JPH0235986A - Regeneration of ion exchange apparatus for making pure water - Google Patents
Regeneration of ion exchange apparatus for making pure waterInfo
- Publication number
- JPH0235986A JPH0235986A JP63184734A JP18473488A JPH0235986A JP H0235986 A JPH0235986 A JP H0235986A JP 63184734 A JP63184734 A JP 63184734A JP 18473488 A JP18473488 A JP 18473488A JP H0235986 A JPH0235986 A JP H0235986A
- Authority
- JP
- Japan
- Prior art keywords
- water
- raw water
- ion exchange
- storage tank
- regeneration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 234
- 238000005342 ion exchange Methods 0.000 title claims abstract description 66
- 238000011069 regeneration method Methods 0.000 title abstract description 34
- 230000008929 regeneration Effects 0.000 title abstract description 33
- 238000003860 storage Methods 0.000 claims abstract description 54
- 238000000034 method Methods 0.000 claims abstract description 18
- 230000001172 regenerating effect Effects 0.000 claims abstract description 10
- 238000004519 manufacturing process Methods 0.000 claims description 11
- 230000003134 recirculating effect Effects 0.000 abstract 1
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 25
- 239000003729 cation exchange resin Substances 0.000 description 16
- 239000011575 calcium Substances 0.000 description 10
- 239000003456 ion exchange resin Substances 0.000 description 10
- 229920003303 ion-exchange polymer Polymers 0.000 description 10
- 239000003957 anion exchange resin Substances 0.000 description 7
- 238000001179 sorption measurement Methods 0.000 description 7
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 150000002500 ions Chemical class 0.000 description 6
- 239000007788 liquid Substances 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 239000002699 waste material Substances 0.000 description 4
- 238000005349 anion exchange Methods 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 238000001125 extrusion Methods 0.000 description 3
- 239000012492 regenerant Substances 0.000 description 3
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- -1 M g(OH)2 Chemical compound 0.000 description 2
- 150000001450 anions Chemical class 0.000 description 2
- 238000011001 backwashing Methods 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 235000011121 sodium hydroxide Nutrition 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 239000002253 acid Substances 0.000 description 1
- 235000010216 calcium carbonate Nutrition 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 235000011116 calcium hydroxide Nutrition 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- 239000000378 calcium silicate Substances 0.000 description 1
- 229910052918 calcium silicate Inorganic materials 0.000 description 1
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 1
- 238000005341 cation exchange Methods 0.000 description 1
- 238000006114 decarboxylation reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 239000013505 freshwater Substances 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
Landscapes
- Treatment Of Water By Ion Exchange (AREA)
Abstract
Description
【発明の詳細な説明】
〈産業上の利用分野〉
本発明は純水製造用イオン交換装置の再生方法に関し、
特にCa ”やMg Z ゛等の硬度成分を多く含む原
水を被処理水として純水を製造する場合のイオン交換装
置に最適な再生方法に関するものである。[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a method for regenerating an ion exchange device for producing pure water,
In particular, the present invention relates to a regeneration method most suitable for an ion exchange device when producing pure water using raw water containing a large amount of hardness components such as Ca'' and MgZ'' as water to be treated.
〈従来の技術さ
純水製造のためのイオン交換装置としては、カチオン交
換樹脂とアニオン交換樹脂との混合イオン交換樹脂を塔
内に充填した温床式イオン交換装置、あるいは前記各イ
オン交換樹脂をカチオン交換塔とアニオン交換塔とにそ
れぞれ別々に充填した複床式イオン交換装置が良く知ら
れている。<Conventional technology Ion exchange equipment for producing pure water is a hot bed type ion exchange equipment in which a column is filled with a mixed ion exchange resin of a cation exchange resin and an anion exchange resin, or a hot bed type ion exchange equipment in which a tower is filled with a mixed ion exchange resin of a cation exchange resin and an anion exchange resin, or A multi-bed ion exchange apparatus in which an exchange column and an anion exchange column are each packed separately is well known.
第2図はこのようなイオン交換装置を用いた従来の純水
製造装置のフローを示す説明図であり、図中1は原水貯
槽、2はイオン交換装置、3は当該イオン交換装置2か
ら得られる純水を貯留するための純水貯槽をそれぞれ示
している。FIG. 2 is an explanatory diagram showing the flow of a conventional pure water production device using such an ion exchange device. In the figure, 1 is a raw water storage tank, 2 is an ion exchange device, and 3 is water obtained from the ion exchange device 2. Each figure shows a pure water storage tank for storing pure water.
第2図に示したようなフローの純水製造装置を用いて純
水を製造する場合は、原水貯槽1内に貯留した工業用水
、市水等の原水を、原水ポンプ4及び原水流入ライン5
を介してイオン交換装置2に通水して行う。当該イオン
交換装置2においては、予めH形になしたカチオン交換
樹脂によって原水中に含まれているCa2+、Mgz′
″、Na”等のカチオン成分が吸着、除去され、また予
めOH形になしたアニオン交換樹脂によってCl−18
04′−等のアニオン成分が吸着、除去され、これらの
不純物イオンを除去した処理水、すなわち純水を得る。When producing pure water using a pure water producing apparatus having the flow shown in FIG.
This is done by passing water through the ion exchange device 2 through the ion exchanger 2. In the ion exchange device 2, Ca2+ and Mgz' contained in raw water are removed by a cation exchange resin that has been made into H-form in advance.
Cation components such as ", Na" are adsorbed and removed, and Cl-18 is
Anion components such as 04'- are adsorbed and removed to obtain treated water from which these impurity ions have been removed, that is, pure water.
得られた純水は処理水流出ライン6を介して純水貯槽3
に導き、次いで純水供給ライン7を介して使用箇所に供
給される。The obtained pure water is passed through the treated water outflow line 6 to the pure water storage tank 3.
and then supplied to the point of use via the pure water supply line 7.
このような純水製造を続行するうちに、イオン交換装置
2に使用しているイオン交換樹脂の能力、−船釣にはカ
チオン交換樹脂の能力が低下して所定の純度の処理水が
得られな(なったり、あるいは予め定めた処理量(定体
積処理量)に達した場合等、いわゆる通水終点に達した
場合には、カチオン交換樹脂を塩酸等の鉱酸を用いて、
またアニオン交換樹脂を苛性ソーダ等のアルカリ剤を用
いてそれぞれ再生する。当該再生工程は、概略以下の如
くである。すなわち、■塔内のイオン交換樹脂を逆洗す
る工程、■各イオン交換樹脂層に再生剤を通薬する工程
、■当該通薬工程終了後に、各イオン交換樹脂層内に残
留する再生剤を押し出す工程、■当該押し出し工程後、
各イオン交換樹脂層内に残留している少量の再生剤を洗
い流す工程とからなる。As this type of pure water production continues, the capacity of the ion exchange resin used in the ion exchange device 2, and the capacity of the cation exchange resin used for boat fishing, decreases, making it impossible to obtain treated water of the specified purity. (or when the so-called water flow end point is reached, such as when a predetermined treatment amount (constant volume treatment amount) is reached, etc., the cation exchange resin is treated with a mineral acid such as hydrochloric acid.
The anion exchange resin is also regenerated using an alkaline agent such as caustic soda. The regeneration process is roughly as follows. In other words, (1) a step of backwashing the ion exchange resin in the tower, (2) a step of passing a regenerating agent through each ion exchange resin layer, and (2) a step of removing the regenerating agent remaining in each ion exchange resin layer after the completion of the drug passing step. Extrusion process, ■After the extrusion process,
It consists of a step of washing away a small amount of regenerant remaining in each ion exchange resin layer.
各工程においては、それぞれ逆洗用水、通薬時の再生剤
希釈用水、押し出し用水及び洗浄用水等の、いわゆる再
生用水を必要とする。通常、当該再生用水としては、イ
オン交換装置の被処理水である原水が使用され、その場
合は原水を原水ポンプによってイオン交換装置に供給し
て行われる。Each process requires so-called regenerating water, such as water for backwashing, water for diluting the regenerant during drug delivery, water for extrusion, and water for washing. Normally, raw water, which is the water to be treated by the ion exchange device, is used as the regeneration water, and in that case, the raw water is supplied to the ion exchange device by a raw water pump.
しかしながら、原水中にCa2゛、M gZ−等の硬度
成分が多く含まれている場合は、以下に述べる理由から
再生用水として原水を使用することが出来ない。すなわ
ち、このような原水を使用してイオン交換装置の再生を
行った場合には、アニオン交換樹脂の再生工程において
、原水中の硬度成分が、苛性ソーダ等のアルカリ再生剤
と反応したり、あるいはアニオン交換樹脂から脱着され
たシリカと反応したり、あるいは再生によって生成する
OH形のアニオン交換樹脂を洗浄する際に当該OH形の
アニオン交換樹脂と反応したりしてCa(OH)2、M
g(OH)2、CaCO3、MgCO2及びケイ酸カル
シウム等を生成し、アニオン交換樹脂層内に析出すると
ともに析出した固形物が再生後においても、混床式イオ
ン交換塔内、あるいは複床式イオン交換装置のアニオン
交換塔内に残留することとなるからである。その結果、
再生終了後の通水工程において、前記残留固形物が徐々
に溶解して処理水中に漏出し、所定の純度の処理水を得
ることが出来なくなる。However, if the raw water contains a large amount of hardness components such as Ca2' and MgZ-, the raw water cannot be used as water for regeneration for the reasons described below. In other words, when an ion exchange device is regenerated using such raw water, the hardness components in the raw water may react with an alkaline regenerant such as caustic soda, or the anion Ca(OH)2, M
g(OH)2, CaCO3, MgCO2, calcium silicate, etc. are generated and precipitated in the anion exchange resin layer, and even after the precipitated solids are regenerated, they remain in the mixed bed type ion exchange tower or double bed type ion exchange tower. This is because it will remain in the anion exchange column of the exchange device. the result,
In the water passage step after completion of regeneration, the residual solids gradually dissolve and leak into the treated water, making it impossible to obtain treated water of a predetermined purity.
従って、硬度成分の多い原水を処理する純水製造装置に
おいては、再生用水として通常当該装置の処理水である
純水を使用する。すなわち、第2図に示した如く、純水
貯槽3内に貯留した純水を再生用水ポンプ8によってイ
オン交換装置2に供給して再生を行うのである。Therefore, in a pure water production apparatus that processes raw water with a large amount of hardness components, pure water, which is usually treated water of the apparatus, is used as water for regeneration. That is, as shown in FIG. 2, the pure water stored in the pure water storage tank 3 is supplied to the ion exchange device 2 by the regeneration water pump 8 for regeneration.
なお、第2図において9は原水を原水貯槽1に供給する
ための原水供給ラインを、10はイオン交換装置2を再
生した際に排出される再生廃液の排出ラインをそれぞれ
示している。In FIG. 2, reference numeral 9 indicates a raw water supply line for supplying raw water to the raw water storage tank 1, and reference numeral 10 indicates a discharge line for recycled waste liquid discharged when the ion exchange device 2 is regenerated.
〈発明が解決しようとする問題点〉
Ca2°、Mg2゛等の硬度成分を比較的多く含む原水
を被処理水とする純水製造装置においては、上述の如く
再生用水として純水を使用するのが一般的であり、この
場合原水ポンプ4とは別に再生専用の、通常SUS製等
の高価な再生用水ポンプ8を設けなければならない。従
って、再生用水として原水を使用し、原水ポンプを再生
の際にも使用する、いわゆる原水再生の場合に比べて純
水製造装置全体のコストが高くなるという問題点がある
。なお、第2図において原水ポンプ4のサクション側と
純水貯槽3とを配管で連通ずれば、再生の際に原水ポン
プ4を用いて純水貯槽3内の純水をイオン交換装置2に
供給することが可能であるが、このような構造とすると
、操作ミスや装置的トラブル等により原水貯槽1内の原
水が前記配管内を逆流して純水貯槽3内に混入する恐れ
があるので、実際には行われていない。<Problems to be Solved by the Invention> As described above, in a pure water production apparatus that uses raw water containing relatively large amounts of hardness components such as Ca2° and Mg2° as water to be treated, it is difficult to use pure water as reclaimed water as described above. In this case, in addition to the raw water pump 4, it is necessary to provide an expensive regeneration water pump 8, which is usually made of SUS or the like and is dedicated for regeneration. Therefore, there is a problem in that the cost of the entire pure water production apparatus is higher than in the case of so-called raw water regeneration, in which raw water is used as water for regeneration and a raw water pump is also used during regeneration. In addition, if the suction side of the raw water pump 4 and the pure water storage tank 3 are connected through piping in FIG. 2, the pure water in the pure water storage tank 3 can be supplied to the ion exchange device 2 using the raw water pump 4 during regeneration. However, with such a structure, there is a risk that the raw water in the raw water storage tank 1 will flow back through the pipe and mix into the pure water storage tank 3 due to an operational error or equipment trouble. It's not actually done.
また、純水を再生用水として使用する場合には、純水貯
槽3の容量を、再生に必要な水量を確保出、来る程度に
大きくしなければならない。しかしながら、当該貯槽3
は純水を貯留するためのものであるから高価な内面塗装
やライニング等を施したり、あるいは槽目体をSUS等
の高価な材質のもので製作したりしなければならず、従
って当該貯槽3を大きくすることもまた装置コストの増
大を招く。Further, when using pure water as water for regeneration, the capacity of the pure water storage tank 3 must be made large enough to secure the amount of water necessary for regeneration. However, the storage tank 3
Since the storage tank 3 is for storing pure water, it is necessary to apply expensive inner coatings and linings, or to make the tank body from expensive materials such as SUS. Increasing the value also increases the cost of the device.
本発明は、Ca”°、M gZ−等の硬度成分を比較的
多く含む原水を被処理水とする純水製造装置における上
述のような問題点を解決するためになされたものであり
、このような場合にも原水再生の場合とほぼ同様な設備
で良好な再生を行うことが出来るイオン交換装置の再生
方法を提供することを目的とするものである。The present invention has been made to solve the above-mentioned problems in water purification equipment that uses raw water containing relatively large amounts of hardness components such as Ca"° and MgZ- as water to be treated. It is an object of the present invention to provide a method for regenerating an ion exchange device that can perform good regeneration even in such a case using almost the same equipment as in the case of raw water regeneration.
く問題点を解決するための手段〉
本発明は、原水貯槽に一旦貯留した原水をイオン交換装
置に通水して純水を得るようにした純水製造装置におい
て、イオン交換装置の処理水を原水貯槽に戻すための循
環ラインを設け、前記イオン交換装置を再生するにあた
っては、通水終点に達したイオン交換装置を用いて原水
貯槽内の原水を引き続き処理するとともに得られる処理
水を前記循環ラインを介して原水貯槽に循環するように
し、当該循環処理によって原水貯槽内の原水を前記処理
水と置換した後に、当該貯槽内に得た処理水を用いて前
記イオン交換装置の再生を行うことを特徴とするもので
ある。Means for Solving the Problems> The present invention provides a pure water production device in which raw water once stored in a raw water storage tank is passed through an ion exchange device to obtain pure water. A circulation line is provided to return the raw water to the raw water storage tank, and when regenerating the ion exchange device, the raw water in the raw water storage tank is continuously treated using the ion exchange device that has reached the end point of water flow, and the resulting treated water is returned to the circulation line. After the raw water is circulated to the raw water storage tank via a line, and the raw water in the raw water storage tank is replaced with the treated water through the circulation process, the ion exchange device is regenerated using the treated water obtained in the storage tank. It is characterized by:
く作用〉
Ca g +、M gZ−1Na”等のイオンを含む原
水を混床式イオン交換装置、あるいは複床式イオン交換
装置に下降流で通水した場合の、通水終点におけるカチ
オン交換樹脂中のイオン形の分布を模式的に示すと、第
3図の如くとなる。すなわち、カチオン交換樹脂に対す
る吸着力が最も強いCa”の吸着層(Ca形層)が樹脂
層の最上部に形成され、次いでMgZ−の吸着層(Mg
形層)が形成され、更にその下に吸着力の最も弱いNa
”の吸着層(Na形層)が形成され、樹脂層の最下部に
未反応のH形カチオン交換樹脂が残留している。このよ
うな分布を呈するのは、通水時において、旦カチオン交
換樹脂に吸着されたN a +が、当該Na”より吸着
力の強いca”やM gZ−によって脱着されて樹脂層
の下方へと追いやられるためであり、その結果通水工程
においてはNa”が最も速く処理水中にリークする。Effect of cation exchange resin at the end point of water flow when raw water containing ions such as Ca g + and M gZ-1Na is passed through a mixed bed ion exchange device or a double bed ion exchange device in a downward flow. The distribution of ion types in the cation exchange resin is schematically shown in Figure 3.In other words, an adsorption layer of Ca'' (Ca type layer), which has the strongest adsorption power to the cation exchange resin, is formed at the top of the resin layer. and then an adsorption layer of MgZ- (Mg
layer) is formed, and below that is Na, which has the weakest adsorption force.
An adsorption layer (Na-type layer) is formed, and unreacted H-type cation exchange resin remains at the bottom of the resin layer. This distribution is caused by the fact that when water is passed through, the cation exchange resin This is because the Na+ adsorbed on the resin is desorbed by Ca and MgZ-, which have stronger adsorption power than the Na, and is driven to the bottom of the resin layer. The fastest leaks into the process water.
第3図に示した状態のカチオン交換樹脂に更に原水を通
水し続けると、Na +のり−ク量が次第に多くなるが
、N a+よりも吸着力の強いCa2゜やMg”は、第
3図におけるNa形層においてNa形のカチオン交換樹
脂に吸着されるため、しばらくの間処理水中にCa”及
びMg”のリークしない状態が続く。すなわち、カチオ
ン交換樹脂の能力が低下したために通水終点に達したイ
オン交換装置に引き続き原水を通水した場合には、純度
は低いがCa2゛やM gZ−等の硬度成分を含まない
処理水を一定量得ることが出来るのである。When raw water continues to flow through the cation exchange resin in the state shown in Figure 3, the amount of Na+ glue gradually increases, but Ca2° and Mg'', which have stronger adsorption power than Na+, are Because they are adsorbed by the Na-type cation exchange resin in the Na-type layer shown in the figure, a state in which Ca" and Mg" do not leak into the treated water continues for a while. In other words, the ability of the cation exchange resin has decreased and the water flow end point If the raw water is subsequently passed through the ion exchange device that has reached this level, it is possible to obtain a certain amount of treated water that does not contain hard components such as Ca2' and MgZ-, although the purity is low.
また、イオン交換装置に使用しているカチオン交換樹脂
及びアニオン交換樹脂のいずれも能力低下を来していな
いが、定体積処理量に達したために通水終点としたイオ
ン交換装置の場合には、引き続き原水を通水することに
よって当然のことながら純水を得ることが出来る。In addition, although neither the cation exchange resin nor the anion exchange resin used in the ion exchange equipment has deteriorated in capacity, in the case of an ion exchange equipment where the water flow has ended because a constant volume throughput has been reached, Naturally, pure water can be obtained by continuing to pass the raw water through.
以上の如く、いずれにしても通水終点に達したイオン交
換装置に引き続き原水を通水した場合には、Ca ”や
M g2+等の硬度成分を含まない処理水を得ることが
出来るのであり、本発明は正にこのような事実に着目し
てなされたものである。As described above, in any case, if raw water is continued to flow through the ion exchange device that has reached the water flow end point, it is possible to obtain treated water that does not contain hard components such as Ca'' and Mg2+. The present invention has been made focusing on this fact.
以下に本発明を図面に基づいて詳細に説明する。The present invention will be explained in detail below based on the drawings.
第1図は本発明の実施態様の一例を示す純水製造装置の
フローの説明図であり、図中1は原水貯槽、2は当該貯
槽1内の原水を処理して純水を得るためのイオン交換装
置、3は当該イオン交換装置2の処理水である純水を貯
留する純水貯槽、4は原水を前記イオン交換装置2に供
給するための原水ポンプを示しており、また5は原水流
入ライン、6は処理水流出ライン、7は純水供給ライン
、9は原水供給ラインをそれぞれ示しており、これらは
前記従来の純水製造装置の場合と同様である。FIG. 1 is an explanatory diagram of the flow of a pure water production apparatus showing an example of an embodiment of the present invention. In the figure, 1 is a raw water storage tank, and 2 is a flowchart for processing the raw water in the storage tank 1 to obtain pure water. An ion exchange device, 3 a pure water storage tank for storing pure water that is treated water of the ion exchange device 2, 4 a raw water pump for supplying raw water to the ion exchange device 2, and 5 a raw water pump. Reference numeral 6 indicates an inflow line, 6 indicates a treated water outflow line, 7 indicates a pure water supply line, and 9 indicates a raw water supply line, which are the same as in the case of the conventional pure water production apparatus.
上記構成において、本発明の装置的な特徴は、イオン交
換装置2の処理水を原水貯槽1に循環する循環ラインを
設ける点にあり、第1図において11がイオン交換装置
2の処理水流出ライン6がら分岐して原水貯槽1に至る
循環ラインである。In the above configuration, the device feature of the present invention is that a circulation line is provided for circulating the treated water of the ion exchange device 2 to the raw water storage tank 1, and in FIG. This is a circulation line that branches off from 6 and reaches the raw water storage tank 1.
なお、第1図において12及び13は処理水の流路を純
水貯槽3側と原水貯槽1側とに切り換えるための切り換
え弁をそれぞれ示している。In FIG. 1, reference numerals 12 and 13 indicate switching valves for switching the flow path of treated water to the pure water storage tank 3 side and the raw water storage tank 1 side, respectively.
第1図に示したようなフローの純水製造装置を用いて純
水を製造する場合には、循環ライン11に付設した切り
換え弁13を閉じるとともに処理水流出ライン6に付設
した切り換え弁12を開とし、原水貯槽1内の原水を原
水ポンプ4によってイオン交換装置2に通水すればよく
、当該通水工程は従来と全く同様である。When producing pure water using a pure water producing apparatus having the flow shown in FIG. The raw water in the raw water storage tank 1 may be passed through the ion exchange device 2 by the raw water pump 4, and the water passing process is exactly the same as the conventional one.
このような通水工程を続行してイオン交換装置2から所
定の純度の処理水が得られなくなったり、あるいはイオ
ン交換装置2の処理量が定体積処理量に達したりした場
合等、いわゆる通水終点に達した場合には、イオン交換
装置2の再生を行うわけであるが、本発明においては当
該再生に先立つて以下のような処理を行う。If such a water flow process is continued and treated water of a predetermined purity cannot be obtained from the ion exchange device 2, or if the throughput of the ion exchange device 2 reaches a constant volume throughput, the so-called water flow When the end point is reached, the ion exchange device 2 is regenerated, but in the present invention, the following processing is performed prior to the regeneration.
すなわち、原水貯槽9内に予め再生に必要な水量の原水
を貯留するとともに弁12を閉じて弁13を開とし、原
水貯槽1内の原水を原水ポンプ4によって引き続き通水
終点に達したイオン交換装置2に通水しイオン交換処理
を行う。当該イオン交換処理においては前述した如く原
水中のCa”やMg2°等の硬度成分を引き続き除去す
ることが出来、使用しているカチオン交換樹脂の能力が
低下したために通水終点に達した場合にあってはNa゛
を含むものの前記硬度成分を含まない処理水を得ること
が出来、またカチオン、アニオン両イオン交換樹脂の能
力が低下していないにもかかわらず定体積処理量に達し
たために通水終点とした場合にあっては処理水として純
水を得ることが出来る。得られた処理水は弁13及び循
環ライン11を介して原水貯槽1に循環する。このよう
な原水の循環処理を所定時間行うことによって、原水貯
槽1内の原水を、純度は低いがCa”やyl gZ −
等の硬度成分をほとんど含まない処理水、あるいは不純
物イオンをほとんど含まないほぼ純水に近い処理水と置
換することが出来るので、適当な時期に前記循環処理を
停止し、イオン交換装置2の再生に移行する。That is, the amount of raw water necessary for regeneration is stored in advance in the raw water storage tank 9, the valve 12 is closed and the valve 13 is opened, and the raw water in the raw water storage tank 1 is continuously passed through the raw water pump 4 until the water reaches the end point for ion exchange. Water is passed through the device 2 to perform ion exchange treatment. As mentioned above, in the ion exchange treatment, hard components such as Ca'' and Mg2° in the raw water can be continuously removed. In some cases, it was possible to obtain treated water that contained Na but did not contain the above-mentioned hardness components, and even though the capacity of both cation and anion exchange resins had not decreased, a constant volume throughput was reached. If the water is used as the end point, pure water can be obtained as the treated water.The obtained treated water is circulated to the raw water storage tank 1 via the valve 13 and the circulation line 11. By performing this process for a predetermined period of time, the raw water in the raw water storage tank 1 is purified to
The circulating treatment can be stopped at an appropriate time and the ion exchanger 2 can be regenerated. to move to.
イオン交換装置2の再生においては、上述のようにして
原水貯槽1内に得た処理水を再生用水とし、これを原水
ポンプ4によってイオン交換装置2に供給して常法によ
り再生を行い、再生廃液は再生廃液排出ライン10を介
して系外に排出させる。当該再生においては、Ca24
、M gZ−等の硬度成分の低い水を再生用水として使
用するのであるからアニオン交換樹脂層中に前記硬度成
分に由来する固形物が析出しないのは当然であり、従っ
て再生後の通水時において良質の処理水を得ることが出
来る。In the regeneration of the ion exchange device 2, the treated water obtained in the raw water storage tank 1 as described above is used as regeneration water, and this is supplied to the ion exchange device 2 by the raw water pump 4 and regenerated in a conventional manner. The waste liquid is discharged out of the system via the recycled waste liquid discharge line 10. In this regeneration, Ca24
Since water with low hardness components such as , MgZ-, etc. is used as regeneration water, it is natural that solid matter derived from the hardness components does not precipitate in the anion exchange resin layer. It is possible to obtain high quality treated water.
なお、本発明方法を実施するに際しては、いかなる事態
が生じても原水貯槽1内の原水が循環ライン11を介し
て処理水側に逆流しないような装置的配慮を必要とする
が、例えば循環ライン11の原水貯槽1への接続部を原
水貯槽1の最上部付近とし、当該接続部の下方の原水貯
槽Iに原水のオーバーフローラインを設けることによっ
て前記原水の逆流を確実に防止することが出来る。In addition, when carrying out the method of the present invention, it is necessary to consider equipment so that the raw water in the raw water storage tank 1 does not flow back to the treated water side via the circulation line 11 under any circumstances. 11 to the raw water storage tank 1 is located near the top of the raw water storage tank 1, and by providing an overflow line for raw water in the raw water storage tank I below the connection part, backflow of the raw water can be reliably prevented.
また、上述した如く、イオン交換装置に使用しているイ
オン交換樹脂の能力がある程度残っている時点で通水終
点とし、その後本発明方法を実施するようにすれば、原
水貯槽l内にほぼ純水に近い処理水を得ることが出来る
ので、本発明は上述したCa 2 +やyl g2°等
の硬度成分を多(含む原水を処理するイオン交換装置の
場合に限らず、純水並の良質な水を使用して再生を行い
たい場合にはいかなる場合にも適用することが出来る。In addition, as mentioned above, if the water flow is terminated when the ion exchange resin used in the ion exchange device has a certain amount of capacity remaining, and the method of the present invention is then carried out, the raw water will be almost pure in the raw water storage tank l. Since it is possible to obtain treated water that is close to water, the present invention is not limited to the case of ion exchange equipment that processes raw water that contains a large amount of hardness components such as Ca 2 + and yl g2°. It can be applied in any case where it is desired to perform regeneration using fresh water.
本発明方法を適用出来るイオン交換装置としては、例え
ば前記温床式イオン交換装置、あるいはカチオン交換塔
、アニオン交換塔及び脱炭酸塔を適宜組み合わせてなる
2床式、2床3塔式、3塔4床式等の複床式イオン交換
装置、更に同種類の門型イオン交換樹脂と強型イオン交
換樹脂とを同一の塔内に積層して充填してなる複層床式
イオン交換塔を用いた複床式イオン交換装置等が例示出
来る。Ion exchange apparatuses to which the method of the present invention can be applied include, for example, the hot bed type ion exchange apparatus, a two-bed type, a two-bed three-column type, a three-column type, and a three-column type, which are formed by appropriately combining a cation exchange tower, an anion exchange tower, and a decarboxylation tower. A double bed type ion exchange device such as a bed type ion exchange device, and a double bed type ion exchange tower in which the same type of gate type ion exchange resin and strong type ion exchange resin are stacked and packed in the same column are used. An example is a multi-bed ion exchange device.
〈効果〉
本発明によれば、通水終点に達したイオン交換装置を利
用して、原水貯槽内に純度はよくないがCa2゛やMg
2゛等の硬度成分の濃度を低下させた処理水、あるいは
ほぼ純水に近い処理水を得ることが出来る。従って、前
記イオン交換装置の再生にあたっては、原水貯槽内に得
られた前記処理水を再生用水とし、これを原水ポンプに
よってイオン交換装置に供給すればよく、再生時におい
てアニオン交換樹脂層中に前記硬度成分に由来する固形
物が析出するのを防止することが出来るのは勿論、純水
を用いて再生を行う従来法において必要であった再生用
水ポンプを省略することが出来て、従来より装置全体の
コストを低減させることが出来る。<Effects> According to the present invention, by using the ion exchange device that has reached the end point of water flow, Ca2' and Mg are stored in the raw water storage tank although the purity is not good.
It is possible to obtain treated water with a reduced concentration of hardness components such as 2°, or treated water that is almost pure water. Therefore, in regenerating the ion exchange device, it is sufficient to use the treated water obtained in the raw water storage tank as regeneration water and supply it to the ion exchange device using a raw water pump. Not only can it prevent the precipitation of solids derived from hardness components, but it can also omit the regeneration water pump that was required in the conventional method of regeneration using pure water, making the equipment easier to use than before. The overall cost can be reduced.
また、前記従来法においては、高価な内面塗装やライニ
ング等を要し、従って製作費の高価な純水貯槽の容量を
再生に必要な水量を確保出来る程度に大きくしなければ
ならなかったのに対し、本発明においては特に高価な内
面塗装やライニング等を要しない、安価に製作出来る原
水貯槽の容量を大とすればよく、その代わり高価な純水
貯槽の容量を従来法に比べて小とすることが出来るので
、装置全体のコストを従来より更に低減することが出来
る。In addition, the conventional method requires expensive internal coatings, linings, etc., and therefore the capacity of the expensive pure water storage tank must be increased to the extent that it can secure the amount of water necessary for regeneration. On the other hand, in the present invention, it is only necessary to increase the capacity of the raw water storage tank, which does not require particularly expensive internal coatings or linings, and can be manufactured at low cost.Instead, the capacity of the expensive pure water storage tank can be reduced compared to the conventional method. Therefore, the cost of the entire device can be further reduced than in the past.
第1図は本発明の実施態様の一例を示すフローの説明図
、第2図は従来の純水製造装置のフローの説明図であり
、また第3図は通水路−点に達したイオン交換装置にお
けるカチオン交換樹脂中のイオン分布を示す模式図であ
る。
■・・・原水貯槽 2・・・イオン交換装置3
・・・純水貯槽 4・・・原水ポンプ5・・・
原水流入ライン 6・・・処理水流出ライン7・・・
純水供給ライン 8・・・再生用水ポンプ9・・・原
水供給ライン
10・・・再生廃液排出ライン
11・・・循環ライン 12.13・・・切り換え
弁第1図
第3図
第2図Fig. 1 is an explanatory diagram of a flow showing an example of an embodiment of the present invention, Fig. 2 is an explanatory diagram of a flow of a conventional pure water production apparatus, and Fig. 3 is an explanatory diagram of a flow of a conventional pure water production apparatus. FIG. 2 is a schematic diagram showing the ion distribution in the cation exchange resin in the device. ■...Raw water storage tank 2...Ion exchange device 3
...Pure water storage tank 4...Raw water pump 5...
Raw water inflow line 6... Treated water outflow line 7...
Pure water supply line 8...Regeneration water pump 9...Raw water supply line 10...Regeneration waste liquid discharge line 11...Circulation line 12.13...Switching valve Figure 1 Figure 3 Figure 2
Claims (1)
て純水を得るようにした純水製造装置において、イオン
交換装置の処理水を原水貯槽に戻すための循環ラインを
設け、前記イオン交換装置を再生するにあたっては、通
水終点に達したイオン交換装置を用いて原水貯槽内の原
水を引き続き処理するとともに得られる処理水を前記循
環ラインを介して原水貯槽に循環するようにし、当該循
環処理によって原水貯槽内の原水を前記処理水と置換し
た後に、当該貯槽内に得た処理水を用いて前記イオン交
換装置の再生を行うことを特徴とする純水製造用イオン
交換装置の再生方法。In a pure water production device in which raw water once stored in a raw water storage tank is passed through an ion exchange device to obtain pure water, a circulation line is provided to return treated water from the ion exchange device to the raw water storage tank, and the ion exchange In order to regenerate the equipment, the raw water in the raw water storage tank is continuously treated using the ion exchange equipment that has reached the end point of water flow, and the resulting treated water is circulated to the raw water storage tank via the circulation line. A method for regenerating an ion exchange device for producing pure water, comprising replacing raw water in a raw water storage tank with the treated water through treatment, and then regenerating the ion exchange device using the treated water obtained in the storage tank. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63184734A JP2654107B2 (en) | 1988-07-26 | 1988-07-26 | Regeneration method of ion exchange equipment for pure water production |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63184734A JP2654107B2 (en) | 1988-07-26 | 1988-07-26 | Regeneration method of ion exchange equipment for pure water production |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0235986A true JPH0235986A (en) | 1990-02-06 |
JP2654107B2 JP2654107B2 (en) | 1997-09-17 |
Family
ID=16158431
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63184734A Expired - Lifetime JP2654107B2 (en) | 1988-07-26 | 1988-07-26 | Regeneration method of ion exchange equipment for pure water production |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2654107B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014184391A (en) * | 2013-03-22 | 2014-10-02 | Taiheiyo Cement Corp | Method for regenerating amphoteric ion exchange resin |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS50131678A (en) * | 1974-04-04 | 1975-10-17 | ||
JPS61129089A (en) * | 1984-11-29 | 1986-06-17 | Hitachi Ltd | Method and apparatus for making pure water |
-
1988
- 1988-07-26 JP JP63184734A patent/JP2654107B2/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS50131678A (en) * | 1974-04-04 | 1975-10-17 | ||
JPS61129089A (en) * | 1984-11-29 | 1986-06-17 | Hitachi Ltd | Method and apparatus for making pure water |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014184391A (en) * | 2013-03-22 | 2014-10-02 | Taiheiyo Cement Corp | Method for regenerating amphoteric ion exchange resin |
Also Published As
Publication number | Publication date |
---|---|
JP2654107B2 (en) | 1997-09-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5776340A (en) | Apparatus for minimizing wastewater discharge | |
JPS60132693A (en) | Washing method of granular ion exchange resin with ultra-pure water and preparation of ultra-pure water | |
JP2009240891A (en) | Method for producing ultrapure water | |
US2267841A (en) | Method of and apparatus for treating water | |
JPH0286849A (en) | Ion exchange method and apparatus for especially regenerating aqueous solution after softening/demineralization | |
US6362240B2 (en) | Mixed-bed type sugar solution refining system and regeneration method for such apparatus | |
US2841550A (en) | Process of operating a demineralizing installation | |
JPS6248539B2 (en) | ||
JPH0235986A (en) | Regeneration of ion exchange apparatus for making pure water | |
WO2018037870A1 (en) | Regenerative ion exchange device and operation method therefor | |
US4379855A (en) | Method of ion exchange regeneration | |
US3537989A (en) | Demineralization system | |
JP3632343B2 (en) | Pure water production method and ion exchange tower | |
JP3963025B2 (en) | Ion exchange resin separation and regeneration method | |
JPS586297A (en) | Treatment of raw water of high content of silica | |
KR0161346B1 (en) | Carrying, separating and regenerating, method and apparatus of ion exchange resin | |
JP3837762B2 (en) | Ion exchange resin separation and regeneration method | |
JP3951456B2 (en) | Pure water production equipment | |
JP2000189957A (en) | Regenerating method of water softening device | |
JP2577014B2 (en) | Pure water supply device | |
JP2597552Y2 (en) | Pure water production equipment | |
JP3458317B2 (en) | Ion exchange apparatus and method for regenerating ion exchange resin | |
JPH0363439B2 (en) | ||
JP2000189815A (en) | Regeneration method for ion exchange device | |
JP3147396B2 (en) | Method for regenerating cation exchange resin in mixed bed type desalination equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090523 Year of fee payment: 12 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090523 Year of fee payment: 12 |