JPS59127690A - Optimum driving method for filtering desalinator for condensed water - Google Patents

Optimum driving method for filtering desalinator for condensed water

Info

Publication number
JPS59127690A
JPS59127690A JP58001092A JP109283A JPS59127690A JP S59127690 A JPS59127690 A JP S59127690A JP 58001092 A JP58001092 A JP 58001092A JP 109283 A JP109283 A JP 109283A JP S59127690 A JPS59127690 A JP S59127690A
Authority
JP
Japan
Prior art keywords
filtering
filtration
amount
column
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58001092A
Other languages
Japanese (ja)
Inventor
Tetsuro Adachi
安達 哲朗
Toshio Ogawa
敏雄 小川
Katsuya Ebara
江原 勝也
Katsumi Osumi
大角 克己
Seiichi Numazaki
沼崎 誠一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58001092A priority Critical patent/JPS59127690A/en
Publication of JPS59127690A publication Critical patent/JPS59127690A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)

Abstract

PURPOSE:To reduce the amount of radioactive waste, while prolonging the filtering life of the titled filtering desalinator for condensed water, by making the amount of water flowing through a column in the step of inner filtering larger than the simple average value and the amount of water flowing through a column in the step of surface filtering smaller than said simple average value. CONSTITUTION:Condensed water is parallelly sent into a plurality of filtering desalination columns 14 by a pump 13 for condensed water. Each column contains many elements in it, and the condensed water is circulated after said elements are precoated with powdery ion exchange resin. The amount of water flowing through the filtering desalination column existing in the step of inner filtering is made larger than the simple average value per one column to perform LV driving with high water circulation, while the amount of water flowing through the filtering desalination column existing in the step of surface filtering is made smaller to perform LV driving with low water circulation. Thus, the elongation of filtering life is contrived under the fixed amount of water circulated as a whole. To adjust the amount of water flowing through the filtering desalination column, a discharge regulator valve 15 provided at the downstream side of each column is used.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、復水p過脱塩器の最適運用法に係り、特に原
子力発電所の復水浄化系に使用するに好適な復水濾過脱
塩器の最適運用法に関するものである。
Detailed Description of the Invention [Field of Application of the Invention] The present invention relates to an optimal operating method for a condensate p superdemineralizer, and in particular to a condensate filtration demineralizer suitable for use in a condensate purification system of a nuclear power plant. It concerns the optimal method of operating salt vessels.

〔従来技術〕[Prior art]

近年、石油事情が悪化していることから電力は今後ます
ます原子力発電に依存していくものと考えられる。原子
力発電所は我が国では既に23ケ所で稼動しておシ、建
設中、計画中のものも相当数ある。しかし、原子力発電
は放射性物質の取扱いのため、その運用にはきわめて高
い安全性、信頼性が要求される。
As the oil situation has worsened in recent years, it is thought that electricity will become increasingly dependent on nuclear power generation in the future. There are already 23 nuclear power plants in operation in Japan, and a considerable number are under construction or in the planning stages. However, since nuclear power generation involves the handling of radioactive materials, extremely high levels of safety and reliability are required for its operation.

原子力発電所を安全に運用していくだめの重要なシステ
ムの一つに復水浄化システムがある。このシステムの代
表例を第1図に示すが、システムは復水から配管線量率
や機器の腐食の原因となる鉄、コバルト、塩素イオン等
の不純物を除去することを目的とする。原子炉lで発生
し7た蒸気2は蒸気タービン3を駆動して発電を行なっ
た後復水器4によシ復水5になる。復水中には固型状や
イオン状の不純物(鉄が主体である。)が含まれておシ
、発電所の安全性、信頼性向上のためにこれらを除去す
る必要がある。p過脱塩器6及び脱塩器7は不純物を除
去する装置で、濾過脱塩器6は粉状のイオン交換樹脂が
内蔵されている多数本のエレメントの表面にプリコート
して特に固形状の不純物を除去する。又、脱塩器7は粒
状のイオン交換樹脂を充填したものでイオン状の不純物
の除去を目的とする。復水浄化システム内には濾過脱塩
器6及び脱塩器7共数塔づつ設置されておシ、それぞれ
並列に通水されている。又、通水量も各塔均−になるよ
うに運転されている。濾過脱塩器の場合、我が国では通
水LV(線速度)は6 m/ h〜3 m / bが採
用されている。
One of the important systems for the safe operation of a nuclear power plant is the condensate purification system. A typical example of this system is shown in Figure 1, and the purpose of the system is to remove impurities such as iron, cobalt, and chlorine ions that cause pipe dose rates and equipment corrosion from condensate. Steam 2 generated in the nuclear reactor 1 drives a steam turbine 3 to generate electricity, and then passes through a condenser 4 to become condensed water 5. Condensate contains solid and ionic impurities (mainly iron), which must be removed to improve the safety and reliability of power plants. The filtration demineralizer 6 and the demineralizer 7 are devices for removing impurities, and the filtration demineralizer 6 pre-coats the surfaces of multiple elements containing powdered ion exchange resin to remove especially solid ion exchange resin. Remove impurities. The demineralizer 7 is filled with granular ion exchange resin and is intended to remove ionic impurities. A filtration demineralizer 6 and a demineralizer 7 are installed in the condensate purification system, and water is passed through them in parallel. In addition, each tower is operated so that the amount of water flowing through each tower is equal. In the case of a filtration demineralizer, a water flow LV (linear velocity) of 6 m/h to 3 m/b is adopted in Japan.

このシステムにおいては特に濾過脱塩器6の浄化性能に
よシ、配管線量率低減の効果が著しく高く、プラントの
低放射能化に大きく寄与している。
In this system, the effect of reducing the pipe dose rate is particularly high due to the purification performance of the filtration demineralizer 6, which greatly contributes to lowering the radioactivity of the plant.

しかし、濾過脱塩器6に使用する粉状イオン交換樹脂は
使い棄ててあム約10〜15日のサイクルで逆洗、プリ
コートを繰9返すため、廃樹脂が多量に発生する問題が
あった。しかも廃樹脂は放射性廃棄物であるため、その
処理、処分が非常に難しくその対策に苦慮している。解
決策は種々考えられているが、その−っには濾過脱塩器
の濾過寿命の延長があげられる。
However, the powdered ion exchange resin used in the filtration demineralizer 6 is discarded and is backwashed and precoated 9 times over a cycle of about 10 to 15 days, resulting in a large amount of waste resin. . Moreover, since waste resin is radioactive waste, it is extremely difficult to process and dispose of it, and we are struggling to find countermeasures. Various solutions have been considered, one of which is to extend the filtration life of the filtration demineralizer.

〔発明の目的〕 本発明の目的は、放射性廃棄物量低減のため、濾過脱塩
器の濾過寿命が長い運用法を提供するにある。
[Object of the Invention] An object of the present invention is to provide a method of operating a filtration demineralizer with a long filtration life in order to reduce the amount of radioactive waste.

〔発明の概要〕[Summary of the invention]

濾過脱塩器のプリコート樹脂層が固形物を捕捉する機構
には大別して二つある。内部濾過と表面濾過である。第
2図に示すように内部濾過とは固形物がプリコート樹脂
層の内部で捕捉される機構を言い、プリコート樹脂層の
空隙よシ小さい固形物も捕捉できる。これに対し表面濾
過は固形物がプリコート樹脂層表面に堆積した固形物の
層で捕捉される機構を言う。
There are two main mechanisms by which solid matter is captured by the precoat resin layer of the filtration and demineralizer. These are internal filtration and surface filtration. As shown in FIG. 2, internal filtration refers to a mechanism in which solids are captured inside the precoat resin layer, and even solids smaller than the voids in the precoat resin layer can be captured. On the other hand, surface filtration refers to a mechanism in which solids are captured by a layer of solids deposited on the surface of the precoat resin layer.

プリコート樹脂層の固形物を捕捉する機構は始め内部濾
過が主体で、次第に表面濾過主体に移行することが、プ
リコート樹脂層断面のXMA(X線マイクロアナライザ
)で明らかになっている。
XMA (X-ray microanalyzer) of a cross section of the precoat resin layer has revealed that the mechanism for trapping solids in the precoat resin layer is primarily internal filtration, and then gradually shifts to surface filtration.

又、第3図に示すように表面濾過が主体になってくると
濾過差圧の上昇速度が著しくなることもわれわれの実験
結果から分っている。従って、濾過差圧の上昇特性から
内部濾過過程と表面濾過過程の区別が比較的容易に行な
える。これらの知見をふまえ、われわれは次のような実
験を行った。すなわち、内部濾過及び表面濾過における
単位樹脂量当シの鉄の捕捉量を通水LVをパラメータと
して求める実験である。実験装置として長さ1500胴
、直径50聴のナイロン製のエレメント1本を内蔵した
濾過塔を用い、復水中の不純物を模擬するものとして酸
化鉄(α−F、203、平径粒径1μμm)を供試した
。プリコート樹脂には粉状のカチオン交換樹脂とアニオ
ン交換樹脂(共に米国グレーバ社製、商品名powde
x )を乾燥重量で、2:1の比率で裡合したものを使
用した。プリコート樹脂量は濾過面積1−当、!1ll
IK7である。実験結果を第4図に示す。内部濾過過程
の場合、単位樹脂量当シの鉄捕捉量は通水LV4〜12
 m / hの範囲では通水LVに関係せずほぼ一定で
ある。ところが、表面濾過過程の場合、鉄捕捉量は通水
LVが大きくなる程少なくなる。単位樹脂量当シの鉄捕
捉量は濾過寿命に関係するので、濾過寿命が長い程当然
鉄捕捉量は多くなる。従って、第4図から表面濾過過程
では通水LVをできるだけ小さくした方が長寿命化が図
れることがわかる。又、内部濾過過程では通水LVが大
きくても鉄捕捉量が変わらないことから、従来、通水時
間中一定であった通水LVを内部濾過過程と表面濾過過
程で適当に変化させることによシ全通水時間における単
位樹脂量当たシの鉄捕捉量を増大できることが容易に推
測できる。以上のような考え方に基づいて解決策を案出
した。
Furthermore, as shown in FIG. 3, it has been found from our experimental results that when surface filtration becomes dominant, the rate of increase in filtration differential pressure becomes remarkable. Therefore, it is relatively easy to distinguish between the internal filtration process and the surface filtration process based on the rising characteristics of the filtration differential pressure. Based on these findings, we conducted the following experiment. That is, this is an experiment in which the amount of iron captured per unit amount of resin in internal filtration and surface filtration is determined using water passing LV as a parameter. A filter tower with a built-in nylon element with a length of 1,500 mm and a diameter of 50 mm was used as the experimental device, and iron oxide (α-F, 203, average particle size of 1 μμm) was used to simulate impurities in condensate. I tried it. The pre-coat resin includes powdered cation exchange resin and anion exchange resin (both manufactured by Graeba, Inc. in the United States, product name: powder).
x) in a dry weight ratio of 2:1. The amount of precoat resin is 1 - per filtration area! 1ll
It is IK7. The experimental results are shown in Figure 4. In the case of internal filtration process, the amount of iron captured per unit amount of resin is LV4 to 12.
In the m/h range, it is almost constant regardless of the water flow LV. However, in the case of the surface filtration process, the amount of iron trapped decreases as the water flow LV increases. Since the amount of iron trapped per unit amount of resin is related to the filtration life, naturally the longer the filtration life, the greater the amount of iron trapped. Therefore, it can be seen from FIG. 4 that in the surface filtration process, the service life can be extended by making the water flow LV as small as possible. In addition, in the internal filtration process, the amount of iron trapped does not change even if the water flow LV is large, so the water flow LV, which was conventionally constant during the water flow time, was changed appropriately between the internal filtration process and the surface filtration process. It can be easily inferred that the amount of iron captured per unit amount of resin during the entire water flow time can be increased. We devised a solution based on the above ideas.

〔発明の実施例〕[Embodiments of the invention]

第5図をもとに本発明の一実施例を説明する。 An embodiment of the present invention will be described based on FIG.

数基の濾過脱塩塔14に復水ポンプ13よ、!17復水
が並列に送シ込まれる。各搭集内部に多数本のエレメン
トを内蔵しておシ、エレメント上に粉状イオン交換樹脂
をプリコートした後り水を通水する。
Several filtration and demineralization towers 14 and a condensate pump 13! 17 condensate is fed in parallel. A large number of elements are built into each chamber, and after the elements are precoated with powdered ion exchange resin, water is passed through them.

各基はそれぞれ独立に運転されているため、濾過差圧が
異なる。すなわち、プリコート樹脂層が固形物を捕捉す
る機構が異なる。第3図に示す濾過差圧上昇特性を求め
れば、その時の濾過機構が内部濾過か表面濾過か推測す
ることが可能である。
Since each group is operated independently, the filtration pressure difference is different. That is, the mechanism by which the precoat resin layer captures solid matter is different. By determining the filtration differential pressure increase characteristics shown in FIG. 3, it is possible to infer whether the filtration mechanism at that time is internal filtration or surface filtration.

従って、前述した本発明に至った考え方から、内部濾過
過程にある濾過脱塩塔の通水量を一塔当シの単純平均値
よシも増大させ高通水LV運転をすると共に、表面濾過
過程にある濾過脱塩塔の通水量を減少させ低通水LV運
転を行ない、全通水量一定のもとで濾過寿命の延長をは
かる。濾過脱塩塔の通水量の調整には各基の下流側に設
けた流量調整弁15を使用する。これらの操作を手動で
行なうと各基の通水量のバランスをとるのかやヤ繁雑に
なるので自動化するのが望ましい。これには第6図に示
すように濾過脱塩塔各基にp過差圧検出器16を設けて
濾過差圧を検出し、制御器18で単位時間描シの濾過差
圧上昇すなわち沖過差圧上昇速度を計算し、設定値との
比較によシその時の′濾過機構が内部濾過か表面流過か
を判定させればよい。そして各基の下流に設けられた通
水量調整用の自励弁17に信号を与え、自動弁170開
度が濾過寿命の延長に対して最適に、なるように自動制
御を行なう。
Therefore, from the idea that led to the present invention described above, the water flow rate of the filtration and demineralization tower in the internal filtration process is increased by a simple average value per tower, and high water flow LV operation is carried out, and the water flow rate in the surface filtration tower is increased. The water flow rate of a certain filtration and demineralization tower is reduced and low water flow LV operation is performed in order to extend the filtration life under a constant total water flow rate. To adjust the amount of water flowing through the filtration and demineralization tower, a flow rate adjustment valve 15 provided on the downstream side of each unit is used. If these operations were performed manually, it would be complicated to balance the amount of water flowing through each unit, so it is desirable to automate them. For this purpose, as shown in FIG. 6, a P differential pressure detector 16 is installed in each unit of the filtration and demineralization tower to detect the filtration differential pressure. It is sufficient to calculate the differential pressure increase rate and compare it with a set value to determine whether the filtration mechanism at that time is internal filtration or surface flow. Then, a signal is given to the self-exciting valve 17 for adjusting the water flow rate provided downstream of each unit, and automatic control is performed so that the opening degree of the automatic valve 170 is optimal for extending the filtration life.

本発明による効果を第1表に示す。Table 1 shows the effects of the present invention.

第1表 直径50+u+、長さ1500ynmのナイロンエレメ
ント1本を内蔵した試験用濾過塔3塔を同時に並列に運
転した実験結果である。実験条件を従来運転法である通
水LVを各基8 m / h一定の場合と本発明による
内部p過過程で10m/hX表面濾過過程で6 m /
 hにした場合に変えて濾過寿命を比較した。模擬復水
として純水に鉄酸化物α−F、2o3を溶かしたものを
供試した。濃度は50 p p d asF、に調整し
た。本発明による運転法では従来法に比べて各搭集濾過
寿命が25〜33%増大する効果を有することが確認さ
れた。
Table 1 shows the results of an experiment in which three test filtration towers each containing one nylon element with a diameter of 50+u+ and a length of 1500 yn were simultaneously operated in parallel. The experimental conditions were the conventional operation method where the water flow LV was constant at 8 m/h for each group, and the internal p-filtration process according to the present invention at 10 m/hX and the surface filtration process at 6 m/h.
The filtration life was compared when the filter was changed to h. A sample of simulated condensate was prepared by dissolving iron oxide α-F, 2O3 in pure water. The concentration was adjusted to 50 p p d asF. It has been confirmed that the operating method according to the present invention has the effect of increasing each collection filtration life by 25 to 33% compared to the conventional method.

〔発明の効果〕〔Effect of the invention〕

本発明によれば復水濾過脱塩器の濾過寿命を延長するこ
とができるの1、廃樹脂を主体とする放射性廃棄物量を
低減する効果がある。
According to the present invention, the filtration life of the condensate filtration demineralizer can be extended, and the amount of radioactive waste mainly composed of waste resin can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は通常の原子力発電所の復水浄化システムのブロ
ック図、第2図は第1図の濾過脱塩器の濾過機構を示し
くイ)は内部流過、(ロ)は表面濾過のそれぞれの略図
、第3図は第2図の濾過脱塩器の濾過差圧上昇特性の説
明図、第4図は本発明の復水濾過脱塩器の最適運用法の
原理となる濾過特性の説明図、第5図は本発明の第4図
の運用法を実施する装置の略図、第6図は本発明の復水
濾過脱塩器の最適運用法を実施する他の装置の概略図で
ある。 13・・・復水ポツプ、14・・・濾過脱塩塔、15・
・・流量調整弁。 代理人 弁理士 高橋明夫 勃/(2) 弔20 (イノ                    (ロ
リ弔3図 経遁時間 f14−図 透水LV(7n/h]
Figure 1 is a block diagram of a conventional nuclear power plant condensate purification system, and Figure 2 shows the filtration mechanism of the filtration demineralizer shown in Figure 1. (a) shows internal flow, (b) shows surface filtration. The respective schematic diagrams are as follows: Fig. 3 is an explanatory diagram of the filtration differential pressure increase characteristics of the filtration demineralizer shown in Fig. 2, and Fig. 4 is an illustration of the filtration characteristics, which is the principle of the optimal operation method of the condensate filtration demineralizer of the present invention. An explanatory diagram, FIG. 5 is a schematic diagram of an apparatus for carrying out the operation method shown in FIG. be. 13... Condensate pot, 14... Filtration and desalination tower, 15.
...Flow rate adjustment valve. Agent Patent Attorney Akio Takahashi / (2) Condolences 20 (Ino (Lori Condolence 3 Zukeiton Time f14-Figure Tosui LV (7n/h)

Claims (1)

【特許請求の範囲】[Claims] 1、数基の濾過脱塩塔を並列に運転する復水濾過脱塩器
の運用法において、各基の濾過機構をp過差圧上昇特性
から判定して、内部濾過過程にある塔の通水量を単純平
均値より多く、又表面濾過過程にある塔の通水量を単純
平均値よシ少なくすることを特徴とする復水濾過脱塩器
の最適運用法。
1. In the method of operating a condensate filtration demineralizer that operates several filtration and demineralization towers in parallel, the filtration mechanism of each unit is judged from the P differential pressure increase characteristics, and the flow rate of the tower during the internal filtration process is determined. An optimal operating method for a condensate filtration demineralizer characterized by making the amount of water greater than the simple average value and making the amount of water flowing through the tower in the surface filtration process less than the simple average value.
JP58001092A 1983-01-10 1983-01-10 Optimum driving method for filtering desalinator for condensed water Pending JPS59127690A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58001092A JPS59127690A (en) 1983-01-10 1983-01-10 Optimum driving method for filtering desalinator for condensed water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58001092A JPS59127690A (en) 1983-01-10 1983-01-10 Optimum driving method for filtering desalinator for condensed water

Publications (1)

Publication Number Publication Date
JPS59127690A true JPS59127690A (en) 1984-07-23

Family

ID=11491853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58001092A Pending JPS59127690A (en) 1983-01-10 1983-01-10 Optimum driving method for filtering desalinator for condensed water

Country Status (1)

Country Link
JP (1) JPS59127690A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10513446B2 (en) 2014-10-10 2019-12-24 EcoDesal, LLC Depth exposed membrane for water extraction

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10513446B2 (en) 2014-10-10 2019-12-24 EcoDesal, LLC Depth exposed membrane for water extraction

Similar Documents

Publication Publication Date Title
JPH0298648A (en) Method and device for monitoring soluble component and non-soluble particle
JP3760033B2 (en) Secondary water treatment system for pressurized water nuclear power plant
JPS59127690A (en) Optimum driving method for filtering desalinator for condensed water
JP2000202219A (en) Precoating method of precoat type filtering and desalting device
JP2001239138A (en) Device for treating liquid
JP2001235584A (en) Nuclear power plant and its operation method
US7727405B2 (en) Method for demineralizing condensate
JP2001314855A (en) Condensed water desalting apparatus
Eid et al. Effects of acceleration on particulate fouling in reverse osmosis
JP2007033352A (en) Method for zinc supply to reactor
JP2543767B2 (en) Condensate desalination method
RU2040475C1 (en) Method of water purification from metal oxides or suspended impurities
US5407582A (en) Method of treating power generating plant condensate
JPS649600B2 (en)
JPS59112889A (en) Filtering desalinator
JPH0214114B2 (en)
JPS58196886A (en) Condensate-treating equipment
JPS624448A (en) Method for testing performance of ion-exchange resin
JPH0569480B2 (en)
JPH01203096A (en) Operation process for hollow yarn membrane filter
JPS63258687A (en) Method and apparatus for purifying condensed water
JPS61138589A (en) Method for packing ion-exchange resin into condensate desalting tower
JPS62180705A (en) Method for operating hollow yarn membrane filter
JPS6260931B2 (en)
JPS59183397A (en) Reproduction device for resin of condensate desalt system