JPH0233925A - Cvd apparatus - Google Patents

Cvd apparatus

Info

Publication number
JPH0233925A
JPH0233925A JP18364588A JP18364588A JPH0233925A JP H0233925 A JPH0233925 A JP H0233925A JP 18364588 A JP18364588 A JP 18364588A JP 18364588 A JP18364588 A JP 18364588A JP H0233925 A JPH0233925 A JP H0233925A
Authority
JP
Japan
Prior art keywords
exhaust duct
reactor
flake
cooling
cvd apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18364588A
Other languages
Japanese (ja)
Inventor
Katsumi Oyama
勝美 大山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi Electronics Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Electronics Engineering Co Ltd filed Critical Hitachi Electronics Engineering Co Ltd
Priority to JP18364588A priority Critical patent/JPH0233925A/en
Publication of JPH0233925A publication Critical patent/JPH0233925A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To increase the adhesion strength of flake adhering to the inner circumferential wall of an exhaust duct near the part attached to a reaction furnace and prevent the flake from peeling off by ripple vibration of some extent by providing a cooling means around the outer circumference of the exhaust duct at the corresponding part. CONSTITUTION:A heating means 10 is provided directly under a wafer sample table 4 with a little gap between and wafers 6 are heated to a required temperature. Reactive gas (for instance SiH4+O2 or SiH4+PH3+O2) supplied from reactive gas supply pipes 8 and 9 is made to flow down in a furnace as shown by dot line arrows and thin films of chemical reaction product (SiO2 or PSG) are formed on the surfaces of the wafers 6. Moreover, a cooling water circulating jacket 20 is fixed to the outer circumference of an exhaust duct 15. With this structure, the adhesion strength of flake adhering to the inner circumferential wall of the exhaust duct 15 at the corresponding part is increased and the flake does not peel off from the wall by ripple vibration of some extent.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明はCV 1.)装置に関する。更に詳細には、本
発明は反応炉の排気ダクト内壁面−Lに付着したSiO
又は5iOzなどの異物微粒子のフレークが脈動により
7り離することを防11−シたC V I)装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Fields] The present invention is directed to CV 1. ) regarding equipment. More specifically, the present invention deals with SiO adhering to the inner wall surface -L of the exhaust duct of the reactor.
The present invention also relates to a C V I) device that prevents flakes of foreign particles such as 5 iOz from being separated due to pulsation.

[従来の技術] 薄膜の形成方法として゛1′−導体工業において一般に
広く用いられているものの一つに化学的気相成長法(C
VD:Chemical  VapourDepos 
i t 1on)かある。CV I)とは、ガス状物質
を化学反応で固体物質にし、基板1−に堆積することを
いう。
[Prior Art] One of the methods widely used in the conductor industry as a method for forming thin films is chemical vapor deposition (C
VD:Chemical Vapor Depos
It's 1 on). CV I) refers to turning a gaseous substance into a solid substance through a chemical reaction and depositing it on the substrate 1-.

CV I)の特徴は、成長しようとする薄膜の融点より
かなり低い堆積温度で種々の薄膜が得られること、およ
び、成長した薄膜の純度が高<、SLやSihの熱酸化
膜にに成長した場合も電気的特性が安定であることで、
広< ’l’導体表面のパッジベージリン膜として利用
されている。
The characteristics of CV I) are that various thin films can be obtained at a deposition temperature considerably lower than the melting point of the thin film to be grown, and that the purity of the grown thin films is high. Also, the electrical characteristics are stable,
It is used as a padding film on the surface of a wide <'l' conductor.

CV I)による薄膜形成は、例えば約400°C−5
00”C程度に加熱したウェハに反応ガス(例えば、S
iH++02.またはS i H4+PH3+02)を
供給して行われる。上記の反応ガスは反応炉(ベルジャ
)内のウェハに吹きつけられ、該ウェハの表面に5iO
zあるいはフォスフオシリケードガラス(PSG)また
はボロシリケートガラス(BSG)の薄膜を形成する。
For example, thin film formation by CVI) is carried out at about 400°C-5
A reactive gas (for example, S
iH++02. or S i H4+PH3+02). The above reaction gas is blown onto the wafer in the reactor (belljar), and the surface of the wafer is coated with 5iO
Form a thin film of z or phosphosilicate glass (PSG) or borosilicate glass (BSG).

また5i02とPSGまたはBSGとの2層成膜が行わ
れることもある。史に、モリブデン、タングステンある
いはタングステンシリサイド等の金属薄膜の形成にも使
用できる。
Further, two-layer film formation of 5i02 and PSG or BSG may be performed. Historically, it can also be used to form thin films of metals such as molybdenum, tungsten, or tungsten silicide.

このようなCVDによる薄膜形成操作を行うために従来
から用いられている装置の一例を第4図に小す。
An example of an apparatus conventionally used for performing such a thin film forming operation by CVD is shown in FIG.

第4図において、反応炉1は、円錐状のバッファ2をベ
ルジャ3で覆い、L記バッファ2の周囲に円盤状のウェ
ハ試料台4を駆動機構5で回転駆動1−iJ能および/
または自公転可能に設置する。
In FIG. 4, the reactor 1 includes a conical buffer 2 covered with a bell jar 3, and a disk-shaped wafer sample stage 4 around the buffer 2 which is rotated by a drive mechanism 5.
Or install it so that it can rotate.

前記ベルジャ3の頂点付近に反応ガス送入管8および9
が接続されている。ガス送入管から送入されたガスはバ
ッファにより振分られてウェハ試料台4に向かう。使用
する反応ガスのSiH4および02はそれぞれ別のガス
送入管により反応炉に送入しなければならない。例えば
、S I H4を送入管8で送入、そして、02を送入
管9で送入する。また、PH3を使用する場合、SiH
4とともに送入できる。
Reaction gas feed pipes 8 and 9 are installed near the top of the bell jar 3.
is connected. The gas introduced from the gas inlet pipe is distributed by a buffer and directed toward the wafer sample stage 4. The reaction gases SiH4 and 02 used must be fed into the reactor through separate gas feed pipes. For example, S I H4 is fed through the feed pipe 8, and 02 is fed through the feed pipe 9. In addition, when using PH3, SiH
Can be sent together with 4.

前記のウェハ試料台4の直−ドには僅かなギヤツブを介
して加熱手段10が設けられていてウェハ6を所定の温
度(例えば、約500℃)に加熱する。反応ガス送入管
8および9から送入された反応ガス(例えば、SiH+
+02またはSiH4+PH3+02 )は点線矢印の
ごとく炉内を流ドし、ウェハ6の表面に触れて流動し、
化学反応によって生成される物質(SiO2またはPS
G)の薄膜をウェハ6の表面に生成せしめる。
A heating means 10 is provided on the direct side of the wafer sample stage 4 via a slight gear, and heats the wafer 6 to a predetermined temperature (for example, about 500 DEG C.). The reaction gas (for example, SiH+
+02 or SiH4+PH3+02) flows in the furnace as shown by the dotted arrow, touches the surface of the wafer 6, and flows.
Substances produced by chemical reactions (SiO2 or PS
G) A thin film is formed on the surface of the wafer 6.

ウェハ6を反応炉内へ搬入したり、あるいは炉外へ搬出
するには、ゲート11を介して、ローダ/アンローダ7
により行われる。
In order to carry the wafer 6 into the reactor or to carry it out of the reactor, a loader/unloader 7 is used via the gate 11.
This is done by

[発明が解決しようとする課題] この装置では、反応炉下■≦の外側にυ1気ダクト15
が設けられている。排気ダクトにより炉内を負圧に保つ
ことにより、炉内に送入された反応ガスの流れが均一に
なり、また、炉内に発生したフレークが炉外へυF出さ
れる。
[Problem to be solved by the invention] In this device, a υ1 air duct 15 is installed outside the bottom of the reactor.
is provided. By keeping the inside of the furnace at negative pressure by the exhaust duct, the flow of the reaction gas introduced into the furnace becomes uniform, and the flakes generated inside the furnace are discharged υF to the outside of the furnace.

しかし、逆に、常圧型CV I)装置では、排気ダク)
15の内壁に剥離しやすいフレーク17が大+−itに
付着していた。特に、排気ダクトの反応炉取付部近傍付
近の内壁面にフレークが付着する傾向が強かった。
However, on the contrary, in normal pressure type CV I) equipment, the exhaust duct)
Flakes 17, which are easy to peel off, were attached to the inner wall of 15. In particular, there was a strong tendency for flakes to adhere to the inner wall surface of the exhaust duct near the reactor attachment part.

このフレークはυF気バランスの乱れや、同一の排気ダ
クトに接続する他の′!AiI¥の影響で発生する脈動
で簡jt1−に7(IIする。
This flake is caused by disturbance of υF Qi balance or other '! that connects to the same exhaust duct! Due to the pulsation caused by the influence of AiI\, 7(II) is easily generated in jt1-.

¥II IIしたフレークは反応炉内へ逆流し、炉内を
17遊する。?ツ遊フレークはウェハ表面りに落下・付
着する可能性もある。これらフレーク(異物)がウェハ
に付着すると蒸着膜にピンホールを発生させたりして゛
ト導体素了の製造歩留りを著しく低ドさせるという欠点
があった。
¥II II The flakes flow back into the reactor and move around inside the reactor. ? There is also a possibility that the floating flakes may fall and adhere to the wafer surface. When these flakes (foreign substances) adhere to the wafer, they cause pinholes in the deposited film, resulting in a significant decrease in the manufacturing yield of the conductor.

従って、本発明の目的は、排気ダクト内壁部に付着した
フレークか脈動により剥離することを防市したC V 
I)装置を提供することである。
Therefore, an object of the present invention is to prevent flakes adhering to the inner wall of an exhaust duct from peeling off due to pulsation.
I) provide the device.

[課題を解決するための手段コ 前記1−1的を達成するために、本発明では、反応炉の
下部外側に排気ダクトが配設されたC V D装置にお
いて、前記排気ダクトの反応炉取付部近傍の外周壁面に
冷却手段が配設されていることを特徴とするC V I
)装置を提供する。
[Means for Solving the Problems] In order to achieve the above-mentioned 1-1, in the present invention, in a C V D apparatus in which an exhaust duct is disposed outside the lower part of the reactor, the exhaust duct is attached to the reactor. A C VI characterized in that a cooling means is disposed on the outer peripheral wall surface near the C VI
) provide equipment.

冷却手段は冷却水が循環されるタイプのもの、または、
圧縮冷媒が循環されるコイルタイプのものなどが使用で
きる。
The cooling means is of the type in which cooling water is circulated, or
A coil type in which compressed refrigerant is circulated can be used.

反応炉は自公転方式または連続枚葉式の常圧型CVD反
応炉であることが好ましい。
The reactor is preferably an atmospheric pressure CVD reactor of a rotation-revolution type or a continuous single-wafer type.

[作用] 前記のように、本発明のCVD装置は排気ダクトの反応
炉取付部近傍付近の外周面に冷却手段が配設さ−れてい
る。υト気ダクトの反応炉取付部近傍付近を冷却すると
、排気ダクトの対応する内周壁面に付着したフレークの
壁面に対する付着力が高まり、多少の脈動では剥離しな
くなる。
[Function] As described above, in the CVD apparatus of the present invention, the cooling means is disposed on the outer peripheral surface of the exhaust duct in the vicinity of the reactor attachment part. When the vicinity of the reactor attachment part of the exhaust duct is cooled, the adhesion force of the flakes attached to the corresponding inner circumferential wall of the exhaust duct to the wall increases, and even a slight pulsation will not cause the flakes to separate.

原因については現在のところ明らかではないか、反応炉
内の820蒸気が冷却壁面で結露し、壁面へ付着してき
たフレークを表面張力で覆うことにより剥離しにくくな
るものと思われる。
The cause is not clear at present, but it is thought that the 820 vapor in the reactor condenses on the cooling wall surface, covering the flakes that have adhered to the wall surface with surface tension, making it difficult to peel off.

このような構成により、たとえ脈動が生じたとしても、
反応炉内に逆流し、゛浮遊落石するフレークが殆どなく
なるので、ウェハの蒸着膜にピンホールを発生させたり
するような不都合な事態の発生も防市され、半導体素子
の製造歩留りを向11させることができる。
With this configuration, even if pulsation occurs,
Since there are almost no flakes that flow back into the reactor and float and fall, the occurrence of inconvenient situations such as pinholes in the evaporated film of wafers is prevented, which improves the manufacturing yield of semiconductor devices. be able to.

[実施例] 以下、図面を参照しながら本発明のCVD装置の一例に
ついて史に詳細に説明する。
[Embodiment] Hereinafter, an example of the CVD apparatus of the present invention will be described in detail with reference to the drawings.

第1図は本発明のCVD装置の一例の概要図である。FIG. 1 is a schematic diagram of an example of the CVD apparatus of the present invention.

第1図において第4図と同一の部材については同じ符号
を使用する。従って、1は反応炉、2はバンファ、4は
試料台、5は回転駆動機構、6はウェハ、8および9は
反応ガス送大ノズル、10は加S−f、段そして13は
反応炉本体をそれぞれ示す。
In FIG. 1, the same reference numerals are used for the same members as in FIG. 4. Therefore, 1 is a reactor, 2 is a bumper, 4 is a sample stage, 5 is a rotation drive mechanism, 6 is a wafer, 8 and 9 are reaction gas feeding nozzles, 10 is a feeder S-f, a stage, and 13 is a reactor main body. are shown respectively.

第1図に示されるように、排気ダクト15の外壁面にに
冷却水循環ジャケット20が固設されている。冷却水は
別の冷却装置で特別に冷却されたものを使用することも
できるが、唯の水道水を循環させるだけでも1−分な効
果が得られる。冷却ジャケットの容ijl s長さ、あ
るいは循環水量などは本発明の必須要e1ではない。フ
レークの2+1 #I防11・に必′I!!]−分なも
のであればよい。このようなファクターは当業者が実験
を繰り返すことにより容易に決定することができる。
As shown in FIG. 1, a cooling water circulation jacket 20 is fixed to the outer wall surface of the exhaust duct 15. Although the cooling water can be specially cooled by a separate cooling device, a 1-minute effect can be obtained by simply circulating tap water. The capacity and length of the cooling jacket, the amount of circulating water, etc. are not essential requirements of the present invention. Must have for Flake's 2+1 #I Defense 11! ! ]- minutes is sufficient. Such factors can be easily determined by those skilled in the art through repeated experiments.

別法として、冷却ジャケットの代わりに、排気ダクト1
5の外周に金属(例えば、銅)製のコイル状の管22を
捲回し、1亥コイル管内に圧縮ガス状冷媒(例えば、フ
レオン)を循環させることもできる。
Alternatively, instead of the cooling jacket, the exhaust duct 1
It is also possible to wind a coiled tube 22 made of metal (for example, copper) around the outer periphery of the tube and circulate a compressed gaseous refrigerant (for example, Freon) within the coiled tube.

第3図に示されるように、冷却効率を高めるために、フ
ィル22の間に高熱伝導性材料25を填隙し、υ)気ダ
クトとの外周面とコイルの全表面を被包する。高熱伝導
性材料25を隙間なく填隙し、その上面に断熱性カバー
27を被覆すれば冷却効率は一層、!1′7Iまる。
As shown in FIG. 3, in order to increase the cooling efficiency, a high thermal conductivity material 25 is inserted between the fills 22, and υ) covers the outer peripheral surface of the air duct and the entire surface of the coil. If the highly thermally conductive material 25 is filled without any gaps and the top surface is covered with the heat insulating cover 27, the cooling efficiency will be further improved! 1'7I round.

本発明で使用できる高熱伝導性材料は例えば′、銅また
はアルミニウムのような金属の粉末あるいは熱伝導性接
着剤である。熱伝導性接着剤は例えば、銅粉またはアル
ミニウム紛の配合された2液性工ポキシ配合樹脂などで
ある。その他の熱伝導性空間填隙材も同様に使用できる
。このような材料は当業者に周知である。
Highly thermally conductive materials that can be used in the present invention are, for example, powders of metals such as copper or aluminum, or thermally conductive adhesives. The thermally conductive adhesive is, for example, a two-component engineered poxy resin containing copper powder or aluminum powder. Other thermally conductive space-filling materials can be used as well. Such materials are well known to those skilled in the art.

[発明の効果] 以I−説明したように、本発明のCVD装置は排気ダク
トの反応炉取付部近傍付近の外周面に冷却手段が配設さ
れている。排気ダクトの反応炉取付部近傍付近を冷却す
ると、排気ダクトの対応する内周壁面に付着したフレー
クの壁面に対する付着力が高まり、多少の脈動では剥離
しなくなる。
[Effects of the Invention] As described below, in the CVD apparatus of the present invention, a cooling means is disposed on the outer circumferential surface of the exhaust duct in the vicinity of the reactor attachment part. When the vicinity of the reactor attachment part of the exhaust duct is cooled, the adhesion force of the flakes attached to the corresponding inner circumferential wall surface of the exhaust duct to the wall surface increases, and the flakes will not peel off even with some pulsation.

原因については現在のところ明らかではないが、反応炉
内の820蒸気が冷却壁面で結露し、壁面へ付着してき
たフレークを表面張力で覆うことにより剥離しにく(な
るものと思われる。
Although the cause is not clear at present, it is thought that 820 steam in the reactor condenses on the cooling wall, and the flakes that have adhered to the wall are covered by surface tension, making them difficult to peel off.

このような構成により、たとえ脈動が生じたとしても、
反応炉内に逆流し、7′?遊落ドするフレークが殆どな
くなるので、ウェハのA7J膜にピンホールを発生させ
たりするような不都合な事態の発生も防+lされ、゛1
′導体素子の製造歩留りを向1−させることができる。
With this configuration, even if pulsation occurs,
Backflow into the reactor, 7'? Since there are almost no stray flakes, the occurrence of inconvenient situations such as pinholes in the A7J film of the wafer is also prevented.
'The manufacturing yield of conductor elements can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のCVD装置の一例を示す概要図であり
、第2図は冷却手段の別の例を示す概・畏斜視図であり
、第3図は冷却手段の他の例を示す部分断面図であり、
第4図は従来のCV I)装置の一例を示す概要図であ
る。 1・・・CVD装置菌内f+  2・・・バッファ、3
・・・ベルジャ。 4・・・試料台、5・・・駆動手段、6・・・ウェハ。 7・・・ローダ/アンローダ、8および9・・・反応ガ
ス送大ノズル、10・・・試料台加熱手段、11・・・
ゲート、13・・・反応炉、15・・・排気ダクト、2
0・・・冷却ジャケット、22・・・冷却コイル、25
・・・高熱伝導性充填材、27・・・断熱性カバー
FIG. 1 is a schematic diagram showing an example of the CVD apparatus of the present invention, FIG. 2 is a schematic perspective view showing another example of the cooling means, and FIG. 3 is a schematic diagram showing another example of the cooling means. It is a partial cross-sectional view,
FIG. 4 is a schematic diagram showing an example of a conventional CVI) device. 1... CVD device intrabacterial f+ 2... Buffer, 3
...Bellja. 4... Sample stage, 5... Driving means, 6... Wafer. 7...Loader/unloader, 8 and 9...Reaction gas feeding nozzle, 10...Sample stage heating means, 11...
Gate, 13... Reactor, 15... Exhaust duct, 2
0... Cooling jacket, 22... Cooling coil, 25
...High thermal conductivity filler, 27...Insulating cover

Claims (4)

【特許請求の範囲】[Claims] (1)反応炉の下部外側に排気ダクトが配設されたCV
D装置において、前記排気ダクトの反応炉取付部近傍の
外周壁面に冷却手段が配設されていることを特徴とする
CVD装置。
(1) CV with exhaust duct installed outside the lower part of the reactor
D apparatus, wherein a cooling means is disposed on the outer circumferential wall surface of the exhaust duct in the vicinity of the reactor attachment part.
(2)冷却手段は冷却水が循環されるタイプのものであ
る請求項1記載のCVD装置。
(2) The CVD apparatus according to claim 1, wherein the cooling means is of a type in which cooling water is circulated.
(3)冷却手段は圧縮冷媒が循環されるコイルタイプの
ものである請求項1記載のCVD装置。
(3) The CVD apparatus according to claim 1, wherein the cooling means is of a coil type in which compressed refrigerant is circulated.
(4)反応炉は自公転方式または連続枚葉式の常圧型C
VD反応炉であることを特徴とする請求項1〜3の何れ
かに記載のCVD装置。
(4) The reactor is a normal pressure type C with a rotational revolution type or a continuous single wafer type.
4. The CVD apparatus according to claim 1, wherein the CVD apparatus is a VD reactor.
JP18364588A 1988-07-25 1988-07-25 Cvd apparatus Pending JPH0233925A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18364588A JPH0233925A (en) 1988-07-25 1988-07-25 Cvd apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18364588A JPH0233925A (en) 1988-07-25 1988-07-25 Cvd apparatus

Publications (1)

Publication Number Publication Date
JPH0233925A true JPH0233925A (en) 1990-02-05

Family

ID=16139417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18364588A Pending JPH0233925A (en) 1988-07-25 1988-07-25 Cvd apparatus

Country Status (1)

Country Link
JP (1) JPH0233925A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07273036A (en) * 1994-03-30 1995-10-20 Uchu Kankyo Riyou Kenkyusho:Kk Formation of compound semiconductor crystal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07273036A (en) * 1994-03-30 1995-10-20 Uchu Kankyo Riyou Kenkyusho:Kk Formation of compound semiconductor crystal

Similar Documents

Publication Publication Date Title
EP0763149B1 (en) Method and apparatus for low temperature deposition of cvd and pecvd films
KR100190951B1 (en) Reaction chamber design to minimize particle generation in chemical vapor deposition reactors
JPH06244269A (en) Semiconductor manufacturing apparatus, wafer vacuum chuck device thereof, and gas cleaning and nitride film formation therefor
JPH1167675A (en) High-speed rotary vapor phase thin-film forming device and high-speed rotary vapor phase thin-film forming method using the device
JPH07507842A (en) Chemical Vapor Deposition (CVD) of Films on Patterned Wafer Substrates
CN109609930A (en) Atomic layer deposition apparatus and its cleaning method
JPH0233925A (en) Cvd apparatus
JP3666952B2 (en) CVD equipment
US20040112290A1 (en) Apparatus for forming film in semiconductor process and method for feeding gas into the same apparatus
JPS62280367A (en) Cooling type vapor phase reactor
JP2991830B2 (en) Chemical vapor deposition apparatus and chemical vapor deposition method using the same
JPS62238365A (en) Device for forming cvd thin film
KR20010002399A (en) Apparatus for Chemical Vapor Deposition
JPH10177961A (en) Vapor growth device and method
JPH0639709B2 (en) Plasma CVD equipment
JPS63270468A (en) Cvd thin film forming device
JPS6376879A (en) Cvd thin film forming device
JPS63270469A (en) Method and device for forming cvd thin film
JPS6376334A (en) Device for forming cvd thin-film
JPS62158867A (en) Cvd thin film forming device
JPH06299356A (en) Normal pressure cvd apparatus and cleaning method therefor
JPS63164222A (en) Gas head for cvd apparatus
JPS6299473A (en) Cvd thin film forming device
JPS63157425A (en) Vapor phase reaction equipment
JP2000208424A (en) Treatment device and its method