JPH0234909B2 - SICSHOKETSUTAITOKINZOKUBUZAINOSETSUGOKOZO - Google Patents

SICSHOKETSUTAITOKINZOKUBUZAINOSETSUGOKOZO

Info

Publication number
JPH0234909B2
JPH0234909B2 JP18762683A JP18762683A JPH0234909B2 JP H0234909 B2 JPH0234909 B2 JP H0234909B2 JP 18762683 A JP18762683 A JP 18762683A JP 18762683 A JP18762683 A JP 18762683A JP H0234909 B2 JPH0234909 B2 JP H0234909B2
Authority
JP
Japan
Prior art keywords
sintered body
sic sintered
metal
sic
thin plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18762683A
Other languages
Japanese (ja)
Other versions
JPS6081070A (en
Inventor
Masaya Ito
Seiji Mori
Shunichi Takagi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP18762683A priority Critical patent/JPH0234909B2/en
Publication of JPS6081070A publication Critical patent/JPS6081070A/en
Publication of JPH0234909B2 publication Critical patent/JPH0234909B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】 本発明は改良された、SiC焼結体と金属部材と
の接合構造に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improved bonding structure between a SiC sintered body and a metal member.

SiC焼結体は耐摩耗性や硬度が大きいために厳
しい条件下で使用される自動車のエンジン周辺部
品、ガスタービン部品等広範囲に使用され又は利
用が期待されている。しかしSiC焼結体は脆性材
料であるため、それのみで用いられることは少な
く他の金属部材と接合した接合構造として用いら
れることが多い。特にSiCの高周波吸収特性を利
用しクライストロン、マグネトロン等の高周波用
電子管内にSiCを高周波減衰器として設置する試
みがなされている。容器の材質はSiC電波吸収体
の発熱及びガスの放出問題等実用上の問題により
熱放散性のよい銅が用いられるのが普通で使用可
能ロー材もAg―Cu共晶ロー、Agロー、Cuロー、
Au―Niロー等高温用ロー材である。SiC焼結体
と金属部材とを接合する場合熱膨張係数が小さい
ことと靭性が乏しいことのために熱膨張係数の一
般に大きな金属部材と直接接合すると熱膨張係数
の違いによる内部歪のために、SiC焼結体の表面
を金属化しロー材を介してコバールや金属銅と接
合してもはがれやSiC焼結体にクラツクを生じる
難があつた。そこで本発明者らは特願昭58−
98602号において、表面にメタライズ層を設けた
セラミツク焼結体と、銅板等の軟質接合金属とを
接触させて非酸化性雰囲気中で加熱接合すること
を特徴とするセラミツクスと金属部材との接合方
法を出願した。
Because SiC sintered bodies have high wear resistance and hardness, they are used or expected to be used in a wide range of areas such as automobile engine peripheral parts and gas turbine parts that are used under severe conditions. However, since the SiC sintered body is a brittle material, it is rarely used alone and is often used as a bonded structure in which it is bonded to other metal members. In particular, attempts have been made to utilize the high frequency absorption characteristics of SiC to install SiC as a high frequency attenuator in high frequency electron tubes such as klystrons and magnetrons. Due to practical issues such as the heat generation and gas release of SiC radio wave absorbers, the material of the container is usually copper, which has good heat dissipation properties.The brazing materials that can be used include Ag-Cu eutectic brazing, Ag brazing, and Cu. Low,
High temperature brazing material such as Au-Ni brazing material. When joining a SiC sintered body to a metal member, the coefficient of thermal expansion is small and the toughness is poor, so if it is directly joined to a metal member that generally has a large coefficient of thermal expansion, internal distortion due to the difference in coefficient of thermal expansion will occur. Even when the surface of the SiC sintered body is metallized and bonded to Kovar or metallic copper via a brazing material, there are problems with peeling and cracks in the SiC sintered body. Therefore, the inventors of the present invention filed a patent application in 1983-
No. 98602 discloses a method for joining ceramics and metal members, characterized in that a ceramic sintered body having a metallized layer on its surface is brought into contact with a soft joining metal such as a copper plate, and the joining is carried out by heating in a non-oxidizing atmosphere. has been applied for.

本願はセラミツクスがSiC焼結体である場合に
更に改良し歪の少ない接合構造体を得るために検
討した結果得られたもので、表面に金属化層を設
けたSiC焼結体の金属化表面に低弾性率金属の薄
板をロー接し、該低弾性率金属の薄板を介して他
の金属部材に一部非接合部分を残して接合した
SiC焼結体と金属部材との接合構造を提供するも
のである。
This application was obtained as a result of studies to further improve the ceramics of SiC sintered bodies to obtain a bonded structure with less distortion. A thin plate of low-elastic modulus metal was brazed to the metal member, and the thin plate of low-elastic modulus metal was joined to another metal member, leaving some unbonded parts.
The present invention provides a bonding structure between a SiC sintered body and a metal member.

以下図面により詳細に説明すると第1図はSiC
焼結体の金属化面に低弾性率の金属の薄板をロー
接した接合体の側面図で図中1はSiC焼結体で1
1は金属化面である。この金属化は物理蒸着によ
つて、Ti,Mo,Cuの薄層を順次設ける手法によ
つても可能であるし、活性化金属法により、Ti
又はZrから選ばれた一種以上と、Ag,Cu,Ni等
金属から選ばれた一種以上との混合溶融物によ
り、低弾性率金属の薄板と直接接合してもよい。
又両混合物を順次積層した後加熱しても両者は熱
拡散を起し混合溶融したものと同等の効果を有す
る。
The following is a detailed explanation using the drawings. Figure 1 shows SiC
This is a side view of a joined body in which a thin plate of metal with a low elastic modulus is brazed to the metallized surface of the sintered body. 1 in the figure is a SiC sintered body.
1 is a metallized surface. This metallization can also be achieved by applying thin layers of Ti, Mo, and Cu sequentially by physical vapor deposition, or by activated metal methods.
Alternatively, a mixed melt of one or more selected from Zr and one or more selected from metals such as Ag, Cu, and Ni may be directly bonded to a thin plate of a low elastic modulus metal.
Furthermore, even if both mixtures are laminated one after another and then heated, both will cause thermal diffusion and will have the same effect as when they are mixed and melted.

次に低弾性率金属とは、銀,銅,純チタン等の
極めて靭性の大きい柔い金属でその厚さは金属の
種類により異り、銀では0.2〜1mm、銅では0.1〜
0.5mm、純チタンでは0.1〜0.3mmが好ましい。上記
厚さ以下では薄板の強度が低く、SiC焼結体を支
えることができずこの厚さ以上では金属薄板の剛
性が過大となり、SiC焼結体にクラツクを生じ
る。尚、金属薄板が薄過ぎて強度が不足し、SiC
焼結体を支えられないか、逆に厚過ぎて熱膨張差
により金属薄板が変形する等の問題が生じる場合
の改善策として第4図又は第5図に示す如く、低
弾性率金属の薄板の、SiC焼結体1の接合面の反
対側に、低膨張材料9又は14にてSiC焼結体1
との間にサンドイツチ状に金属の薄板をはさみ接
合すれば金属薄板が薄過ぎる場合の強度不足や、
厚過ぎる場合の曲りを防ぐことができるために金
属薄板の板厚は前述の範囲をより拡張することが
できるしSiC焼結体への応力も緩和も期待でき
る。
Next, low modulus metals are soft metals with extremely high toughness such as silver, copper, and pure titanium, and their thickness varies depending on the type of metal, with silver being 0.2 to 1 mm and copper being 0.1 to 1 mm.
0.5 mm, preferably 0.1 to 0.3 mm for pure titanium. If the thickness is less than the above-mentioned thickness, the strength of the thin metal plate is low and cannot support the SiC sintered body, and if the thickness exceeds this thickness, the rigidity of the thin metal plate becomes excessive, causing cracks in the SiC sintered body. In addition, the thin metal plate is too thin and lacks strength, so SiC
As a countermeasure for cases where the sintered body cannot be supported or, conversely, is too thick and causes problems such as deformation of the thin metal plate due to the difference in thermal expansion, a thin plate of low elastic modulus metal is used as shown in Figures 4 and 5. On the opposite side of the joint surface of the SiC sintered body 1, a low expansion material 9 or 14 is attached to the SiC sintered body 1.
By sandwiching and joining a thin metal plate between the
Since it is possible to prevent bending if the metal thin plate is too thick, the thickness of the metal thin plate can be further extended beyond the above-mentioned range, and stress on the SiC sintered body can be expected to be alleviated.

低膨張材料は、W,Mo,Niを36〜42%含む鉄
合金、コバール等の金属やSiC,Si3N4,ZrSiO4
等のセラミツクスの表面を金属化されたものも適
用される。
Low expansion materials include iron alloys containing 36 to 42% W, Mo, and Ni, metals such as Kovar, and SiC, Si 3 N 4 , ZrSiO 4
Ceramics with metallized surfaces are also applicable.

以下実施例に一例を示すが、本願発明はこれに
拘るものではなく前記種々の材料部材の組合わせ
がすべて含まれるものである。
An example will be shown below, but the present invention is not limited to this and includes all combinations of the various materials mentioned above.

実施例 1 10mm□×5mmの寸法にダイヤモンド砥石で研削
したSiC焼結体1の表面を洗剤で洗浄し、蒸溜水
にて洗剤を除去した後アセトンで5分間超音波洗
浄を行つた。この焼結体の10mm□の表面に物理蒸
着法により下から順にTiを500Å,Moを500Å,
Cuを20000Å蒸着積層し、金属化層11を形成し
た。次に第1図に示す様に厚さ0.15mmで30mm□の
銅板2をAg―Cu共晶ロー12によりロー接した
接合体Iを製作した。これを拡大鏡にて観察した
ところ、SiC焼結体にクラツクは認められず銅板
2aの部分には熱膨張差のためそりが認められた
がこれにより熱膨張差による残留歪は残さないも
のとなる。
Example 1 The surface of a SiC sintered body 1 ground to a size of 10 mm x 5 mm with a diamond grindstone was washed with a detergent, and after removing the detergent with distilled water, ultrasonic cleaning was performed with acetone for 5 minutes. From the bottom, 500 Å of Ti and 500 Å of Mo were applied to the 10 mm square surface of this sintered body by physical vapor deposition.
Cu was deposited to a thickness of 20,000 Å to form a metallized layer 11. Next, as shown in FIG. 1, a bonded body I was manufactured by brazing a copper plate 2 of 30 mm square with a thickness of 0.15 mm using an Ag--Cu eutectic solder 12. When this was observed with a magnifying glass, no cracks were observed in the SiC sintered body, and warpage was observed in the copper plate 2a due to the difference in thermal expansion, but it was determined that no residual strain was left due to the difference in thermal expansion. Become.

続いて第2図に示す如く30mm□×6mmの銅板4
の30mm□の表面上の端部から3mmのところにAg
―Cu―Cdのロー材にてトーチ溶接14を行つた。
ここで拡大鏡により詳細に観察したが、クラツク
もそりも認められず良好な接着状態を示した。こ
れはトーチ溶接による部分加熱のため、金属薄板
の2a部分の変形は解消したものである。尚本実
施例ではトーチ溶接を用いたが、本発明はこれに
限定されることなく、他の接合方法、例えばネジ
止め等によつて接合してもよいものである。
Next, as shown in Figure 2, a 30mm□×6mm copper plate 4
Ag at 3mm from the edge on the 30mm□ surface of
-Torch welding 14 was performed with Cu-Cd brazing material.
A detailed observation using a magnifying glass showed that no cracks or warpage were observed, indicating a good adhesive state. This is due to partial heating by torch welding, so the deformation of the 2a portion of the thin metal plate has been eliminated. Although torch welding is used in this embodiment, the present invention is not limited to this, and may be joined by other joining methods, such as screwing.

実施例 2 実施例1と同様に金属化し、30mm□×0.3mm厚
さの銀板3をロー接した接合体の銀板3に、Ag
―Cu共晶ロー12.5mm□×30mm長さのNi棒5,Ag
―Cu共晶ロー12,30mm□mm×5mm厚さの銅板
6を順次積重ね第3図に示す如くセツトし850℃
の水素雰囲気炉でロー接した。これを拡大鏡で観
察したがSiC焼結体にクラツクは認められず良好
な接着状態を示した。
Example 2 Ag
-Cu eutectic raw 12.5mm□×30mm length Ni rod 5, Ag
- Cu eutectic row 12, 30 mm x 5 mm thick copper plates 6 were stacked one after another and set as shown in Figure 3 and heated to 850℃.
Welded in a hydrogen atmosphere furnace. When this was observed with a magnifying glass, no cracks were observed in the SiC sintered body, indicating a good adhesion state.

実施例 3 実施例1と同様に金属化したSiC焼結体に30mm
□×0.6mm厚さの銅板7,5mm□×30mmmm長さの
Ni棒5、2本をAg―Cu共晶ロー12にて、10mm
□×5mm厚さのNiメツキを施したW板9をSiC焼
結体の直下にロー接し第4図の如き接合体を作成
した。W板のロー接は下側に図示しない炭素の治
具を置いて落下を防いだ。この接合体は拡大鏡に
て精密に観察したところ、SiC焼結体にクラツク
も認められず良好な接着状態を示した。
Example 3 A metallized SiC sintered body with a thickness of 30 mm in the same manner as in Example 1
□×0.6mm thick copper plate 7.5mm□×30mmmm length
Ni rod 5, 2 pieces with Ag-Cu eutectic row 12, 10mm
A W plate 9 plated with Ni and having a thickness of □×5 mm was brazed directly under the SiC sintered body to create a bonded body as shown in FIG. 4. When brazing the W plate, a carbon jig (not shown) was placed underneath to prevent it from falling. When this bonded body was precisely observed with a magnifying glass, no cracks were observed in the SiC sintered body, indicating a good adhesion state.

実施例 4 実施例1と同様に金属化し30mm□×0.3mm厚さ
のTiの薄板10をAg―Cu共晶ロー接12にてロ
ー接し、6mm×5mm×30mm長さのCu材13を、
30mm□×5mm厚さの銅板6に、又10mm□×2mm厚
さの表面を金属化したSiC焼結体14を、Ag―
Cu共晶ローにて第5図に示す如くロー接した。
これを拡大鏡にて精密に観察したが、SiC焼結体
にクラツクはなく良好な接着状態を示した。
Example 4 A Ti thin plate 10 of 30 mm × 0.3 mm thickness was metallized in the same manner as in Example 1, and was brazed with Ag-Cu eutectic solder 12, and a Cu material 13 of 6 mm × 5 mm × 30 mm length was
Ag-
As shown in Fig. 5, solder contact was made using a Cu eutectic row.
When this was precisely observed using a magnifying glass, there were no cracks in the SiC sintered body, indicating a good adhesion state.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例1で製作した接合体Iの側面
図、第2図は該接合体Iに金属部材として銅板4
をトーチ溶接した接合構造体の側面図、第3図は
接合体IにNi棒及び金属部材として銅板6をロ
ー接した接合構造体の側面図、第4図は実施例3
の接合構造体の側面図、第5図は実施例4の接合
構造体の側面図。 1……SiC焼結体、11……金属化層、12…
…ロー接層、2,3,7,10……低弾性率金属
薄板、5……Ni棒、13……Cu棒、4,6……
銅板、8……Ni板。
FIG. 1 is a side view of the bonded body I manufactured in Example 1, and FIG. 2 is a side view of the bonded body I manufactured in Example 1.
FIG. 3 is a side view of a bonded structure in which a Ni rod and a copper plate 6 as a metal member are brazed to the bonded body I, and FIG.
FIG. 5 is a side view of the bonded structure of Example 4. 1...SiC sintered body, 11...metalized layer, 12...
...Low contact layer, 2,3,7,10...Low modulus metal thin plate, 5...Ni bar, 13...Cu bar, 4,6...
Copper plate, 8...Ni plate.

Claims (1)

【特許請求の範囲】 1 表面に金属化層を設けたSiC焼結体の金属化
表面に低弾性率金属の薄板をロー接し、該低弾性
率金属の薄板を介して他の金属部材に一部非接合
部分を残して接合したSiC焼結体と金属部材の接
合構造。 2 低弾性率金属の薄板がSiC焼結体の金属化面
よりも大きな形状を有する特許請求の範囲第1項
記載のSiC焼結体と金属部材の接合構造。 3 低弾性率金属の薄板がSiC焼結体の反対側に
接合された低膨張材料によりSiC焼結体との間に
サンドイツチ状にはさまれた特許請求の範囲第1
項記載のSiC焼結体と金属部材の接合構造。
[Claims] 1. A thin plate of a low elastic modulus metal is brazed to the metallized surface of a SiC sintered body provided with a metallized layer on the surface, and is connected to another metal member via the thin plate of low elastic modulus metal. A joint structure of a SiC sintered body and a metal member, which are joined with some unjoined parts left. 2. A bonding structure between a SiC sintered body and a metal member according to claim 1, wherein the thin plate of low elastic modulus metal has a larger shape than the metallized surface of the SiC sintered body. 3. Claim 1, in which a thin plate of low elastic modulus metal is sandwiched between the SiC sintered body and the SiC sintered body by a low expansion material bonded to the opposite side of the SiC sintered body.
Bonding structure of SiC sintered body and metal member described in section.
JP18762683A 1983-10-06 1983-10-06 SICSHOKETSUTAITOKINZOKUBUZAINOSETSUGOKOZO Expired - Lifetime JPH0234909B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18762683A JPH0234909B2 (en) 1983-10-06 1983-10-06 SICSHOKETSUTAITOKINZOKUBUZAINOSETSUGOKOZO

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18762683A JPH0234909B2 (en) 1983-10-06 1983-10-06 SICSHOKETSUTAITOKINZOKUBUZAINOSETSUGOKOZO

Publications (2)

Publication Number Publication Date
JPS6081070A JPS6081070A (en) 1985-05-09
JPH0234909B2 true JPH0234909B2 (en) 1990-08-07

Family

ID=16209397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18762683A Expired - Lifetime JPH0234909B2 (en) 1983-10-06 1983-10-06 SICSHOKETSUTAITOKINZOKUBUZAINOSETSUGOKOZO

Country Status (1)

Country Link
JP (1) JPH0234909B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01208374A (en) * 1988-02-15 1989-08-22 Sumitomo Cement Co Ltd Conjugate of sic ceramics member and metallic member
JPH0283274A (en) * 1988-09-20 1990-03-23 Showa Aircraft Ind Co Ltd Joining method

Also Published As

Publication number Publication date
JPS6081070A (en) 1985-05-09

Similar Documents

Publication Publication Date Title
JPS61158876A (en) Direct liquid phase bonding for ceramic to metal
JPH0216273B2 (en)
JP2001010874A (en) Production of composite material of inorganic material with metal containing aluminum and product related to the same
JPH0247428B2 (en)
JPS6140624B2 (en)
JPH02196074A (en) Production of ceramics-metal joined body
JPH0234909B2 (en) SICSHOKETSUTAITOKINZOKUBUZAINOSETSUGOKOZO
JPS59232692A (en) Brazing filler metal for joining ceramics and metal or the like and composite body composed of ceramics and metal or the like using said brazing filler metal
US4706872A (en) Method of bonding columbium to nickel and nickel based alloys using low bonding pressures and temperatures
JPH0234910B2 (en) SICSHOKETSUTAITOKINZOKUBUZAINOSETSUGOKOZO
JPH0339991B2 (en)
JPH02196075A (en) Joined structure
JPH01205053A (en) Joining stress buffer alloy of ceramics and metal and joined body of ceramics and metal formed by using said buffer alloy
JPH0337166A (en) Adhesion between ceramics and metal
JPH0649623B2 (en) Method of joining ceramics and metal
JP3153872B2 (en) Metal-nitride ceramic bonding structure
JPS6337077B2 (en)
JPH0142914B2 (en)
JPH07187839A (en) Nitride ceramics-metal joined body and its production
JPS5935074A (en) Ceramic sheet
JPS5821424B2 (en) Method for manufacturing semiconductor material supporting substrate
JPH0460947B2 (en)
JPS62235270A (en) Method and structure of joining sintered ceramic to metal
JP2522124B2 (en) Method of joining ceramics to ceramics
JPH07115440B2 (en) Ceramic-metal bonded structure and method for manufacturing the same