the bottom, two sheets of paper were placed on top of the SUS plate, and resin was further placed on top of that.

まず、濾過脱塩器の性能として、クラッドの除去性能を
低下させることはできない。現在プリコートの榮件とし
て用いられているl Kg −dry resin/ 
m 2において、樹脂密度を種々変化させ、そのときの
除去性能を第4図に示す。入口鉄峡度100ppb (
Fe20a )の時の値であるが、除去率として90%
以上の性能が要求されるので、エレメントの上にプリコ
ートされた$1ノーの樹脂密度は0.15g/口3以上
が必要である。
First, the crud removal performance of the filtration demineralizer cannot be reduced. Kg-dry resin/ currently used as a pre-coat material
Figure 4 shows the removal performance obtained by varying the resin density at m2. Entrance iron gorge degree 100ppb (
Fe20a), but the removal rate is 90%.
Since the above performance is required, the density of the $1 resin pre-coated on the element must be 0.15 g/mouth 3 or more.

さらに、樹脂密度0.15g/(7)3の場仕における
樹脂ノーへの鉄の侵入割合を樹脂層深さ方向におけるX
線マイクロアナライザー1こよるライン分析により求め
た。その結果を第5図に示す。
Furthermore, the penetration rate of iron into the resin no. in the field treatment with a resin density of 0.15 g/(7)3 was calculated by
It was determined by line analysis using a line microanalyzer. The results are shown in FIG.

鉄は濾過面から3閣程度までしか侵入しておらず、3簡
の厚さでクラッドを捕捉しているのが判明した。つまり
樹脂量としては0.0459 / cm2以上あれば十
分であシ、現在は多電の未使用樹脂を(吏用しているこ
ととなる。
It was found that the iron had penetrated only about 3 layers from the filtration surface, trapping the crud at a thickness of 3 layers. In other words, it is sufficient for the amount of resin to be 0.0459/cm2 or more, and currently, unused resin from many companies is being used.

前述したように、濾過・−が疎であれば、クラッドばよ
り内部に浸入しやすくなり、濾過寿命は長くなる。第1
層の樹脂密度は0.15 El/an3以上であシ、ク
ラッドはほぼ完全に除去されるので、第2j−以後のプ
リコートj−の樹脂密度は、第1層の樹脂密度より低い
方がよ層内部までクラッドが入るため、樹脂の利用率は
高まる。採水中にプリコートを行なう回数は、濾過脱塩
器の寿命と萌用樹脂量により決定されるべきである。寿
命がのびても、トータルの廃5#物量が増大しては意味
がない。さらに、長寿命濾過方式の効果を最大限引き出
すには、p過助剤のスラリー濃度の適正化が重要である
。発明者は5g2図および第3図に示す基礎実験装置に
よシ最適な操作条件を実験的に求めた。
As mentioned above, if the filtration is sparse, the cladding will more easily penetrate into the interior, and the filtration life will be longer. 1st
The resin density of the layer should be 0.15 El/an3 or more, and since the cladding is almost completely removed, it is better if the resin density of the precoat j- after the 2nd j- is lower than the resin density of the first layer. Since the cladding penetrates into the layer, the utilization rate of the resin increases. The number of times to precoat during sampling should be determined by the life of the filtration demineralizer and the amount of priming resin. Even if the lifespan is extended, it is meaningless if the total amount of waste 5# increases. Furthermore, in order to maximize the effects of the long-life filtration system, it is important to optimize the slurry concentration of the p-filtering aid. The inventor experimentally determined the optimal operating conditions using the basic experimental apparatus shown in Figures 5g2 and 3.

プリコート操作時における樹脂スラリー濃度は、第1層
即ち、採水前のプリコート層を形成する際は重量濃度で
0.01〜1%を採用する。これは従来から用いられて
いる一般的な値である。次に。
The resin slurry concentration during the precoat operation is 0.01 to 1% by weight when forming the first layer, that is, the precoat layer before water sampling. This is a commonly used value. next.

第2I−即ち、採水中にプリコートを行なう際のスラリ
ー#度は復水中の重量濃度で0.05%以上とする。こ
れは基礎実験結果から明らかになったもので、第6図に
示すように、スラリー濃度0.05%以上にすると濾過
寿命の増大効果が顕著でめった。更に詳しく調べるため
に、濾過差圧ΔP−1,75Kg/cm”で実験の終了
した濾過1−を採取し、濾過HImF面のpeのX線強
度をX線マイクロアナライザで測定したところ、第7図
に示すように。
2nd I--That is, when precoating is performed during sampled water, the # degree of the slurry should be 0.05% or more in terms of weight concentration in the condensate. This has become clear from the results of basic experiments, and as shown in FIG. 6, when the slurry concentration was 0.05% or more, the effect of increasing the filtration life was remarkable. To investigate in more detail, we sampled filtration 1-, which had been tested at a filtration differential pressure ΔP-1, 75 Kg/cm'', and measured the X-ray intensity of pe on the filtration HImF surface with an X-ray microanalyzer. As shown in the figure.

スラリー濃度が小さいと第2ノーのpeの捕捉機構は内
部−過より表面濾過の方が支配的になっていることがわ
かった。これはスラリー濃度が小さいと第2層が密に形
成されるため、Feが内部に侵入出来ないためと推測で
きる。
It was found that when the slurry concentration was small, surface filtration became more dominant than internal filtration as the second PE capture mechanism. It can be assumed that this is because when the slurry concentration is low, the second layer is formed densely, so that Fe cannot penetrate inside.

第8図に1本プリコート方式による圧力損失上昇カーブ
と現状方式の比較を示した。極めて寿命延長の効果が大
きいのが明らかである。
Figure 8 shows a comparison of the pressure loss increase curve for the single precoat method and the current method. It is clear that the effect of extending life is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の複水浄化システム、第2図および第3図
は実験装置を示す図、第4図はプリコート層樹脂密度の
影響を示す図、第5図は樹脂層深さ方向への鉄侵入割合
を示す図、第6図はスラリ−濃度を最適値を示す図”、
第7図はスラリー濃度と濾過機構の関係を示す図、第8
図は本発明の動量1図 匙1vJ3図 第4図 第5関 (ヂ通面ン   M寸舶1’t!t−” (mm)第6
0 ′i 会 ぐ 又ラリー壊廖(wt’A) 第8旧 運弘8奇問(−It) 第1頁の続き 0発 明 者 久保田昌治 日立市幸町3丁目1番1号株式 %式% 東京都千代田区丸の内−丁目5 番1号株式会社日立製作所内 0発 明 者 沼崎誠− 日立市幸町3丁目1番1号株式 %式%
Figure 1 shows the conventional double water purification system, Figures 2 and 3 show the experimental equipment, Figure 4 shows the influence of the pre-coat layer resin density, and Figure 5 shows the influence of the resin layer in the depth direction. Figure 6 shows the iron penetration rate, and Figure 6 shows the optimum slurry concentration.
Figure 7 is a diagram showing the relationship between slurry concentration and filtration mechanism, Figure 8
The figure shows the amount of movement of the present invention 1, 1, 1, 1, 3, 4, 5, 1' (mm), 6
0 'i Aigumata Rally Destruction (wt'A) No. 8 Old Unko 8 Strange Questions (-It) Continuation of page 1 0 Invention Author: Shoji Kubota 3-1-1 Saiwaimachi, Hitachi City Stock % Formula % Hitachi, Ltd., 5-1 Marunouchi, Chiyoda-ku, Tokyo 0 Inventor Makoto Numazaki - 3-1-1 Saiwaimachi, Hitachi City Stock% Formula %

Claims (1)

【特許請求の範囲】 1、採水中に°1回以上のプリコート操作を行ない、第
2層以後のプリコート層密度を第1層以下とする濾過脱
塩器の最適運転法。 2、上記第1項記載の方法において、第1層の樹脂密度
を0.15g/口3以上、樹脂量を0.045f/cm
3以上とする濾過脱塩器の最適運転方法。 3、上記WJ1項記載の方法において、第2層以後のプ
リコート樹脂の液中績−をo、 05 W t%以上と
する濾過脱塩器の最適運転方法。
[Claims] 1. An optimal operating method for a filtration demineralizer, in which the precoat operation is performed once or more during water sampling, and the density of the precoat layers after the second layer is lower than the first layer. 2. In the method described in item 1 above, the resin density of the first layer is 0.15 g/mouth 3 or more, and the resin amount is 0.045 f/cm.
Optimal operating method for filtration demineralizer with 3 or more. 3. An optimal method for operating a filtration demineralizer in the method described in WJ 1 above, in which the liquid content of the precoat resin after the second layer is set to 0.05 Wt% or more.
JP56172739A 1981-10-30 1981-10-30 Optimum operation of filtering and desalting vessel Granted JPS5876116A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56172739A JPS5876116A (en) 1981-10-30 1981-10-30 Optimum operation of filtering and desalting vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56172739A JPS5876116A (en) 1981-10-30 1981-10-30 Optimum operation of filtering and desalting vessel

Publications (2)

Publication Number Publication Date
JPS5876116A true JPS5876116A (en) 1983-05-09
JPH0155887B2 JPH0155887B2 (en) 1989-11-28

Family

ID=15947413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56172739A Granted JPS5876116A (en) 1981-10-30 1981-10-30 Optimum operation of filtering and desalting vessel

Country Status (1)

Country Link
JP (1) JPS5876116A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60248212A (en) * 1984-05-23 1985-12-07 Kurita Water Ind Ltd Removal of impurity from liquid
JPS6111116A (en) * 1984-06-27 1986-01-18 Kurita Water Ind Ltd Process for removing impurity from liquid
JPH02277518A (en) * 1989-04-17 1990-11-14 Monpei Shirato Formation of stable precoated filter medium layer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60248212A (en) * 1984-05-23 1985-12-07 Kurita Water Ind Ltd Removal of impurity from liquid
JPS6111116A (en) * 1984-06-27 1986-01-18 Kurita Water Ind Ltd Process for removing impurity from liquid
JPH02277518A (en) * 1989-04-17 1990-11-14 Monpei Shirato Formation of stable precoated filter medium layer
JPH0455725B2 (en) * 1989-04-17 1992-09-04 Monpei Shirato

Also Published As

Publication number Publication date
JPH0155887B2 (en) 1989-11-28

Similar Documents

Publication Publication Date Title
Jung et al. Electrosorption of uranium ions on activated carbon fibers
JPS5876116A (en) Optimum operation of filtering and desalting vessel
JP2008232773A (en) Treater for water containing radioactive material in nuclear power plant
CN206940664U (en) A kind of sewage high-speed rotary processing unit
JPS628237B2 (en)
JPH0447280B2 (en)
JPH044011B2 (en)
Potter et al. Formation damage due to colloid plugging
JPS6061089A (en) Purifying method of condensate
JPS6031094A (en) Treating facility for radioactive waste
RU2040475C1 (en) Method of water purification from metal oxides or suspended impurities
CN116903178A (en) Modeling method for deep well perfusion treatment high-salinity water technology
JPS59224598A (en) Electrolytic regenerating method of used ion-exchange resin
JPS63315190A (en) Operation method for hollow yarn membrane filter
JPS62144706A (en) Structure of hollow yarn membrane module
Lee et al. Treatment of oily machinery waste
Reizin et al. Unit for electromagnetic filter automation and power supply
JPS5844400A (en) Clad separator device
JPS6013752B2 (en) How to reuse powdered ion exchange resin
JPS5876117A (en) Precoated filtering type water treating system
JPS59138993A (en) Method of cleaning condensed water
JPS59127690A (en) Optimum driving method for filtering desalinator for condensed water
Eschle A STUDY ON THE ALUMINUM PHOSPHATE FLOCCULATION AS METHOD OF TREATMENT FOR WEAKLY RADIOACTIVE WASTE WATERS
Thomas Sampling and analytical methods development at the HGP-a generator facility
JPS6381299A (en) Liquid waste processor