JPH0234529A - Production of glass product - Google Patents

Production of glass product

Info

Publication number
JPH0234529A
JPH0234529A JP18259888A JP18259888A JPH0234529A JP H0234529 A JPH0234529 A JP H0234529A JP 18259888 A JP18259888 A JP 18259888A JP 18259888 A JP18259888 A JP 18259888A JP H0234529 A JPH0234529 A JP H0234529A
Authority
JP
Japan
Prior art keywords
gel body
gel
dried
glass
drying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18259888A
Other languages
Japanese (ja)
Inventor
Toshiaki Mizuno
俊明 水野
Kazuhiro Doshita
和宏 堂下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP18259888A priority Critical patent/JPH0234529A/en
Publication of JPH0234529A publication Critical patent/JPH0234529A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/12Other methods of shaping glass by liquid-phase reaction processes

Abstract

PURPOSE:To effectively inhibit the generation of bubbles during sintering by substituting alkoxyl groups for hydroxyl groups in a specified dried gel body, drying and sintering the gel body. CONSTITUTION:A soln. of starting materials including an organometallic compd. is hydrolyzed, condensed and converted into a gel body. This gel body is dried and immersed in a soln. contg. >=80vol.%. alcohol at room temp. for 1-24hr to substitute alkoxyl groups for hydroxyl groups in the gel body. The gel body is then dried and sintered.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はガラス製品の製造方法に間し、特に、有機金属
化合物原料の加水分解・縮合により溶液をゲル化させた
後、この得られたゲル体を乾燥、焼成してガラス体とす
る、通称ゾル−ゲル法と呼ばれるガラス製品の製造方法
に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing glass products, and in particular, after gelling a solution by hydrolysis and condensation of an organometallic compound raw material, The present invention relates to a method for manufacturing glass products, commonly called the sol-gel method, in which a gel body is dried and fired to form a glass body.

[従来の技術] 有機金属化合物を用いたゾル−ゲル法によるガラス製品
の製造においては、その最終工程で、多孔質ゲル体を、
熱処理によって無孔化(ガラス化)する必要がある。そ
の時の問題として、水酸基を多量に含んだゲル体の発泡
が挙げられる。
[Prior Art] In the production of glass products by the sol-gel method using organometallic compounds, in the final step, a porous gel body is
It is necessary to make it non-porous (vitrified) by heat treatment. A problem at this time is foaming of the gel body containing a large amount of hydroxyl groups.

この発ifI現象は、シラノール基の脱水縮合反応によ
って生成した水が、充分にゲルの外に除去される前にゲ
ルの孔が消失してしまうために起こる。
This ifI phenomenon occurs because the pores of the gel disappear before the water generated by the dehydration condensation reaction of the silanol groups is sufficiently removed from the gel.

この脱水縮合反応は比較的低温から始まり、 1000
℃程度まで起こるとされている0発泡したガラスは、い
わゆる泡ガラス状になり、透明性は全くなく、通常のガ
ラスの用途には使用できない。
This dehydration condensation reaction starts at a relatively low temperature, 1000
Zero-foaming glass, which is said to occur up to about 0.9°C, becomes so-called foam glass, has no transparency at all, and cannot be used for ordinary glass purposes.

近年、この問題を解決するために、いくつかの方策が提
案されている。代表的なものは■焼成の際の昇温を非常
に緩慢に行って水分子がゲルの外に出るのに充分な時間
を与える方法(例えば、神谷ら、窯業協会誌、1978
年、第86巻、552ページ)、■焼成を真空中で行い
、水分子を強制的にゲルの外に出す方法(例えば、G、
J、Garveyら、J。
In recent years, several measures have been proposed to solve this problem. Typical methods include: ■ A method in which the temperature is raised very slowly during firing to provide sufficient time for water molecules to exit the gel (for example, Kamiya et al., Journal of the Ceramic Industry Association, 1978).
(2013, Vol. 86, p. 552), ■Calcination in a vacuum to force water molecules out of the gel (for example, G.
J., Garvey et al., J.

de Physique 、 43 、271 (19
82))、■焼成を塩素またはヘリウム雰囲気で行い、
細孔中の気体を置換する方法(例えば、Matsuya
maら、8u11.Am、CeraIl、soc、 、
 63 1408 (1984))である。
de Physique, 43, 271 (19
82)), ■ Calcination is performed in a chlorine or helium atmosphere,
Methods of replacing gas in pores (for example, Matsuya
ma et al., 8u11. Am,CeraIl,soc, ,
63 1408 (1984)).

[発明が解決しようとする課H] しかしながら、上記の従来技術において、■の昇温を緩
慢にする方法では、焼成に長時間が必要であり、さらに
、本質的にゲルは多量の水を含んでいるので、温度を非
常に正確に制御しないと発泡する危険性がある。また、
■の真空中で焼成する方法では、真空焼成炉を使用する
ため、設備投資が大きく、かつ生産性が悪いという問題
点があり、■の場合には、塩素ガスによる設備の腐食お
よびこれの安全な回収方法の聞届、さらにヘリウムガス
の価格の点で、製品の値段が高価にならざるを得ないと
いう問題点かあフた。
[Problem H to be solved by the invention] However, in the above-mentioned prior art, the method (2) of slowing the temperature rise requires a long time for baking, and furthermore, the gel essentially contains a large amount of water. Therefore, there is a risk of foaming unless the temperature is controlled very precisely. Also,
The method of firing in a vacuum (2) requires a large investment in equipment and has poor productivity because it uses a vacuum firing furnace. The problem was that the price of the product had to be expensive due to the notification of the recovery method and the price of helium gas.

本発明は上記の従来技術を曙み、焼成中のl@泡を効果
的に抑え、品質の良いガラスを得るための方策を与える
ものである。
The present invention provides a method for effectively suppressing l@ bubbles during firing and obtaining high quality glass by overcoming the above-mentioned prior art.

[課題を解決するための手段] 本発明は、上記問題点を解決するためになされたもので
あフて、有機金属化合物を含む出発原料溶液をゲル化し
てゲル体を作製し、該ゲル体を乾燥し、その後焼結して
ガラス製品とする方法において、乾燥終了後のゲル体中
の水酸基をフルコキシル基に置換し、その後該ゲル体を
再乾燥し、これを焼結することを特徴とするガラス製品
の製造法である。
[Means for Solving the Problems] The present invention has been made in order to solve the above-mentioned problems, and includes producing a gel body by gelling a starting material solution containing an organometallic compound, and producing a gel body. A method of drying and then sintering to produce a glass product, which is characterized by replacing the hydroxyl groups in the gel after drying with flucoxyl groups, then drying the gel again, and sintering it. This is a manufacturing method for glass products.

本発明は、例えば有機金属化合物を含む出発原料溶液を
ゲル化してゲル体を作製し、該ゲル体を乾燥し、その後
焼結してガラス製品とする方法において、乾燥終了後の
ゲル体をアルコールを含む溶液と接触させ、その後該ゲ
ル体を再乾燥し、これを焼結することにより実施できる
The present invention relates to a method in which, for example, a starting material solution containing an organometallic compound is gelled to produce a gel body, the gel body is dried, and then sintered to produce a glass product. This can be carried out by bringing the gel body into contact with a solution containing it, then redrying the gel body, and sintering it.

本発明に使用できるアルコールの種類としては、前記置
換反応が起こりやすいものが好ましい。具体的には、メ
タノールあるいはエタノールのいずれか、またはこれら
2種のアルコールの混合がよい。プロパツール以上の高
級アルコールは、前記反応の速度が小さく、さらに、分
子が大きく、ゲル内に拡散しにくいので、好ましくない
The type of alcohol that can be used in the present invention is preferably one in which the above-mentioned substitution reaction easily occurs. Specifically, either methanol or ethanol, or a mixture of these two alcohols is preferable. Higher alcohols higher than propatool are not preferred because the rate of the reaction is low and the molecules are large, making it difficult to diffuse into the gel.

本発明での置換処理条件は、特に制限はないが、アルコ
ール処理を過度に行うと、 Si −0−St  +  ROH → 5i−OR+  5i−OH なる反応が進み、ゲル中のシロキサン結合が切れて、ゲ
ル自身の強度が低下するので、好ましくない、室温程度
の温度では、1〜24時間アルコール溶液と接触させる
だけで充分である。
There are no particular limitations on the replacement treatment conditions in the present invention, but if the alcohol treatment is performed excessively, the reaction progresses as follows: Si -0-St + ROH → 5i-OR + 5i-OH, and the siloxane bonds in the gel are broken. At temperatures around room temperature, which is undesirable since the strength of the gel itself decreases, contact with the alcohol solution for 1 to 24 hours is sufficient.

上記反応を効率的に右側に進めるためには、できるだけ
アルコールの含有量の高い溶液を用いるのがよく、具体
的には80体積パーセント以上が好ましい、80体積パ
ーセントよりも低いアルコール含有量の溶液を用いると
、焼成中の発泡を充分に抑制できなくなる。
In order to efficiently advance the above reaction to the right side, it is best to use a solution with as high an alcohol content as possible, specifically a solution with an alcohol content lower than 80 volume percent, preferably 80 volume percent or more. If used, foaming during firing cannot be sufficiently suppressed.

アルコールを80体積パーセント以上含む溶液のアルコ
ール以外の成分としては、ゲル体に悪影響を与えず、ア
ルコールと分離しにくいものであれば使用できる。水お
よびアセトン等の有機溶剤が例示できる。
As components other than alcohol in a solution containing 80% by volume or more of alcohol, any component that does not adversely affect the gel body and is difficult to separate from alcohol can be used. Examples include water and organic solvents such as acetone.

本発明に用いることができるゲル体としては、その組成
は特に限定なく、有機金属化合物の加水分解・脱水縮合
反応によって得たゲル体であれば、どのようなゲル体で
も効果を見いだすことができる。
The composition of the gel body that can be used in the present invention is not particularly limited, and any gel body obtained by hydrolysis/dehydration condensation reaction of an organometallic compound can be effective. .

通常、乾燥が終了したゲル体をある溶液に浸漬すると、
この溶液がゲルの細孔中に進入することによって発生す
る毛細管力で、クラックを発生する場合がある。その際
、クラックが発生するかどうかは、乾燥ゲルのかさ比重
と溶液の表面張力によって決まり、かさ比重の大きい乾
燥ゲルはクラックを発生しにくい0本発明者らの結果に
よると、本発明に用いるアルコール溶液の場合、乾燥ゲ
ルのかさ比重が0.65より小さいと、アルコール溶液
に浸漬した際、クラックを発生しゃすい。従って、かさ
比重は0.65以上であることが好ましい、用いること
ができる乾燥ゲルのかさ比重に対する上限は特にないが
、あまりかさ比重が大きいとアルコール溶液のゲル体内
への拡散が遅くなるので、好ましくない。
Normally, when a dried gel body is immersed in a certain solution,
Cracks may occur due to capillary force generated when this solution enters the pores of the gel. At that time, whether or not cracks occur is determined by the bulk specific gravity of the dry gel and the surface tension of the solution, and dry gels with large bulk specific gravity are less likely to generate cracks. In the case of an alcohol solution, if the bulk specific gravity of the dry gel is less than 0.65, cracks are likely to occur when immersed in the alcohol solution. Therefore, the bulk specific gravity is preferably 0.65 or more. Although there is no particular upper limit to the bulk specific gravity of the dry gel that can be used, if the bulk specific gravity is too large, the diffusion of the alcohol solution into the gel body will be slow. Undesirable.

[作用] 一般に、乾燥が終了した段階のゲル体中には、アルコキ
シル基と水酸基が共存している。残留しているアルコキ
シル基は、大気中の400℃程度の加熱でほとんど完全
に酸化・除去されるが、ゲル体中の水酸基の大部分は、
水酸基同士の脱水縮合反応によってのみ除去される。
[Function] Generally, alkoxyl groups and hydroxyl groups coexist in the gel body after drying. The remaining alkoxyl groups are almost completely oxidized and removed by heating at about 400°C in the air, but most of the hydroxyl groups in the gel are
It is removed only by a dehydration condensation reaction between hydroxyl groups.

この反応が起こる温度範囲は、低温から1000℃程度
の高温まで連続的であるが、ゲル体の温度が上昇すると
ゲル体の粘性流動も活発になり、無孔化も起こる。この
粘性流動によるゲルの無孔化が脱水縮合反応より早い段
階で生じると、水分子が充分にゲル体の外に出ることが
できず、発泡しやすい状態となる。
The temperature range in which this reaction occurs is continuous from a low temperature to a high temperature of about 1000° C., but as the temperature of the gel body increases, the viscous flow of the gel body becomes active and non-porosity occurs. If the gel becomes non-porous due to this viscous flow at an earlier stage than the dehydration condensation reaction, water molecules cannot sufficiently exit the gel body, resulting in a state where foaming is likely to occur.

本発明者らは、従来ゲル体焼結時に生じる発泡の原因追
求を行った結果、焼成工程中の発泡を抑制するためには
、乾燥ゲル中の官能基をできるだけ多くアルコキシル基
にしておくことが良いことを発見した。
As a result of investigating the cause of foaming that occurs during conventional gel sintering, the present inventors found that in order to suppress foaming during the sintering process, it is necessary to make as many functional groups as possible in the dried gel into alkoxyl groups. I discovered something good.

その最も簡便でかつ有効な方法は、ゲル体をアルコール
を天敵に含む溶液と接触させる(例えばゲル体をこの溶
液に浸す)ものである。
The simplest and most effective method is to bring the gel body into contact with a solution containing alcohol as a natural enemy (for example, by immersing the gel body in this solution).

この操作により、ゲル中に残留している水酸基は、次の
反応に従ってアルコキシル基にIt換される。
Through this operation, the hydroxyl groups remaining in the gel are converted into It-conversion to alkoxyl groups according to the following reaction.

5i−OH+   R−OH →      5i−OR+   H2O(R:  ア
ルキル基) 本発明によれば、ゲル体の細孔表面上の官能基が水酸基
からアルコキシル基に置換され、通常ゲル体の無孔化が
起こる温度範囲で発生する水酸基同士の脱水縮合が少な
くなるので、焼成中の発泡が大幅に抑制される。
5i-OH+ R-OH → 5i-OR+ H2O (R: alkyl group) According to the present invention, the functional group on the pore surface of the gel body is substituted from a hydroxyl group to an alkoxyl group, which usually makes the gel body non-porous. Since dehydration condensation between hydroxyl groups that occurs in the temperature range that occurs is reduced, foaming during firing is significantly suppressed.

以下、実施例に基づいて本発明を更に詳しく説明する。Hereinafter, the present invention will be explained in more detail based on Examples.

実施例−1 市販のオルト珪酸メチル、エタノールおよび水を体積比
でl:l:1.30の割合で混合して溶液を得た。
Example 1 Commercially available methyl orthosilicate, ethanol, and water were mixed at a volume ratio of 1:1:1.30 to obtain a solution.

撹拌を継続し、約30分後、この液体200m1を、−
辺が15cmのテフロンコートを施したステンレス製容
器に入れて密閉し、60℃で24時間ゲル化及び養生を
した。次に、このウェットゲルを純水200m1に浸漬
し、60℃で24時間処理を施した。その後、このゲル
体を乾燥器に入れ<80℃で乾燥した。2日後に乾燥し
たゲルが得られた。
Continue stirring, and after about 30 minutes, 200ml of this liquid is -
The mixture was placed in a Teflon-coated stainless steel container with sides of 15 cm and sealed, and gelatinized and cured at 60° C. for 24 hours. Next, this wet gel was immersed in 200 ml of pure water and treated at 60° C. for 24 hours. Thereafter, this gel body was placed in a dryer and dried at <80°C. A dry gel was obtained after 2 days.

この乾燥ゲルは、かさ比重が、0.8、大きさが約8c
mであった。
This dry gel has a bulk specific gravity of 0.8 and a size of approximately 8c.
It was m.

このゲル体を、市販の特級メタノール2001に浸漬し
て室温で4時間放置した。その後、メタノール液からゲ
ル体を取り出して、室温で再乾燥を行った。このメタノ
ール処理および再乾燥の際にはクラックは全く発生せず
、その大きさも変化なかった。
This gel body was immersed in commercially available special grade methanol 2001 and left at room temperature for 4 hours. Thereafter, the gel body was taken out from the methanol solution and re-dried at room temperature. During this methanol treatment and re-drying, no cracks were generated at all, and their size did not change.

熱処理は、電気炉を用いて大気中で行った。昇温速度5
0℃/hで1000℃まで昇温し、そこで4時間保持し
たところ、非常に透明性の良いガラスが得られた。
The heat treatment was performed in the air using an electric furnace. Heating rate 5
When the temperature was raised to 1000°C at a rate of 0°C/h and held there for 4 hours, a glass with very good transparency was obtained.

また、水酸基をアルコキシル基に置換する操作に用いる
溶液を、80体積パーセントのメチルアルコールと20
体積パーセント水の混合溶液に変えても、同様な透明性
の良いガラスが得られた。
In addition, the solution used for the operation of substituting a hydroxyl group with an alkoxyl group was mixed with 80 volume percent methyl alcohol and 20
Even when changing to a mixed solution of volume percent water, a glass with similar good transparency was obtained.

実施例−2 実施例−1で得られた乾燥ゲルを、メタノールの代わり
に、市販の特級エタノールを用いて同様の条件で処理し
、再乾燥・焼結を行ったところ、実施例−1と同様、透
明なガラスが得られた。
Example 2 The dried gel obtained in Example 1 was treated under the same conditions using commercially available special grade ethanol instead of methanol, and redrying and sintering resulted in the same results as in Example 1. Similarly, a transparent glass was obtained.

比較例−1 上記実施例−1と同様にして得た乾燥ゲルを、メタノー
ル処理することなく、実施例−1と同様の条件で焼結を
行った。得られたガラスは、その大部分が発泡していた
Comparative Example-1 A dried gel obtained in the same manner as in Example-1 was sintered under the same conditions as in Example-1 without being treated with methanol. Most of the resulting glass was foamed.

実施例−3 上記実施例−1と同様にして得た乾燥ゲルを、メタノー
ルの代わりに、市販の特級イソプロパツールを用いて同
様の条件で処理し、再乾燥・焼結を行ったところ、得ら
れたガラスには発泡がみられたが、その面積は約半分に
減少していた。
Example 3 A dried gel obtained in the same manner as in Example 1 above was treated under the same conditions using commercially available special grade isopropanol instead of methanol, and re-dried and sintered. Although foaming was observed in the obtained glass, the area was reduced to about half.

実施例−4〜6 市販のオルト珪酸メチル、エタノール、pHが4の水を
、l:l:2の体積比で混合した溶液に、T i (O
C4H9) 4   (実施例4)Z r (OC4H
9) 4   (実施例5)AI (OC3H7) 3
   (実施例6)の市販の有機金属化合物を、焼成後
にそれぞれの酸化物として5wt%含まれるように、混
合溶液を作製し、ウェットゲルを得た。各ゲル体を、実
施例−1と同様に乾燥して、乾燥ゲルを得た。乾燥ゲル
のかさ比重は各々0.83.  0.80.  0゜8
5 であった。
Examples 4 to 6 T i (O
C4H9) 4 (Example 4) Z r (OC4H
9) 4 (Example 5) AI (OC3H7) 3
A mixed solution of the commercially available organometallic compound of Example 6 was prepared so that 5 wt % of each oxide was contained after firing, and a wet gel was obtained. Each gel body was dried in the same manner as in Example-1 to obtain a dry gel. The bulk specific gravity of each dry gel is 0.83. 0.80. 0°8
It was 5.

これらの乾燥ゲルを、実施例−1と同条件でメタノール
置換処理・再乾燥を行なった。この再乾燥後のゲル体を
焼結したところ、1050〜1150℃で透明性の良い
、きれいなガラスを得ることができた。
These dried gels were subjected to methanol substitution treatment and redrying under the same conditions as in Example-1. When this re-dried gel body was sintered, a clean glass with good transparency could be obtained at 1050 to 1150°C.

実施例−7 上記実施例においては、有機金属化合物溶液がゲル化し
たウェットゲルを、純水に浸漬してゲル体の強度を上げ
る操作をしているが、該操作は本願発明とは実質的な関
係はなく、以下の様に、ウェットゲルをそのまま乾燥さ
せたゲル体であってもかまわない。
Example 7 In the above example, a wet gel obtained by gelling an organometallic compound solution is immersed in pure water to increase the strength of the gel body, but this operation is substantially different from the present invention. There is no such relationship, and as shown below, a gel body obtained by drying a wet gel as it is may be used.

上記実施例−1と同様にして得たウェットゲルを、テフ
ロン製の容器に入れ、0.5mmのピンホール5個を有
する蓋で閉じた後、80℃に昇温し、その状態で乾燥を
おこなった。14日後に該ゲル体は完全に乾燥し、その
かさ比重は、1. 2であった。
The wet gel obtained in the same manner as in Example 1 above was placed in a Teflon container, closed with a lid having 5 0.5 mm pinholes, heated to 80°C, and dried in that state. I did it. After 14 days, the gel body was completely dried, and its bulk specific gravity was 1. It was 2.

この乾燥ゲルを実施例−1と同様の条件で、メタノール
置換処理・再乾燥を行なった。この再乾燥後のゲル体を
焼結したところ、透明性の良い、きれいなガラスを得る
ことができた。
This dried gel was subjected to methanol substitution treatment and redrying under the same conditions as in Example-1. When this re-dried gel body was sintered, a clean glass with good transparency could be obtained.

また、実施例−1〜6で行なった様な強度を上げる操作
も、上記実施例に限らず、同様な効果のある任意の方法
が使用できる。
Further, the operation for increasing the strength as performed in Examples 1 to 6 is not limited to the above-mentioned examples, and any method having the same effect can be used.

また、水酸基をアルコキシル基に置換する操作もアルコ
ールを用いた上記に限らず、水酸基と置換する基(例え
ば酢酸等のカルボン酸)を有する化合物を用いれば、同
様な効果が期待できる。
Furthermore, the operation of substituting a hydroxyl group with an alkoxyl group is not limited to the above-mentioned operation using an alcohol, but similar effects can be expected by using a compound having a group (for example, a carboxylic acid such as acetic acid) that substitutes for a hydroxyl group.

[発明の効果コ 上記実施例から明らかなように、本発明により、焼成工
程中の発泡現象の傾向を緩和し、高品質のガラスを容易
に得ることができるようになる。
[Effects of the Invention] As is clear from the above examples, the present invention alleviates the tendency of foaming during the firing process, making it possible to easily obtain high-quality glass.

Claims (2)

【特許請求の範囲】[Claims] (1)有機金属化合物を含む出発原料溶液をゲル化して
ゲル体を作製し、該ゲル体を乾燥し、その後焼結してガ
ラス製品とする方法において、乾燥終了後のゲル体中の
水酸基をアルコキシル基に置換し、その後該ゲル体を再
乾燥し、これを焼結することを特徴とするガラス製品の
製造法。
(1) In a method in which a starting material solution containing an organometallic compound is gelled to produce a gel body, the gel body is dried, and then sintered to produce a glass product, the hydroxyl groups in the gel body after drying are A method for producing a glass product, which comprises substituting an alkoxyl group, then drying the gel body again, and sintering the gel body.
(2)乾燥終了後のゲル体中の水酸基をアルコキシル基
に置換する手段が、乾燥終了後のゲル体をアルコールを
含む溶液と接触させる方法である請求項1記載のガラス
製品の製造法。
(2) The method for producing glass products according to claim 1, wherein the means for replacing the hydroxyl groups in the gel body after drying with alkoxyl groups is a method of bringing the gel body after drying into contact with a solution containing alcohol.
JP18259888A 1988-07-21 1988-07-21 Production of glass product Pending JPH0234529A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18259888A JPH0234529A (en) 1988-07-21 1988-07-21 Production of glass product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18259888A JPH0234529A (en) 1988-07-21 1988-07-21 Production of glass product

Publications (1)

Publication Number Publication Date
JPH0234529A true JPH0234529A (en) 1990-02-05

Family

ID=16121087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18259888A Pending JPH0234529A (en) 1988-07-21 1988-07-21 Production of glass product

Country Status (1)

Country Link
JP (1) JPH0234529A (en)

Similar Documents

Publication Publication Date Title
KR930701352A (en) Process for preparing sol-gel monolith
EP0474158B1 (en) Silica glass powder and a method for its production and a silica glass body product made thereof
JPH0761852B2 (en) Method for producing non-sintered cristobalitized silica
KR100318949B1 (en) Fabrication method of high purity silica glass by sol-gel process
JP3406297B2 (en) Method for producing high purity silica glass using sol-gel method
JPH0234529A (en) Production of glass product
JP2587079B2 (en) Manufacturing method of glass products
JPH054827A (en) Silica glass powder, its production and formed silica glass using the same
JPS58167436A (en) Production of optical glass
JPS6186429A (en) Preparation of glass
KR100326123B1 (en) Fabrication method of silica glass by sol-gel process
KR100824985B1 (en) A composition for transparent silica glass and a method of preparing silica glass using the same
KR20000060200A (en) Manufacturing method of silica glass for sol-gel process
JPH0826741A (en) Production of synthetic quartz glass powder
SU747840A1 (en) Method of preparing porous quartz ceramics
JPS62223030A (en) Production of glass
JPH0324416B2 (en)
JPS63303820A (en) Production of glass product
JP3713304B2 (en) Glass manufacturing method
JPH0283220A (en) Production of glass body
JPS63288921A (en) Production of silica glass
KR20010001880A (en) manufacturing method of silica glass for sol-gel process
JPH0520364B2 (en)
JPS61201627A (en) Production of low oh glass
JPS6330335A (en) Production of quartz glass