JP5986819B2 - Water treatment method and equipment - Google Patents

Water treatment method and equipment Download PDF

Info

Publication number
JP5986819B2
JP5986819B2 JP2012136852A JP2012136852A JP5986819B2 JP 5986819 B2 JP5986819 B2 JP 5986819B2 JP 2012136852 A JP2012136852 A JP 2012136852A JP 2012136852 A JP2012136852 A JP 2012136852A JP 5986819 B2 JP5986819 B2 JP 5986819B2
Authority
JP
Japan
Prior art keywords
liquid
mixing
raw water
sludge
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012136852A
Other languages
Japanese (ja)
Other versions
JP2014000510A (en
Inventor
尚友 赤澤
尚友 赤澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maezawa Industries Inc
Original Assignee
Maezawa Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maezawa Industries Inc filed Critical Maezawa Industries Inc
Priority to JP2012136852A priority Critical patent/JP5986819B2/en
Publication of JP2014000510A publication Critical patent/JP2014000510A/en
Application granted granted Critical
Publication of JP5986819B2 publication Critical patent/JP5986819B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、水処理方法及び設備に関し、詳しくは、イオン交換樹脂を使用した水処理方法及び設備に関する。   The present invention relates to a water treatment method and equipment, and more particularly to a water treatment method and equipment using an ion exchange resin.

溶解性有機成分濃度が高い原水を処理する方法として、陰イオン交換樹脂に前記溶解性有機成分を吸着して原水中から除去する方法が知られている。陰イオン交換樹脂は、再生液、通常は塩化ナトリウム水溶液(食塩水)で再生処理を行うことにより、吸着した有機成分などの不純物を脱離して再利用することができる。一方、再生液は、陰イオン交換樹脂から脱離した不純物を含む再生廃液となる。この再生廃液は、塩分及び不純物を含んでいるため、原水とは別に処理する必要があり、例えば、再生廃液にポリ塩化アルミニウムを添加して有機物及び硫酸塩を凝集沈殿させて再生廃液から除去することにより、再生廃液を再生液として再利用することが提案されている(例えば、特許文献1参照。)。   As a method for treating raw water having a high soluble organic component concentration, a method is known in which the soluble organic component is adsorbed on an anion exchange resin and removed from the raw water. An anion exchange resin can be reused by desorbing impurities such as adsorbed organic components by performing a regeneration treatment with a regeneration solution, usually a sodium chloride aqueous solution (saline solution). On the other hand, the regenerated liquid becomes a regenerated waste liquid containing impurities desorbed from the anion exchange resin. Since this reclaimed waste liquid contains salt and impurities, it must be treated separately from the raw water. For example, polyaluminum chloride is added to the reclaimed waste liquid to coagulate and precipitate organic matter and sulfate, and then removed from the reclaimed waste liquid. Thus, it has been proposed to reuse the recycled waste liquid as the recycled liquid (for example, see Patent Document 1).

特開2005−296756号公報JP 2005-296756 A

しかし、再生廃液から除去した有機物及び硫酸塩を含む沈殿物からなる廃棄物が発生するため、この廃棄物を処理するための設備が必要となり、水処理設備内に廃棄物処理設備を設けたり、廃棄物を処理業者に運搬したりする必要があった。   However, since wastes composed of organic substances and precipitates containing sulfates removed from the regenerated waste liquid are generated, facilities for treating the wastes are necessary, and waste treatment facilities are installed in the water treatment facilities, It was necessary to transport the waste to a processing company.

そこで本発明は、イオン交換樹脂を使用して水処理を行うに当たり、特別な設備を付加せずにクローズドシステムを構築することができる水処理方法及び設備を提供することを目的としている。   Accordingly, an object of the present invention is to provide a water treatment method and equipment capable of constructing a closed system without adding special equipment when performing water treatment using an ion exchange resin.

上記目的を達成するため、本発明の水処理方法は、原水を陰イオン交換樹脂に接触させて原水中に含まれる溶解性有機成分を除去するイオン交換工程と、該イオン交換工程で前記溶解性有機成分が除去された原水に凝集剤を添加して原水中に含まれる懸濁成分を凝集させて沈殿分離する凝集沈殿工程と、前記イオン交換工程で前記溶解性有機成分を吸着した前記陰イオン交換樹脂を塩化ナトリウム水溶液を使用して再生する再生工程と、該再生工程で前記陰イオン交換樹脂を再生することにより発生した再生廃液と前記凝集沈殿工程で沈殿して排出された汚泥とを混合する固液混合分離工程と、該固液混合分離工程で混合した固液混合物中の液成分を抜き出して前記原水に混合する液成分返送工程とを含むことを特徴としている。 In order to achieve the above object, the water treatment method of the present invention comprises an ion exchange step of contacting raw water with an anion exchange resin to remove soluble organic components contained in the raw water, and the solubility in the ion exchange step . A coagulation-precipitation step in which a coagulant is added to the raw water from which the organic components have been removed to agglomerate suspended components contained in the raw water to precipitate and separate, and the anion adsorbing the soluble organic components in the ion-exchange step A regeneration step of regenerating the exchange resin using an aqueous sodium chloride solution, a regeneration waste solution generated by regenerating the anion exchange resin in the regeneration step, and sludge precipitated and discharged in the coagulation sedimentation step And a liquid component returning step of extracting a liquid component in the solid-liquid mixture mixed in the solid-liquid mixture separation step and mixing it with the raw water.

さらに、本発明の水処理方法は、前記固液混合分離工程は、前記再生廃液と前記汚泥とを混合する混合段階と、混合した固液混合物中の汚泥を濃縮して分離する汚泥濃縮段階とを有し、原水に混合する前記液成分は、前記汚泥濃縮段階で抜き出すことを特徴としている。 Furthermore, the water treatment method of the present invention, prior Symbol solid-liquid mixture separation step, mixing step and, sludge concentration step of separating and concentrating the sludge of the mixed solid-liquid mixture which is mixed with the said reproduction effluent sludge The liquid component to be mixed with raw water is extracted at the sludge concentration stage.

また、本発明の水処理設備は、原水を陰イオン交換樹脂に接触させて原水中に含まれる溶解性有機成分を除去するイオン交換処理槽と、該イオン交換処理槽で前記溶解性有機成分が除去された原水に凝集剤を添加して原水中に含まれる懸濁成分を凝集させて沈殿分離する凝集沈殿槽と、前記イオン交換処理槽で前記溶解性有機成分を吸着した前記陰イオン交換樹脂を塩化ナトリウム水溶液を使用して再生する再生手段と、該再生手段で前記陰イオン交換樹脂を再生することにより発生した再生廃液と前記凝集沈殿槽で沈殿して排出された汚泥とを混合する固液混合分離槽と、該固液混合分離槽で混合した固液混合物中の液成分を抜き出して前記原水に混合する液成分返送経路とを備えていることを特徴としている。 The water treatment facility of the present invention includes an ion exchange treatment tank that removes soluble organic components contained in the raw water by bringing the raw water into contact with an anion exchange resin, and the soluble organic component is contained in the ion exchange treatment tank. A flocculant is added to the removed raw water to agglomerate suspended components contained in the raw water to precipitate and separate, and the anion exchange resin adsorbs the soluble organic component in the ion exchange treatment tank A regenerator using a sodium chloride aqueous solution, a regenerated waste liquid generated by regenerating the anion exchange resin by the regenerator and a sludge precipitated and discharged in the coagulation sedimentation tank. A liquid mixing / separation tank and a liquid component return path for extracting the liquid component in the solid / liquid mixture mixed in the solid / liquid mixing / separation tank and mixing the liquid component with the raw water are provided .

さらに、本発明の水処理装置は、前記固液混合分離槽は、前記再生廃液と前記汚泥とを混合する混合部と、混合した固液混合物中の汚泥を濃縮して分離する汚泥濃縮部とを備えるとともに、前記液成分返送経路は、前記汚泥濃縮部で発生した分離水を、前記原水に混合するように形成されていることが好ましい。 Furthermore, the water treatment apparatus of the present invention, the pre-Symbol solid-liquid mixture separation tank, the reproduction effluent and the mixing section for mixing the sludge, the sludge concentrated portion of the sludge mixed solid-liquid mixture is separated and concentrated And the liquid component return path is preferably formed so as to mix the separated water generated in the sludge concentrating section with the raw water.

本発明によれば、再生廃液を凝集剤を含む汚泥と混合することにより、再生廃液中の有機物を汚泥中に取り込むことができ、液成分を原水に混合することが可能となるとともに、有機物などを取り込んだ汚泥は、通常の水処理で発生する余剰汚泥と同様に処理することができる。これにより、イオン交換樹脂を使用して水処理を行う設備のクローズドシステム化を図ることができる。   According to the present invention, by mixing the regenerated waste liquid with the sludge containing the flocculant, the organic matter in the regenerated waste liquid can be taken into the sludge, the liquid components can be mixed with the raw water, and the organic matter etc. The sludge that has taken in can be treated in the same manner as excess sludge generated by normal water treatment. Thereby, the closed system-ization of the equipment which performs water treatment using an ion exchange resin can be aimed at.

本発明の水処理方法を実施可能な水処理設備の第1形態例を示す系統図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a systematic diagram which shows the 1st form example of the water treatment facility which can implement the water treatment method of this invention. 参考例を示す系統図である。It is a systematic diagram which shows a reference example.

図1に示す水処理設備の第1形態例は、原水槽11と、前記原水と陰イオン交換樹脂とを接触させるイオン交換処理槽12と、イオン交換処理後の原水(以下、イオン交換処理水という。)に凝集剤を添加して懸濁成分を凝集沈殿分離する凝集沈殿槽13と、前記イオン交換処理槽12で原水と接触後の前記陰イオン交換樹脂を再生する再生手段14と、該再生手段14で発生する再生廃液と前記凝集沈殿槽13で沈殿した汚泥とを混合する固液混合分離槽15とを備えている。   A first embodiment of the water treatment facility shown in FIG. 1 includes a raw water tank 11, an ion exchange treatment tank 12 in which the raw water and an anion exchange resin are brought into contact, and raw water after ion exchange treatment (hereinafter referred to as ion exchange treated water). A coagulating / precipitation tank 13 for coagulating and separating the suspended components by adding a coagulant to the above), a regeneration means 14 for regenerating the anion exchange resin after contacting the raw water in the ion exchange treatment tank 12, A solid-liquid mixing / separation tank 15 for mixing the regenerated waste liquid generated in the regenerating means 14 and the sludge precipitated in the coagulating sedimentation tank 13 is provided.

前記イオン交換処理槽12は、原水と陰イオン交換樹脂とを接触させて原水中に含まれる溶解性有機成分(溶解性有機炭素:DOC)を陰イオン交換樹脂に吸着させて原水中から除去するイオン交換工程を行うものであって、該イオン交換工程では、陰イオン交換樹脂の交換基である塩化物イオン又は塩素イオンと原水中の負電荷有機物とがイオン交換することにより、負電荷有機物が陰イオン交換樹脂に吸着されて原水中から除去される。   The ion exchange treatment tank 12 contacts raw water and an anion exchange resin to adsorb soluble organic components (soluble organic carbon: DOC) contained in the raw water to the anion exchange resin and removes the raw water from the raw water. An ion exchange step is performed, and in the ion exchange step, a negatively charged organic substance is converted by ion exchange between a chloride ion or a chlorine ion which is an exchange group of the anion exchange resin and a negatively charged organic substance in the raw water. It is adsorbed on the anion exchange resin and removed from the raw water.

イオン交換処理槽12の後段に設けられた凝集沈殿槽13は、イオン交換処理槽12でイオン交換処理後のイオン交換処理水に、凝集剤添加経路21から硫酸アルミニウム(硫酸バンド)やポリ塩化アルミニウム(PAC)といった凝集剤を添加し、該凝集剤によってイオン交換処理水中の懸濁成分を凝集させて沈殿させることにより、懸濁成分を含まない上澄み水と凝集剤で凝集した懸濁成分からなる汚泥とに分離する凝集沈殿工程を行うものであって、凝集沈殿槽13には、上澄み水を処理水として濾過池等の後処理設備に導出する処理水導出経路22と、沈殿した汚泥を抜き取って前記固液混合分離槽15に送出する汚泥抜出経路23とが設けられている。   The agglomeration sedimentation tank 13 provided in the subsequent stage of the ion exchange treatment tank 12 is supplied to the ion exchange treated water after the ion exchange treatment in the ion exchange treatment tank 12 from the flocculant addition path 21 through aluminum sulfate (sulfate band) or polyaluminum chloride. (PAC) A flocculant such as (PAC) is added, and the suspended component in the ion-exchanged water is aggregated and precipitated by the flocculant, thereby comprising supernatant water not containing the suspended component and the suspended component aggregated with the flocculant. A coagulation sedimentation step for separating the sludge into sludge is performed. In the coagulation sedimentation tank 13, a treated water outlet path 22 for leading the supernatant water as treated water to a post-treatment facility such as a filtration basin, and the precipitated sludge are extracted. And a sludge extraction path 23 for feeding to the solid-liquid mixing and separation tank 15.

前記再生手段14は、前記イオン交換処理槽12で前記溶解性有機成分を吸着した前記陰イオン交換樹脂を再利用可能な状態に再生する再生工程を行うためのものであって、イオン交換処理槽12から樹脂再生経路24を介して流入した陰イオン交換樹脂を所定濃度の塩化ナトリウム水溶液で処理することにより、陰イオン交換樹脂に吸着している負電荷有機物と塩化ナトリウム水溶液中の塩化物イオン又は塩素イオンとを交換させて陰イオン交換樹脂を再生する。再生した陰イオン交換樹脂は、再生樹脂循環経路25を通ってイオン交換処理槽12に循環して再利用され、陰イオン交換樹脂から脱離した負電荷有機物を含む再生廃液は、再生廃液導出経路26から前記固液混合分離槽15に送られる。   The regeneration means 14 is for performing a regeneration step of regenerating the anion exchange resin having adsorbed the soluble organic component in the ion exchange treatment tank 12 into a reusable state, and the ion exchange treatment tank By treating the anion exchange resin flowing from 12 through the resin regeneration path 24 with a sodium chloride aqueous solution having a predetermined concentration, negatively charged organic substances adsorbed on the anion exchange resin and chloride ions in the sodium chloride aqueous solution or The anion exchange resin is regenerated by exchanging chloride ions. The regenerated anion exchange resin is circulated to the ion exchange treatment tank 12 through the recycle resin circulation path 25 and reused, and the regenerated waste liquid containing negatively charged organic substances desorbed from the anion exchange resin is regenerated waste liquid lead-out path. 26 to the solid-liquid mixing and separation tank 15.

固液混合分離槽15は、前記汚泥抜出経路23からの汚泥と前記再生廃液導出経路26からの再生廃液とを混合する固液混合段階を行う固液混合部15aと、該固液混合部15aで混合した固液混合物中の固形分(汚泥)を濃縮して分離する汚泥濃縮段階を行う汚泥濃縮部15bとを有しており、再生廃液中の前記負電荷有機物の一部は、固液混合部15aで汚泥と混合した際に、凝集剤の作用で汚泥中に取り込まれて液中の有機物濃度が低下する。汚泥濃縮部15bで濃縮分離された汚泥は、汚泥引抜経路27に引き抜かれて汚泥処理設備16に送られ、汚泥濃縮部15bで汚泥から分離した液成分は、液成分返送工程によって液成分返送経路28から前記原水槽11に返送され、負電荷有機物濃度が低下した液成分が原水に混合されて再処理される。   The solid-liquid mixing / separation tank 15 includes a solid-liquid mixing unit 15a that performs a solid-liquid mixing step of mixing the sludge from the sludge extraction path 23 and the recycled waste liquid from the recycled waste liquid outlet path 26, and the solid-liquid mixing section. A sludge concentration unit 15b that performs a sludge concentration step of concentrating and separating solids (sludge) in the solid-liquid mixture mixed in 15a, and a part of the negatively charged organic substances in the regenerated waste liquid When mixed with sludge in the liquid mixing unit 15a, the concentration of organic substances in the liquid is reduced due to the action of the flocculant. The sludge concentrated and separated in the sludge concentrating section 15b is drawn out to the sludge extraction path 27 and sent to the sludge treatment facility 16, and the liquid component separated from the sludge in the sludge concentrating section 15b is returned to the liquid component returning path by the liquid component returning process. The liquid component returned to the raw water tank 11 from 28 is mixed with the raw water and reprocessed.

図2に示す水処理設備の参考例は、前記第1形態例におけるイオン交換処理槽12と凝集沈殿槽13との位置を入れ替え、原水槽11の後段に凝集沈殿槽13を配置し、該凝集沈殿槽13の後段にイオン交換処理槽12を配置した例を示している。なお、以下の説明において、前記第1形態例に示した水処理設備の構成要素と同一の構成要素には同一の符号を付して詳細な説明は省略する。 The reference example of the water treatment facility shown in FIG. 2 replaces the positions of the ion exchange treatment tank 12 and the coagulation sedimentation tank 13 in the first embodiment, arranges the coagulation sedimentation tank 13 at the subsequent stage of the raw water tank 11, and the coagulation The example which has arrange | positioned the ion exchange treatment tank 12 in the back | latter stage of the precipitation tank 13 is shown. In addition, in the following description, the same code | symbol is attached | subjected to the component same as the component of the water treatment facility shown to the said 1st form example, and detailed description is abbreviate | omitted.

参考例では、原水槽11からの原水は、最初に凝集沈殿槽13に流入し、凝集剤添加経路21から添加された凝集剤によって原水中の懸濁成分を凝集させて沈殿させた後、上澄み水をイオン交換処理槽12に導入して陰イオン交換樹脂と接触させ、原水中に含まれる溶解性有機成分を陰イオン交換樹脂に吸着させて原水中から除去するように構成している。 In this reference example, the raw water from the raw water tank 11 first flows into the coagulation sedimentation tank 13, and the suspended components in the raw water are aggregated and precipitated by the coagulant added from the coagulant addition path 21. The supernatant water is introduced into the ion exchange treatment tank 12 and brought into contact with the anion exchange resin, so that the soluble organic component contained in the raw water is adsorbed on the anion exchange resin and removed from the raw water.

イオン交換処理槽12で使用した陰イオン交換樹脂は、前記第1形態例と同様に、樹脂再生経路24から再生手段14に導入されて塩化ナトリウム水溶液で再生処理され、再生後の陰イオン交換樹脂は、再生樹脂循環経路25を通ってイオン交換処理槽12に循環して再利用される。さらに、凝集沈殿槽13から汚泥抜出経路23に抜き取られた汚泥と、再生手段14から再生廃液導出経路26に導出された再生廃液とは、固液混合分離槽15の固液混合部15aで混合して再生廃液中の負電荷有機物等を汚泥中に取り込み、汚泥濃縮部15bで汚泥から分離した液成分は、液成分返送経路28を通って原水槽11に返送される。また、イオン交換処理槽12で溶解性有機成分を除去した処理水は、処理水導出経路22から後段の設備に送られる。   As in the first embodiment, the anion exchange resin used in the ion exchange treatment tank 12 is introduced into the regeneration means 14 from the resin regeneration path 24 and regenerated with a sodium chloride aqueous solution, and the regenerated anion exchange resin. Is recycled to the ion exchange treatment tank 12 through the recycled resin circulation path 25 and reused. Furthermore, the sludge extracted from the coagulation sedimentation tank 13 to the sludge extraction path 23 and the regenerated waste liquid led out from the regenerating means 14 to the regenerated waste liquid lead-out path 26 are mixed in the solid-liquid mixing section 15 a of the solid-liquid mixing and separation tank 15. The liquid components mixed and taken in the sludge with negatively charged organic substances in the reclaimed waste liquid and separated from the sludge by the sludge concentration unit 15 b are returned to the raw water tank 11 through the liquid component return path 28. The treated water from which the soluble organic components have been removed in the ion exchange treatment tank 12 is sent from the treated water lead-out path 22 to the subsequent equipment.

前記第1形態例及び前記参考例に示すように、原水中の溶解性有機成分を吸着した陰イオン交換樹脂を再生する際に発生する再生廃液と、原水中の懸濁成分を凝集剤で凝集させた汚泥とを混合することにより、再生廃液中の溶解性有機成分を汚泥中に取り込むことができるので、汚泥から分離した液成分を原水に混合して再処理することが可能となる。これにより、再生廃液を外部に排出することなく、設備内で処理することができ、イオン交換樹脂を使用した水処理設備のクローズドシステム化を図ることができる。さらに、両形態例に示す水処理設備では、溶解性有機成分の低減だけでなく、トリハロメタン生成能(THMFP)の低減、色度の改善、塩素要求量の低減も図ることができる。 As shown in the first embodiment and the reference example , the regenerated waste liquid generated when regenerating the anion exchange resin adsorbing the soluble organic components in the raw water and the suspended components in the raw water are aggregated with a flocculant. Since the soluble organic component in the recycled waste liquid can be taken into the sludge by mixing with the sludge that has been made to react, the liquid component separated from the sludge can be mixed with the raw water and reprocessed. Thereby, it can process in an installation, without discharging | emitting reproduction | regeneration waste liquid outside, The closed systemization of the water treatment equipment using an ion exchange resin can be achieved. Furthermore, in the water treatment facilities shown in both embodiments, not only the soluble organic components can be reduced, but also the trihalomethane production ability (THMFP) can be reduced, the chromaticity can be improved, and the chlorine demand can be reduced.

したがって、第1形態例及び前記参考例に示す水処理設備の後段に浄水処理設備が設けられている場合は、該浄水処理設備の有機物負荷が軽減されるため、浄水処理設備における処理水質の向上を図ることができ、凝集剤の添加量も低減できるので、凝集改善も図ることができる。また、高度浄水処理におけるオゾン量低減なども図ることができる。
Therefore, when the water treatment facility is provided at the latter stage of the water treatment facility shown in the first embodiment and the reference example , the organic matter load of the water treatment facility is reduced, so that the quality of the treated water in the water purification facility is improved. Since the amount of flocculant added can be reduced, the aggregation can be improved. In addition, the amount of ozone in advanced water purification treatment can be reduced.

表1は、凝集沈殿槽13で沈殿して抜き取った汚泥に、再生手段14から導出した再生廃液を0.2〜5.0容積%の割合で混合したときの液成分における紫外線吸光度及び色度を測定した結果の一例を示している。表1の結果から、この実験で使用した汚泥の場合は、再生廃液を汚泥に対して数%混合することにより、液成分中の溶解性有機物が汚泥中に取り込まれることによって計算値に比べて実測値が大幅に小さくなり、液成分における紫外線吸光度及び色度が改善されていることがわかる。

Figure 0005986819
Table 1 shows the UV absorbance and chromaticity of the liquid components when the sludge extracted from the coagulation sedimentation tank 13 is mixed with the reclaimed waste liquid derived from the regenerating means 14 at a ratio of 0.2 to 5.0% by volume. An example of the measurement result is shown. From the results of Table 1, in the case of the sludge used in this experiment, compared with the calculated value, the soluble organic matter in the liquid component is taken into the sludge by mixing the recycled waste liquid with several percent of sludge. It can be seen that the actual measurement value is significantly reduced, and the ultraviolet absorbance and chromaticity of the liquid component are improved.
Figure 0005986819

なお、イオン交換処理槽における原水と陰イオン交換樹脂との接触、原水と接触後の陰イオン交換樹脂の分離回収などは、この種の装置に用いられている一般的な装置構成を採用することができ、陰イオン交換樹脂の再生手段も、一般的な機器構成を採用することができる。また、本発明は、溶解性有機成分濃度が高い原水の処理に適しているが、原水の性状は特に限定されるものではなく、溶解性有機成分濃度が比較的高い河川系表層水や湖沼水をはじめとして、伏流水や地下水といった水源にも適用することができる。さらに、固液混合分離槽は、濃縮を行わずに自然沈降などによる固液分離のみで液成分を分離するものであってもよい。   In addition, for the contact between the raw water and the anion exchange resin in the ion exchange treatment tank, the separation and recovery of the anion exchange resin after the contact with the raw water, use a general apparatus configuration used in this type of apparatus. The anion exchange resin regeneration means can also employ a general equipment configuration. Further, the present invention is suitable for the treatment of raw water having a high concentration of soluble organic components, but the properties of the raw water are not particularly limited, and river surface water and lake water having relatively high concentrations of soluble organic components. It can also be applied to water sources such as underground water and underground water. Furthermore, the solid-liquid mixing / separation tank may separate liquid components only by solid-liquid separation by natural sedimentation or the like without performing concentration.

11…原水槽、12…イオン交換処理槽、13…凝集沈殿槽、14…再生手段、15…固液混合分離槽、15a…固液混合部、15b…汚泥濃縮部、16…汚泥処理設備、21…凝集剤添加経路、22…処理水導出経路、23…汚泥抜出経路、24…樹脂再生経路、25…再生樹脂循環経路、26…再生廃液導出経路、27…汚泥引抜経路、28…液成分返送経路   DESCRIPTION OF SYMBOLS 11 ... Raw water tank, 12 ... Ion exchange treatment tank, 13 ... Coagulation sedimentation tank, 14 ... Regeneration means, 15 ... Solid-liquid mixing separation tank, 15a ... Solid-liquid mixing part, 15b ... Sludge concentration part, 16 ... Sludge treatment equipment, DESCRIPTION OF SYMBOLS 21 ... Flocculant addition path, 22 ... Treated water extraction path, 23 ... Sludge extraction path, 24 ... Resin regeneration path, 25 ... Recycled resin circulation path, 26 ... Regenerated waste liquid extraction path, 27 ... Sludge extraction path, 28 ... Liquid Component return route

Claims (4)

原水を陰イオン交換樹脂に接触させて原水中に含まれる溶解性有機成分を除去するイオン交換工程と、該イオン交換工程で前記溶解性有機成分が除去された原水に凝集剤を添加して原水中に含まれる懸濁成分を凝集させて沈殿分離する凝集沈殿工程と、前記イオン交換工程で前記溶解性有機成分を吸着した前記陰イオン交換樹脂を塩化ナトリウム水溶液を使用して再生する再生工程と、該再生工程で前記陰イオン交換樹脂を再生することにより発生した再生廃液と前記凝集沈殿工程で沈殿して排出された汚泥とを混合する固液混合分離工程と、該固液混合分離工程で混合した固液混合物中の液成分を抜き出して前記原水に混合する液成分返送工程とを含むことを特徴とする水処理方法。 An ion exchange step in which raw water is brought into contact with an anion exchange resin to remove soluble organic components contained in the raw water, and a flocculant is added to the raw water from which the soluble organic components have been removed in the ion exchange step. A coagulation sedimentation step of coagulating and separating suspended components contained in water, and a regeneration step of regenerating the anion exchange resin adsorbing the soluble organic component in the ion exchange step using a sodium chloride aqueous solution; A solid-liquid mixing / separating step of mixing the regenerated waste liquid generated by regenerating the anion exchange resin in the regenerating step and the sludge precipitated and discharged in the coagulating sedimentation step, and the solid-liquid mixing / separating step A liquid component returning step of extracting a liquid component in the mixed solid-liquid mixture and mixing it with the raw water. 前記固液混合分離工程は、前記再生廃液と前記汚泥とを混合する混合段階と、混合した固液混合物中の汚泥を濃縮して分離する汚泥濃縮段階とを有しており、原水に混合する前記液成分は、前記汚泥濃縮段階で抜き出すことを特徴とする請求項1記載の水処理方法。 The solid-liquid mixing and separating step includes a mixing stage for mixing the recycled waste liquid and the sludge, and a sludge concentration stage for concentrating and separating sludge in the mixed solid-liquid mixture, and mixing with raw water. The water treatment method according to claim 1 , wherein the liquid component is extracted at the sludge concentration stage . 原水を陰イオン交換樹脂に接触させて原水中に含まれる溶解性有機成分を除去するイオン交換処理槽と、該イオン交換処理槽で前記溶解性有機成分が除去された原水に凝集剤を添加して原水中に含まれる懸濁成分を凝集させて沈殿分離する凝集沈殿槽と、前記イオン交換処理槽で前記溶解性有機成分を吸着した前記陰イオン交換樹脂を塩化ナトリウム水溶液を使用して再生する再生手段と、該再生手段で前記陰イオン交換樹脂を再生することにより発生した再生廃液と前記凝集沈殿槽で沈殿して排出された汚泥とを混合する固液混合分離槽と、該固液混合分離槽で混合した固液混合物中の液成分を抜き出して前記原水に混合する液成分返送経路とを備えていることを特徴とする水処理設備。The flocculant is added to the ion exchange treatment tank that removes soluble organic components contained in the raw water by bringing the raw water into contact with the anion exchange resin, and the raw water from which the soluble organic components have been removed in the ion exchange treatment tank. The aggregated sedimentation tank that aggregates and separates the suspended components contained in the raw water and precipitates and the anion exchange resin that has adsorbed the soluble organic components in the ion exchange treatment tank are regenerated using an aqueous sodium chloride solution. A solid-liquid mixing / separation tank for mixing the regenerating means, the regenerated waste liquid generated by regenerating the anion exchange resin with the regenerating means, and the sludge precipitated and discharged in the coagulating sedimentation tank; and the solid-liquid mixing A water treatment facility comprising a liquid component return path for extracting a liquid component in a solid-liquid mixture mixed in a separation tank and mixing the extracted liquid component with the raw water. 前記固液混合分離槽は、前記再生廃液と前記汚泥とを混合する混合部と、混合した固液混合物中の汚泥を濃縮して分離する汚泥濃縮部とを備えるとともに、前記液成分返送経路は、前記汚泥濃縮部で発生した分離水を、前記原水に混合することを特徴とする請求項3記載の水処理設備。The solid-liquid mixing and separation tank includes a mixing unit that mixes the recycled waste liquid and the sludge, and a sludge concentration unit that concentrates and separates sludge in the mixed solid-liquid mixture, and the liquid component return path is The water treatment facility according to claim 3, wherein the separated water generated in the sludge concentration unit is mixed with the raw water.
JP2012136852A 2012-06-18 2012-06-18 Water treatment method and equipment Active JP5986819B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012136852A JP5986819B2 (en) 2012-06-18 2012-06-18 Water treatment method and equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012136852A JP5986819B2 (en) 2012-06-18 2012-06-18 Water treatment method and equipment

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2016099286A Division JP6318193B2 (en) 2016-05-18 2016-05-18 Water treatment method and equipment

Publications (2)

Publication Number Publication Date
JP2014000510A JP2014000510A (en) 2014-01-09
JP5986819B2 true JP5986819B2 (en) 2016-09-06

Family

ID=50034214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012136852A Active JP5986819B2 (en) 2012-06-18 2012-06-18 Water treatment method and equipment

Country Status (1)

Country Link
JP (1) JP5986819B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3029517A1 (en) * 2014-12-05 2016-06-10 Veolia Water Solutions & Tech A WATER TREATMENT PROCESS COMPRISING AN ION EXCHANGE RESIN ADSORPTION STEP AND A CLOSED COAGULATION / FLOCCULATION AND SEPARATION STEP, AND CORRESPONDING INSTALLATION.
JP6368681B2 (en) * 2015-04-24 2018-08-01 前澤工業株式会社 Water purification method and apparatus
CN109493988A (en) * 2018-12-14 2019-03-19 核工业理化工程研究院 Core biochemical decontamination waste liquid pretreatment unit and processing method

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50103473A (en) * 1974-01-21 1975-08-15
JPS512254A (en) * 1974-06-25 1976-01-09 Kubota Ltd Jukiseihaiekino chitsusojokyoho
JPS51105161A (en) * 1975-02-13 1976-09-17 Osaka Oxygen Ind Shashinhaiekino shorishisutemu
JPS58174297A (en) * 1982-04-07 1983-10-13 Sumitomo Chem Co Ltd Treatment of waste water from desulfurization of waste gas
JPS63264191A (en) * 1987-04-21 1988-11-01 Kubota Ltd Treatment of night soil
JP3252521B2 (en) * 1993-03-25 2002-02-04 栗田工業株式会社 Rinse wastewater treatment method
JP2005296756A (en) * 2004-04-08 2005-10-27 Chlorine Eng Corp Ltd Treatment method of ion-exchange resin regeneration waste liquid
JP2006263553A (en) * 2005-03-23 2006-10-05 Kurita Water Ind Ltd Method for treating anionic organic material-containing waste water
JP2007275846A (en) * 2006-04-11 2007-10-25 Sumitomo Heavy Industries Environment Co Ltd Wastewater treatment system and wastewater treatment method
JP2008093602A (en) * 2006-10-13 2008-04-24 Idemitsu Kosan Co Ltd Waste water treatment method and waste water treatment equipment
JP5223219B2 (en) * 2007-03-30 2013-06-26 栗田工業株式会社 Organic wastewater treatment equipment
JP2010155181A (en) * 2008-12-26 2010-07-15 Kurita Water Ind Ltd Biological treating method of triazol derivative-containing waste water

Also Published As

Publication number Publication date
JP2014000510A (en) 2014-01-09

Similar Documents

Publication Publication Date Title
TWI616404B (en) Method and device for processing boron-containing water
KR20130115785A (en) Method and apparatus for treating fluoride ion contained wastewater and regenerating the wastewater
WO2011025440A1 (en) Recovery of al from p-containing material
CN105800846A (en) Method used for reverse osmosis concentrated water treatment and zero discharge, and apparatus thereof
TWI540103B (en) Method for removing boron from a boron-containing wastewater
JP5986819B2 (en) Water treatment method and equipment
TWI808053B (en) Ultrapure water production system and ultrapure water production method
JP7102743B2 (en) Lithium recovery method
JP6318193B2 (en) Water treatment method and equipment
KR101280357B1 (en) Ion-exchange water softening system and process re-using concentrate and brine waste
WO2020041507A1 (en) Methods and systems for treating phosphogypsum-containing water
JP2006314971A (en) Ultrapure water production apparatus
WO2019196143A1 (en) Radioactive waste liquid treatment method and apparatus
JP2002346561A (en) Treating method for wastewater containing salt of high concentration
JP2020058963A (en) Water treatment device and water treatment method
JP2006263553A (en) Method for treating anionic organic material-containing waste water
JP2019118891A (en) Pure water producing apparatus and pure water producing method
JP2007098270A (en) Method and apparatus for producing pure water
JP7137393B2 (en) Method and apparatus for treating water containing silica/hardness components
CN111051253A (en) Apparatus and method for treating silica-containing water
JP2015003289A (en) Water treatment method and apparatus
JP2005296756A (en) Treatment method of ion-exchange resin regeneration waste liquid
JP2014200745A (en) Method of treating fluorine-containing waste liquid and apparatus of fluorine-containing waste liquid
CN218620523U (en) Recovery processing system of copper-containing waste water of electron trade
JPH10314797A (en) Method for treating water containing fluoride ion and cod component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150602

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160808

R150 Certificate of patent or registration of utility model

Ref document number: 5986819

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150