JP2014184391A - Method for regenerating amphoteric ion exchange resin - Google Patents

Method for regenerating amphoteric ion exchange resin Download PDF

Info

Publication number
JP2014184391A
JP2014184391A JP2013060746A JP2013060746A JP2014184391A JP 2014184391 A JP2014184391 A JP 2014184391A JP 2013060746 A JP2013060746 A JP 2013060746A JP 2013060746 A JP2013060746 A JP 2013060746A JP 2014184391 A JP2014184391 A JP 2014184391A
Authority
JP
Japan
Prior art keywords
exchange resin
ion exchange
solution
amphoteric ion
leachate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013060746A
Other languages
Japanese (ja)
Inventor
Noritoshi Tamura
典敏 田村
Yuichi Otani
裕一 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2013060746A priority Critical patent/JP2014184391A/en
Publication of JP2014184391A publication Critical patent/JP2014184391A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable, even within a geographic region where the securing of a water supply is difficult, etc., the use of an amphoteric ion exchange resin for treating a leachate from a final disposal site, etc.SOLUTION: A solution including Caand SOis permeated through an amphoteric ion exchange resin and separated into a first solution having a low Caconcentration and a high SOconcentration and a second solution having a high Caconcentration and a low SOconcentration, and after the first solution or second solution has been permeated through a reverse osmotic membrane so as to generate pure water, the pure water is used for regenerating the amphoteric ion exchange resin. A leachate from a final disposal site may be provided as the solution including Caand SO, whereas the amphoteric ion exchange resin is positioned on the upstream side of a chemical liquid reaction tank for adding chemicals so as to remove heavy metals from the leachate at the final disposal site, whereas the pure water generated by permeating, through the reverse osmotic membrane, the second solution generated from the amphoteric ion exchange resin can be used for regenerating the amphoteric ion exchange resin.

Description

本発明は、両性イオン交換樹脂の再生方法に関し、特に、最終処分場においてカルシウムに起因するスケールの発生を防止するためなどに用いられる両性イオン交換樹脂の再生方法に関する。   The present invention relates to a method for regenerating an amphoteric ion exchange resin, and more particularly to a method for regenerating an amphoteric ion exchange resin used to prevent the generation of scale caused by calcium in a final disposal site.

ごみ処分場等の最終処分場は、リサイクルが困難な廃棄物等を処分するための施設であるが、枯渇化の虞に鑑み、これまで最終処分場で処理されていた廃棄物等の有効利用が推進されている。   Waste disposal sites and other final disposal sites are facilities for disposing of wastes that are difficult to recycle. However, in view of the danger of exhaustion, effective use of wastes that have been treated at the final disposal site so far Is promoted.

都市ごみなどを焼却した際に発生する焼却灰は、最終処分場の枯渇の虞に鑑み、近年、セメント原料としてリサイクルしている。都市ごみ焼却灰のうち、気体とともに運ばれ、集塵装置で回収される飛灰は、10〜20%の塩素分を含むため、水洗脱塩設備を用い、飛灰に含まれる水溶性塩素化合物を水洗除去した後、セメント原料として利用している(例えば、特許文献1参照)。   Incineration ash generated when municipal waste is incinerated has recently been recycled as a raw material for cement in view of the danger of depleting the final disposal site. Of municipal incineration ash, fly ash that is carried with gas and collected by the dust collector contains 10 to 20% of chlorine, so water-soluble chlorine contained in fly ash using water washing and desalination equipment After removing the compound with water, it is used as a cement raw material (see, for example, Patent Document 1).

しかし、最終処分場では、その浸出水に含まれるカルシウムイオン(Ca2+)と、硫酸イオン(SO4 2-)から硫酸カルシウム(CaSO4)が生じ、ろ過装置や後段の排水処理工程においてスケールとして装置に付着し、安定運転が阻害されるという問題があった。 However, in the final disposal site, calcium sulfate (Ca 2+ ) contained in the leachate and sulfate ion (SO 4 2− ) produces calcium sulfate (CaSO 4 ), which is used as a scale in filtration equipment and subsequent wastewater treatment processes. As a result, it has adhered to the apparatus and the stable operation is hindered.

そこで、例えば、図3に示すように、最終処分場30では、調整槽31に貯留された浸出水Wからスケール発生の原因となるカルシウムや、有害な重金属を除去するために薬液反応槽32で炭酸ナトリウム等の薬剤を添加し、ろ過装置33でこれらを沈殿除去し、その後、COD処理装置34、懸濁物質除去装置35を経て、電気透析装置36で脱塩を行う。これにより、浸出水Wの水量1Qに対して0.9Qの水量の脱塩水Dを放流すると共に、水量0.1Qの濃縮水Cを蒸発させて塩を回収する。   Therefore, for example, as shown in FIG. 3, in the final disposal site 30, in the chemical reaction tank 32 in order to remove calcium and harmful heavy metals that cause scale generation from the leachate W stored in the adjustment tank 31. A chemical such as sodium carbonate is added, and these are precipitated and removed by the filtration device 33, and then desalted by the electrodialysis device 36 through the COD treatment device 34 and the suspended substance removal device 35. As a result, the desalted water D having a water amount of 0.9Q is discharged with respect to the water amount 1Q of the leachate W, and the concentrated water C having a water amount of 0.1Q is evaporated to recover the salt.

しかし、上記の方法では、多量の炭酸ナトリウムを添加する必要があるため、薬剤コストが嵩み、運転コストが高騰するという問題があった。   However, in the above method, since a large amount of sodium carbonate needs to be added, there is a problem that the drug cost increases and the operation cost increases.

そこで、本出願人は、特許文献2において、図4に示すように、懸濁物質除去装置35の下流側に両性イオン交換樹脂41を設け、最終処分場30の浸出水Wを、Ca2+濃度が低く、Cl-濃度が高い第1の溶液L1と、Ca2+濃度が高く、Cl-濃度が低い第2の溶液L2とに分離し、第1の溶液L1を電気透析装置36に供給して脱塩を行うことで、多量の炭酸ナトリウムを添加する必要のない最終処分場の浸出水の処理方法を提案した。尚、電気透析装置36では、浸出水Wの水量1Qに対して1.1〜1.4Qの水量の脱塩水D、及び水量0.1Qの濃縮水Cが得られ、脱塩水Dを放流し、濃縮水Cを蒸発させて塩を回収する。また、両性イオン交換樹脂41の再生に、浸出水Wの水量1Qに対して3Qの工業用水IWを用いる。 Therefore, in Patent Document 2, the applicant of the present invention provides an amphoteric ion exchange resin 41 on the downstream side of the suspended substance removing device 35 as shown in FIG. 4, and uses the leachate W in the final disposal site 30 as Ca 2+. concentration is low, Cl - concentration is higher the first solution L1, high Ca 2+ concentration, Cl - concentration were separated low and the second solution L2, supplies the first solution L1 to the electrodialysis apparatus 36 In this way, we proposed a method for treating leachate from the final disposal site without the need to add a large amount of sodium carbonate. In addition, in the electrodialysis apparatus 36, the desalted water D of 1.1 to 1.4Q of water and the concentrated water C of 0.1Q of water are obtained with respect to 1Q of the leachate W, and the desalted water D is discharged. The concentrated water C is evaporated to recover the salt. Moreover, 3Q industrial water IW is used for the regeneration of the amphoteric ion exchange resin 41 with respect to the amount 1Q of the leachate W.

特開平11−100243号公報Japanese Patent Laid-Open No. 11-100343 特許第4766719号公報Japanese Patent No. 4766719

特許文献2に記載の最終処分場の浸出水の処理方法は、炭酸ナトリウムを添加する必要がないため、薬剤コストを低減することができて好ましいが、上述のように、両性イオン交換樹脂41を再生するにあたって、浸出水Wの3倍の工業用水IWが必要となるため、水量を確保することが困難な地域等では採用することができないという問題があった。   The treatment method of the leachate in the final disposal site described in Patent Document 2 is preferable because it does not require the addition of sodium carbonate, and can reduce the cost of the drug. However, as described above, the amphoteric ion exchange resin 41 is used. When regenerating, industrial water IW that is three times as much as leachate W is required, so there is a problem that it cannot be used in areas where it is difficult to secure the amount of water.

そこで、本発明は、上記従来技術における問題点に鑑みてなされたものであって、水量を確保することが困難な地域等でも、最終処分場の浸出水の処理等に両性イオン交換樹脂を用いることを可能とすることを目的とする。   Therefore, the present invention has been made in view of the above-described problems in the prior art, and uses an amphoteric ion exchange resin for the treatment of leachate in the final disposal site even in areas where it is difficult to secure the amount of water. The purpose is to make it possible.

上記目的を達成するため、本発明は、両性イオン交換樹脂の再生方法であって、Ca2+とSO4 2-とを含む溶液を両性イオン交換樹脂に通過させてCa2+濃度が低く、SO4 2-濃度が高い第1の溶液と、Ca2+濃度が高く、SO4 2-濃度が低い第2の溶液とに分離し、該第1の溶液又は第2の溶液を逆浸透膜に通過させて純水を生成し、該純水を該両性イオン交換樹脂の再生に用いることを特徴とする。 In order to achieve the above object, the present invention is a method for regenerating an amphoteric ion exchange resin, wherein a solution containing Ca 2+ and SO 4 2− is passed through the amphoteric ion exchange resin to reduce the Ca 2+ concentration, SO 4 2-high concentration first solution, high Ca 2+ concentration, and separated into a low SO 4 2- concentration second solution, the first solution or second solution a reverse osmosis membrane And purified water is used to regenerate the amphoteric ion exchange resin.

本発明によれば、Ca2+とSO4 2-とを含む溶液を、Ca2+とSO4 2-とが共存しない第1の溶液と第2の溶液とに分離して逆浸透膜に通過させるため、逆浸透膜で石膏スケールが発生することがない。そのため、逆浸透膜を継続して使用することができ、両性イオン交換樹脂で発生した溶液から純水を生成して両性イオン交換樹脂の再生に用いることで、両性イオン交換樹脂の再生に用いる工業用水等の量を低減することができる。 According to the present invention, a solution containing Ca 2+ and SO 4 2-a, the first solution and the reverse osmosis membrane to separate into a second solution Ca 2+ and SO 4 2-and does not coexist Since it is allowed to pass through, no gypsum scale is generated in the reverse osmosis membrane. Therefore, the reverse osmosis membrane can be used continuously, and the industry used to regenerate the amphoteric ion exchange resin by generating pure water from the solution generated with the amphoteric ion exchange resin and using it for the regeneration of the amphoteric ion exchange resin. The amount of water used can be reduced.

上記両性イオン交換樹脂の再生方法において、Ca2+とSO4 2-とを含む溶液を、最終処分場の浸出水とすることができ、水量を確保することが困難な地域等でも、最終処分場の浸出水の処理に両性イオン交換樹脂を用いることが可能となる。 In the above ampholytic ion exchange resin regeneration method, the solution containing Ca 2+ and SO 4 2- can be used as leachate at the final disposal site, and even in areas where it is difficult to secure the amount of water, final disposal It becomes possible to use an amphoteric ion exchange resin for the treatment of the field leachate.

また、該両性イオン交換樹脂を、最終処分場において、浸出水から重金属を除去するために薬剤を添加する薬液反応槽の上流側に配置し、該両性イオン交換樹脂で発生した第2の溶液を前記逆浸透膜に通過させて生成した純水を該両性イオン交換樹脂の再生に用いることができる。これによって、カルシウム含有率の高い最終処分場の浸出水であっても、両性イオン交換樹脂を通過した第1の溶液に残留するカルシウムを炭酸ナトリウム等で処理するだけで最終処分場の浸出水を処理することができる。   In addition, the amphoteric ion exchange resin is disposed on the upstream side of the chemical reaction tank to which a chemical is added to remove heavy metals from the leachate at the final disposal site, and the second solution generated by the amphoteric ion exchange resin is disposed. Pure water generated by passing through the reverse osmosis membrane can be used to regenerate the amphoteric ion exchange resin. As a result, even if the leachate from the final disposal site has a high calcium content, the leachate from the final disposal site can be removed simply by treating the calcium remaining in the first solution that has passed through the amphoteric ion exchange resin with sodium carbonate or the like. Can be processed.

本発明に係る両性イオン交換樹脂の再生方法を適用した最終処分場の浸出水の処理方法の一例を説明するための概略図である。It is the schematic for demonstrating an example of the processing method of the leachate of the final disposal site to which the regeneration method of the amphoteric ion exchange resin which concerns on this invention is applied. 図1に示す両性イオン交換樹脂の運転例を示すグラフである。It is a graph which shows the operation example of amphoteric ion exchange resin shown in FIG. 従来の最終処分場の浸出水の処理方法の一例を説明するための概略図である。It is the schematic for demonstrating an example of the processing method of the leachate of the conventional final disposal site. 従来の最終処分場の浸出水の処理方法の他の例を説明するための概略図である。It is the schematic for demonstrating the other example of the processing method of the leachate of the conventional final disposal site.

次に、本発明を実施するための形態について、図面を参照しながら説明する。尚、以下の説明においては、最終処分場の浸出水の処理に両性イオン交換樹脂を用い、この処理の過程で両性イオン交換樹脂の再生を行う場合を例にとって説明する。   Next, modes for carrying out the present invention will be described with reference to the drawings. In the following description, an example will be described in which amphoteric ion exchange resin is used for the treatment of leachate in the final disposal site and the amphoteric ion exchange resin is regenerated in the course of this treatment.

図1は、本発明に係る両性イオン交換樹脂の再生方法を適用した最終処分場の浸出水処理システム(以下「処理システム」と略称する。)の一例を示し、この処理システム1は、最終処分場2からの浸出水Wを貯留する調整槽3と、調整槽3からの浸出水WをCa2+濃度が低くSO4 2-濃度の高い第1の溶液L1と、Ca2+濃度が高くSO4 2-濃度の低い第2の溶液L2とに分離する両性イオン交換樹脂4と、両性イオン交換樹脂4からの第2の溶液L2から純水Pを生成する逆浸透膜5と、両性イオン交換樹脂4からの第1の溶液L1に残存するカルシウムイオン及び重金属イオンを除去するカルシウム・重金属除去装置6と、カルシウム及び重金属を沈殿除去するシックナー7と、COD処理装置8と、懸濁物質除去装置9とで構成される。 FIG. 1 shows an example of a leachate treatment system (hereinafter simply referred to as “treatment system”) at a final disposal site to which the method for regenerating amphoteric ion exchange resins according to the present invention is applied. an adjustment tank 3 for storing the leachate W from field 2, the leachate W and Ca 2+ concentration is low SO 4 2-high concentration first solution L1 from the adjustment tank 3, high Ca 2+ concentration An amphoteric ion exchange resin 4 that separates into a second solution L2 having a low SO 4 2− concentration, a reverse osmosis membrane 5 that produces pure water P from the second solution L2 from the amphoteric ion exchange resin 4, and amphoteric ions Calcium / heavy metal removal device 6 that removes calcium ions and heavy metal ions remaining in first solution L1 from exchange resin 4, thickener 7 that precipitates and removes calcium and heavy metals, COD treatment device 8, and suspended matter removal Consists of device 9 .

両性イオン交換樹脂4は、調整槽3から排出される浸出水Wからカルシウムを分離するために備えられる。両性イオン交換樹脂4は、母体を架橋ポリスチレン等とし、同一官能基鎖中に四級アンモニウム基とカルボン酸基等を持たせて、陽イオン陰イオンの両方とイオン交換をさせる機能を持たせた樹脂である。例えば、三菱化学株式会社製の両性イオン交換樹脂、ダイヤイオン(登録商標)、AMP03を用いることができる。この両性イオン交換樹脂4は、水溶液中の電解質と非電解質の分離を行うことができると共に、電解質の相互分離を行うこともできる。   The amphoteric ion exchange resin 4 is provided for separating calcium from the leachate W discharged from the adjustment tank 3. The amphoteric ion exchange resin 4 has a function of allowing ion exchange with both the cation and the anion by making the base material cross-linked polystyrene or the like and having a quaternary ammonium group and a carboxylic acid group in the same functional group chain. Resin. For example, amphoteric ion exchange resin, Diaion (registered trademark), AMP03 manufactured by Mitsubishi Chemical Corporation can be used. The amphoteric ion exchange resin 4 can separate the electrolyte and the non-electrolyte in the aqueous solution, and can also separate the electrolytes from each other.

逆浸透膜(RO膜)5は、水を通過させるがイオンや塩類等、水以外の不純物を通過させない性質を有する膜であって、海水の淡水化等に実用されている。この逆浸透膜5で第2の溶液L2を純水Pと濃縮水Cに分離する。   The reverse osmosis membrane (RO membrane) 5 is a membrane having the property of allowing water to pass through but not allowing impurities other than water, such as ions and salts, to be passed, and is practically used for desalination of seawater. The reverse osmosis membrane 5 separates the second solution L2 into pure water P and concentrated water C.

次に、上記構成を有する処理システム1の動作について、図1及び図2を参照しながら説明する。   Next, the operation of the processing system 1 having the above configuration will be described with reference to FIGS.

最終処分場2からの浸出水Wを調整槽3に貯留した後、両性イオン交換樹脂4に導入してカルシウム分離操作を行う。すなわち、浸出水Wを第1の溶液L1と、第2の溶液L2とに分離する。   The leachate W from the final disposal site 2 is stored in the adjustment tank 3 and then introduced into the amphoteric ion exchange resin 4 to perform calcium separation operation. That is, the leachate W is separated into the first solution L1 and the second solution L2.

図2は、図1に示す両性イオン交換樹脂4の運転例を示すグラフである。同図は、両性イオン交換樹脂4として、上述の三菱化学株式会社製のダイヤイオンAMP03を用い、最終処分場2の浸出水W、及び再生水として逆浸透膜5からの純水P及び工業用水IWを交互に両性イオン交換樹脂4に導入した場合の処理水の各成分の濃度を示している。このグラフにより、両性イオン交換樹脂4によって、浸出水WがCa2+濃度が低くSO4 2-濃度の高い第1の溶液L1と、Ca2+濃度が高くSO4 2-濃度の低い第2の溶液L2とに分離していることが判る。 FIG. 2 is a graph showing an operation example of the amphoteric ion exchange resin 4 shown in FIG. In the figure, the above-mentioned Diaion AMP03 manufactured by Mitsubishi Chemical Corporation is used as the amphoteric ion exchange resin 4, and the pure water P and the industrial water IW from the reverse osmosis membrane 5 are used as the leachate W in the final disposal site 2 and the reclaimed water. The concentration of each component of the treated water in the case where is introduced alternately into the amphoteric ion exchange resin 4 is shown. This graph, the amphoteric ion exchange resin 4, leachate W is Ca 2+ concentration as low as SO 4 2- high concentration first solution L1, Ca 2+ concentration is high SO 4 low 2 concentration second It turns out that it isolate | separates into the solution L2.

次に、第2の溶液L2を逆浸透膜5で純水Pと濃縮水Cに分離し、純水Pを両性イオン交換樹脂4の再生に用い、濃縮水Cを放流する。逆浸透膜5は、石膏(CaSO4・2H2O)のスケールが付着すると運転ができなかったが、上述のように、両性イオン交換樹脂4によって、第1の溶液L1と、第2の溶液L2とに分離するため、第1の溶液L1、第2の溶液L2の各々にSO4 2-とCa2+とが共存することがなく、逆浸透膜5に石膏スケールが付着する虞がないため、逆浸透膜5の安定運転を継続することができる。 Next, the 2nd solution L2 is isolate | separated into the pure water P and the concentrated water C with the reverse osmosis membrane 5, the pure water P is used for reproduction | regeneration of the amphoteric ion exchange resin 4, and the concentrated water C is discharged. The reverse osmosis membrane 5 could not be operated when a scale of gypsum (CaSO 4 .2H 2 O) was adhered, but as described above, the amphoteric ion exchange resin 4 was used to cause the first solution L1 and the second solution to move. Since it is separated into L2, SO 4 2− and Ca 2+ do not coexist in each of the first solution L1 and the second solution L2, and there is no possibility that the gypsum scale adheres to the reverse osmosis membrane 5. Therefore, the stable operation of the reverse osmosis membrane 5 can be continued.

また、石膏(CaSO4・2H2O)の他に、炭酸カルシウム(CaCO3)もカルシウムスケールとなりうるが、炭酸カルシウムは酸に溶けやすいため酸洗浄が可能である。 In addition to gypsum (CaSO 4 .2H 2 O), calcium carbonate (CaCO 3 ) can also be a calcium scale, but since calcium carbonate is easily soluble in acid, it can be washed with an acid.

一方、両性イオン交換樹脂4から排出された第1の溶液L1をカルシウム・重金属除去装置6、カルシウム及重金属を沈殿除去するシックナー7、COD処理装置8、及び懸濁物質除去装置9を通過させた後放流する。第1の溶液L1にカルシウムが少し残留した場合は、このカルシウムを炭酸ナトリウム等で処理するだけでよく、シックナー7でカルシウム及び重金属が除去されたカルシウム・重金属除去水L3は、COD処理装置8で有機物及び還元性の無機物が酸化され、懸濁物質除去装置9で懸濁物質が除去される。   On the other hand, the first solution L1 discharged from the amphoteric ion exchange resin 4 was passed through a calcium / heavy metal removing device 6, a thickener 7 for precipitating and removing calcium and heavy metals, a COD treatment device 8, and a suspended substance removing device 9. After release. If a little calcium remains in the first solution L1, this calcium may be treated with sodium carbonate or the like. The calcium / heavy metal removed water L3 from which calcium and heavy metals have been removed by the thickener 7 The organic substance and the reducing inorganic substance are oxidized, and the suspended substance is removed by the suspended substance removing device 9.

以上のように、本実施の形態では、逆浸透膜5を用いることで、少量の工業用水IWで両性イオン交換樹脂4の再生を行うことができる。   As described above, in the present embodiment, by using the reverse osmosis membrane 5, the amphoteric ion exchange resin 4 can be regenerated with a small amount of industrial water IW.

尚、上記実施形態においては、逆浸透膜5によって第2溶液L2から純水Pを生成したが、第1の溶液L1から純水Pを生成することもでき、これらを別々に逆浸透膜5に供給することで、両方から純水Pを生成して両性イオン交換樹脂4の再生に用いることもできる。   In the above embodiment, pure water P is generated from the second solution L2 by the reverse osmosis membrane 5, but pure water P can also be generated from the first solution L1, and these are separately separated from the reverse osmosis membrane 5. , The pure water P can be generated from both and used for the regeneration of the amphoteric ion exchange resin 4.

また、最終処分場2の浸出水Wの処理に両性イオン交換樹脂4を用いる場合について説明したが、最終処分場2の浸出水W以外の排水等にも本発明を適用することができる。   Moreover, although the case where the amphoteric ion exchange resin 4 was used for the treatment of the leachate W at the final disposal site 2 was described, the present invention can be applied to drainage other than the leachate W at the final disposal site 2.

1 処理システム
2 最終処分場
3 調整槽
4 両性イオン交換樹脂
5 逆浸透膜
6 カルシウム・重金属除去装置
7 シックナー
8 COD処理装置
9 懸濁物質除去装置
C 濃縮水
IW 工業用水
L1 第1の溶液
L2 第2の溶液
L3 カルシウム・重金属除去水
P 純水
W 浸出水
1 treatment system 2 final disposal site 3 adjustment tank 4 amphoteric ion exchange resin 5 reverse osmosis membrane 6 calcium / heavy metal removal device 7 thickener 8 COD treatment device 9 suspended matter removal device C concentrated water IW industrial water L1 first solution L2 first Solution L3 2 Calcium / heavy metal removed water P Pure water W Leached water

Claims (3)

Ca2+とSO4 2-とを含む溶液を両性イオン交換樹脂に通過させてCa2+濃度が低く、SO4 2-濃度が高い第1の溶液と、Ca2+濃度が高く、SO4 2-濃度が低い第2の溶液とに分離し、該第1の溶液又は第2の溶液を逆浸透膜に通過させて純水を生成し、該純水を該両性イオン交換樹脂の再生に用いることを特徴とする両性イオン交換樹脂の再生方法。 The solution containing Ca 2+ and SO 4 2-and was passed through an amphoteric ion-exchange resin Ca 2+ concentration is low, the first and the solution SO 4 2-concentration is high, high Ca 2+ concentration, SO 4 2- Separating into a second solution having a low concentration, and passing the first solution or the second solution through a reverse osmosis membrane to produce pure water, which is used for regeneration of the amphoteric ion exchange resin. A method for regenerating an amphoteric ion-exchange resin, which is characterized by using. 前記Ca2+とSO4 2-とを含む溶液は、最終処分場の浸出水であることを特徴とする請求項1に記載の両性イオン交換樹脂の再生方法。 The method for regenerating an amphoteric ion exchange resin according to claim 1, wherein the solution containing Ca 2+ and SO 4 2- is leachate from a final disposal site. 該両性イオン交換樹脂は、最終処分場において、浸出水から重金属を除去するために薬剤を添加する薬液反応槽の上流側に配置され、該両性イオン交換樹脂で発生した第2の溶液を前記逆浸透膜に通過させて生成した純水を該両性イオン交換樹脂の再生に用いることを特徴とする請求項2に記載の両性イオン交換樹脂の再生方法。   The amphoteric ion exchange resin is disposed on the upstream side of a chemical reaction tank to which chemicals are added in order to remove heavy metals from leachate at the final disposal site, and the second solution generated by the amphoteric ion exchange resin is reversely mixed with the reverse solution. The method for regenerating an amphoteric ion exchange resin according to claim 2, wherein pure water produced by passing through the osmotic membrane is used for regeneration of the amphoteric ion exchange resin.
JP2013060746A 2013-03-22 2013-03-22 Method for regenerating amphoteric ion exchange resin Pending JP2014184391A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013060746A JP2014184391A (en) 2013-03-22 2013-03-22 Method for regenerating amphoteric ion exchange resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013060746A JP2014184391A (en) 2013-03-22 2013-03-22 Method for regenerating amphoteric ion exchange resin

Publications (1)

Publication Number Publication Date
JP2014184391A true JP2014184391A (en) 2014-10-02

Family

ID=51832487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013060746A Pending JP2014184391A (en) 2013-03-22 2013-03-22 Method for regenerating amphoteric ion exchange resin

Country Status (1)

Country Link
JP (1) JP2014184391A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114772792A (en) * 2022-05-23 2022-07-22 北部湾大学 Seawater treatment method with synergistic effect of electrostatic adsorption and ultrasonic waves

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0235986A (en) * 1988-07-26 1990-02-06 Japan Organo Co Ltd Regeneration of ion exchange apparatus for making pure water
JPH09155343A (en) * 1995-12-13 1997-06-17 Mitsubishi Rayon Co Ltd Water purifier
JPH09225324A (en) * 1996-02-22 1997-09-02 Japan Organo Co Ltd Regeneration of ion exchange resin or synthetic adsorbing material for removing organic impurities
JP2000189957A (en) * 1998-12-25 2000-07-11 Miura Co Ltd Regenerating method of water softening device
JP2001096281A (en) * 1999-09-29 2001-04-10 Nippon Rensui Co Ltd Method of recovering desalted water from fluorine- containing waste water
JP2006305541A (en) * 2005-03-30 2006-11-09 Sasakura Engineering Co Ltd Method and apparatus for treating waste water containing calcium and sulfuric acid
JP2010172853A (en) * 2009-01-30 2010-08-12 Kurita Water Ind Ltd Boron-containing water treatment method
JP2012024750A (en) * 2010-06-21 2012-02-09 Taiheiyo Cement Corp Method for treating leachate of final disposal site

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0235986A (en) * 1988-07-26 1990-02-06 Japan Organo Co Ltd Regeneration of ion exchange apparatus for making pure water
JPH09155343A (en) * 1995-12-13 1997-06-17 Mitsubishi Rayon Co Ltd Water purifier
JPH09225324A (en) * 1996-02-22 1997-09-02 Japan Organo Co Ltd Regeneration of ion exchange resin or synthetic adsorbing material for removing organic impurities
JP2000189957A (en) * 1998-12-25 2000-07-11 Miura Co Ltd Regenerating method of water softening device
JP2001096281A (en) * 1999-09-29 2001-04-10 Nippon Rensui Co Ltd Method of recovering desalted water from fluorine- containing waste water
JP2006305541A (en) * 2005-03-30 2006-11-09 Sasakura Engineering Co Ltd Method and apparatus for treating waste water containing calcium and sulfuric acid
JP2010172853A (en) * 2009-01-30 2010-08-12 Kurita Water Ind Ltd Boron-containing water treatment method
JP2012024750A (en) * 2010-06-21 2012-02-09 Taiheiyo Cement Corp Method for treating leachate of final disposal site

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114772792A (en) * 2022-05-23 2022-07-22 北部湾大学 Seawater treatment method with synergistic effect of electrostatic adsorption and ultrasonic waves
CN114772792B (en) * 2022-05-23 2023-06-23 北部湾大学 Seawater treatment method with synergistic effect of electrostatic adsorption and ultrasonic waves

Similar Documents

Publication Publication Date Title
JP5873771B2 (en) Organic wastewater treatment method and treatment apparatus
CN104445788B (en) High slat-containing wastewater treatment for reuse zero-emission integrated technique
JP5567468B2 (en) Method and apparatus for treating organic wastewater
JP4766719B1 (en) Disposal method of leachate at final disposal site
JP5564174B2 (en) Purification method and apparatus for purification of water containing metal components
JP5709199B2 (en) Method and apparatus for treating incinerated fly ash and cement kiln combustion gas bleed dust
CN105906128A (en) Method and system for recovering sodium chloride from high salinity wastewater
JP2017114705A (en) Method for producing sodium hypochlorite, and sodium hypochlorite production device
CN108178253A (en) The operation method of desalting processing device and desalting processing device
CN105906127A (en) Desulfurization wastewater near-zero release treatment system and method
JP2014163843A (en) Cleaning acid recycling method and recycling facility
JP5791484B2 (en) Treatment method of seawater effluent contaminated with radionuclides
JP5267355B2 (en) Method and apparatus for removing and collecting thallium from waste water
TW201313626A (en) Process and apparatus for treating perchlorate in drinking water supplies
JP2015031661A (en) Method for cleaning incineration fly ash
JP5985415B2 (en) Method for regenerating amphoteric ion exchange resin
JP2014184391A (en) Method for regenerating amphoteric ion exchange resin
JP5986819B2 (en) Water treatment method and equipment
JP2002346561A (en) Treating method for wastewater containing salt of high concentration
JP2006212540A (en) Treatment method of chemical-washing waste liquid
JP2000321395A (en) Disposing method for radioactive effluent
JP2011036832A (en) Treatment method and treatment system for wastewater
JP5995282B2 (en) Method for regenerating amphoteric ion exchange resin
JP6175354B2 (en) Method and apparatus for treating contaminated water
JP2021171678A (en) Wastewater treatment method, ultrapure water production method, and wastewater treatment device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160823

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170301