JPS62280367A - Cooling type vapor phase reactor - Google Patents

Cooling type vapor phase reactor

Info

Publication number
JPS62280367A
JPS62280367A JP12500686A JP12500686A JPS62280367A JP S62280367 A JPS62280367 A JP S62280367A JP 12500686 A JP12500686 A JP 12500686A JP 12500686 A JP12500686 A JP 12500686A JP S62280367 A JPS62280367 A JP S62280367A
Authority
JP
Japan
Prior art keywords
wall surface
phase reactor
gas phase
cooling means
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12500686A
Other languages
Japanese (ja)
Inventor
Katsumi Ooyama
勝美 大山
Hitoshi Hikima
引間 仁
Katsumi Takami
高見 勝己
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi Electronics Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Electronics Engineering Co Ltd filed Critical Hitachi Electronics Engineering Co Ltd
Priority to JP12500686A priority Critical patent/JPS62280367A/en
Publication of JPS62280367A publication Critical patent/JPS62280367A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To effectively apply an unwelded part which is not conventionally utilized and to enhance cooling effect by providing a cooling means on an outer wall surface and covering the cooling means by a high-thermal conductive material. CONSTITUTION:A coil 20a made of a copper pipe constituting a cooling means is provided on the outer wall surface of the conical cover 3 of a CVD thin film forming device 1 and also the coil 20b made of the copper pipe is provided on the outer wall surface of an intermediate ring 5. High-thermal conductive materials 30 are filled between pipes to cover all surfaces of pipes. As the high-thermal conductive material, metallic powder of copper or aluminum or the like and a thermal conductive adhesive are used. As the thermal conductive adhesive, two-pack epoxy-compounded resin blended with i.e. the powder of copper or aluminum is used.

Description

【発明の詳細な説明】 3、発明の詳細な説明 [産業上の利用分野] 本発明は冷却型気相反応装置に関する。更に詳細には、
本発明は反応炉の内壁面上にSiOあるいは5i02な
どの異物微粒子のフレークが生成・付着することを防止
した冷却型CVD薄膜形成装置に関する。
Detailed Description of the Invention 3. Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a cooled gas phase reactor. More specifically,
The present invention relates to a cooling type CVD thin film forming apparatus that prevents the formation and adhesion of foreign particle flakes such as SiO or 5i02 on the inner wall surface of a reactor.

[従来の技術] 薄膜の形成方法として、半導体工業において−・股に広
く用いられているものの〜・つに、気相成長法(CVD
:Chemical  VapourDepos i 
t 1on)がある。CVDとは、ガス状物質を化学反
応で固体物質にし、基板」二に堆積することをいう。
[Prior Art] One of the methods widely used in the semiconductor industry for forming thin films is the vapor deposition method (CVD).
:Chemical Vapor Depos i
t 1on). CVD refers to turning a gaseous substance into a solid substance through a chemical reaction and depositing it on a substrate.

CV I)の特徴は、成長しようとする薄膜の融点より
かなり低い堆積温度で種々の薄膜が得られること、およ
び、成長した薄膜の純度が高<、SiやSi上の熱酸化
膜十、に成長した場合も電気的特性が安定であることで
、広(半導体表面のパッシベーション膜として利用され
ている。
The characteristics of CV I) are that various thin films can be obtained at a deposition temperature considerably lower than the melting point of the thin film to be grown, and that the purity of the grown thin films is high. Because of its stable electrical properties even when grown, it is widely used as a passivation film on the surface of semiconductors.

CVDによる薄膜形成は、例えば約400°C−500
°C程度に加熱したウェハに反応ガス(例えば、S i
Hq + 021 またはS i Hq+PH3+02
)を供給して行われる。−1−記の反応ガスは反応炉(
ベルジャ)内のウェハに吹きつけられ、該ウェハの表面
に5i02あるいはフォスフオシリケードガラス(PS
6)の薄膜を形成する。また、5i02とPSGとの2
相成膜が行われることもある。
Thin film formation by CVD is, for example, approximately 400°C-500°C.
A reactive gas (for example, Si
Hq+021 or S i Hq+PH3+02
). The reaction gas described in -1- is in a reactor (
5i02 or phosphorus silicate glass (PS) is blown onto the wafer surface.
6) Form a thin film. Also, 5i02 and PSG 2
Phase deposition may also be performed.

S 1Hq−02系のCVD法はSiH4が02と室温
で爆発的に反応するので、不活性ガスで+−分に希釈し
て用いる必要がある。反応ガス中でのSiH4濃度は例
えば、S i H4−02−N2の混合ガス中では少な
くとも0.8%以ドであれば室温でも反応せず、140
℃−270℃に加温さ・  れた場合に反応を開始する
In the S1Hq-02-based CVD method, since SiH4 reacts explosively with 02 at room temperature, it is necessary to dilute it with an inert gas. For example, if the SiH4 concentration in the reaction gas is at least 0.8% in a mixed gas of SiH4-02-N2, no reaction will occur even at room temperature, and 140
The reaction starts when heated to -270°C.

従来のCV I)薄膜形成装置ではウェハ載置台に限ら
ず、反応炉内全体が反応開始?温度以上の高温雰囲気と
なっていた。そのため、炉内に送入された反応ガスは反
応炉内の円錐状カバー、バッファ。
With conventional CV I) Does the reaction start in the entire reactor, not just the wafer mounting table, in a thin film forming apparatus? The atmosphere was hotter than the actual temperature. Therefore, the reaction gas fed into the reactor is passed through a conical cover and buffer inside the reactor.

ノズル出L1付近1反応ガス送大ノズルおよび中間リン
グなどの壁面に接触しながら反応炉内を流動するので、
ウェハ載置台上のウェハ表面だけでなく、反応炉内の前
記壁面」二でも成膜反応を起こすことがあった。その結
果、該壁面−ヒにSiOまたは5i02等の酸化物微粒
子のフレークを生成・付着させる。
Near nozzle exit L1, the reactant gas flows through the reactor while contacting walls such as the large nozzle and the intermediate ring.
In some cases, a film formation reaction occurred not only on the wafer surface on the wafer mounting table but also on the wall surface in the reactor. As a result, flakes of oxide particles such as SiO or 5i02 are formed and attached to the wall surface.

このようなフレークは僅かな振動、風圧で剥げ落ち、ウ
ェハ表面りに落下付着することがある。
Such flakes may peel off due to slight vibration or wind pressure, and may fall and adhere to the wafer surface.

また、フレークが反応ガスにより巻き−にげられて炉内
を浮遊し、ウェハ表面上に落F・付着する可能性もある
。これらフレーク(異物)がウェハに付着すると蒸着膜
にピンホールを発生させたりして゛r、導体素了の製造
歩留りを著しく低ドさせる七いう欠点があった。
Further, there is a possibility that the flakes are rolled up and blown off by the reaction gas, float in the furnace, and fall and adhere to the wafer surface. If these flakes (foreign substances) adhere to the wafer, they may cause pinholes in the deposited film, resulting in a significant decrease in the manufacturing yield of conductor elements.

更に別の問題点として、反応炉の内壁面1−で反応ガス
が反応してしまうため、炉内に給送した反応ガスが無駄
に消費され、ガスの有効利用率が低ドするばかりか、薄
膜の成長速度の低下を招いていた。
Another problem is that the reactant gas reacts on the inner wall surface 1- of the reactor, so the reactant gas fed into the reactor is wasted and the effective utilization rate of the gas is reduced. This resulted in a decrease in the growth rate of the thin film.

[発明が解決しようとする問題点コ 反応ガスが壁面付近で反応することを防屯するため、第
3図に示されるように、外壁に冷却コイルを溶接する試
みかなされた。
[Problems to be Solved by the Invention] In order to prevent the reaction gas from reacting near the wall surface, an attempt was made to weld a cooling coil to the outer wall, as shown in FIG.

しかし、従来の装置では冷却コイルが装置の外壁に点溶
接で固設されていただけであり、しかもコイル全体が空
気中に露出されていた。従って、コイルは壁面と点また
は線接触しているだけであり、非接触部の方が接触部よ
りも居におおきな面積を占めていた。また、溶接箇所に
よってはコイルが壁面から浮き[―がって全く接触して
いない部分もあった。
However, in conventional devices, the cooling coil was simply fixedly attached to the outside wall of the device by spot welding, and moreover, the entire coil was exposed to the air. Therefore, the coil is only in point or line contact with the wall surface, and the non-contact portion occupies a larger area than the contact portion. Also, depending on the welding location, the coil was lifted off the wall surface [--and there were some parts where it was not in contact at all.

その結果、コイル内に冷却水または圧縮冷媒を流したと
しても冷却効率が悪く、壁面を十分に冷却することがで
きなかった。史に、溶接箇所と非溶接箇所とで温度が異
なり壁面を均一に冷却することができなかった。そのた
め、所期の目的である、内壁面一1−における異物発生
の抑制を十分に達成することができなかった。
As a result, even if cooling water or compressed refrigerant were allowed to flow through the coil, the cooling efficiency was poor and the wall surface could not be sufficiently cooled. Historically, the temperatures at welded and non-welded areas were different, making it impossible to cool the wall surface uniformly. Therefore, the intended purpose of suppressing the generation of foreign matter on the inner wall surface 1-1 could not be sufficiently achieved.

[発明の[1的コ 従って、本発明の1」的は外壁面−ヒに冷却効率の高い
冷却手段を有する気相反応装置を提供することである。
Therefore, the first object of the present invention is to provide a gas phase reactor having a cooling means with high cooling efficiency on the outer wall surface.

[問題点を解決するための手段] mI記の問題点を解決し、同時に前記目的を達成するた
めの手段として、この発明は、外壁面上に冷却手段を配
設し、前記冷却手段を高熱伝導性材料で被包したことを
特徴とする気相反応装置を提供する。
[Means for Solving the Problems] As a means for solving the problems described in mI and achieving the above object at the same time, the present invention provides a method for disposing a cooling means on the outer wall surface and heating the cooling means at high temperature. A gas phase reactor is provided, characterized in that it is encapsulated with a conductive material.

[作用コ 前記のように、本発明の冷却型気相反応装置では、外壁
面11に配設された冷却手段が高熱伝導性材料で被包さ
れている。
[Operations] As described above, in the cooling type gas phase reaction apparatus of the present invention, the cooling means disposed on the outer wall surface 11 is covered with a highly thermally conductive material.

その結果、従来は冷却に全く関(テしていない、あるい
は利用されていなかった非溶接部分も有効に活用される
ので冷却効率が飛躍的に向−1−する。
As a result, the non-welded parts, which were not involved in cooling at all or were not used in the past, can be effectively utilized, so that the cooling efficiency is dramatically improved.

更に、除用手段と冷却手段との間が熱伝導性材料で埋め
尽くされているので、従来のような点溶接の場合に比べ
て、壁面の温度分布がほぼ均一になる。
Furthermore, since the space between the removal means and the cooling means is filled with a thermally conductive material, the temperature distribution on the wall surface becomes more uniform than in the case of conventional spot welding.

冷却効率の向上と温度分布の均一化により、CVD装置
のような気相反応装置の反応炉内壁面の表面温度を成膜
反応開始温度よりも低い温度に維持することができる。
By improving the cooling efficiency and making the temperature distribution uniform, the surface temperature of the inner wall surface of the reactor of a gas phase reactor such as a CVD apparatus can be maintained at a temperature lower than the film-forming reaction start temperature.

原因については現在のところ明らかではないが、反応炉
内のH20蒸気が冷却壁面で結露し、壁面へ付着してき
た5ib うことにより、これらがフレークへ成長していくのを抑
制しているのではないかと思われる。
The cause is not clear at present, but it may be that the H20 vapor in the reactor condenses on the cooling wall and adheres to the wall, suppressing the growth of these into flakes. I don't think so.

更に、壁面温度が反応開始温度よりも低いので、反応炉
の内装面りで反応ガスが反応することは殆どなくなる。
Furthermore, since the wall surface temperature is lower than the reaction start temperature, reaction gas hardly reacts on the interior surface of the reactor.

その結果、内装面ににSiOあるいは5i02などの酸
化物微粒子のフレークが生成・付着することは効果的に
防止される。従って、これらフレーク(異物)がウェハ
表面に落下付着してウニ/)の蒸着膜にピンホールを発
生させたりするような不都合な=J(態の発生も防IL
され、f導体素子の製造歩留りを向」−させることがで
きる。
As a result, the formation and adhesion of flakes of oxide particles such as SiO or 5i02 on the interior surface is effectively prevented. Therefore, these flakes (foreign substances) can fall and adhere to the wafer surface and cause pinholes in the evaporated film of sea urchin/).
Therefore, the manufacturing yield of f-conductor elements can be improved.

[実施例コ 以ド、図面を参照しながら本発明の実施例について史に
詳細に説明する。
[Embodiments] Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

第1図は本発明の気相反応装置の外壁面上への冷却手段
の配設の一実施例を示す部分概要図であり、第2図は別
の配設実施例を示す部分概要図である。
FIG. 1 is a partial schematic diagram showing one embodiment of the arrangement of the cooling means on the outer wall surface of the gas phase reactor of the present invention, and FIG. 2 is a partial schematic diagram showing another embodiment of the arrangement. be.

第1図に示される気相反応装置はCVD薄膜形成装置で
ある。
The gas phase reactor shown in FIG. 1 is a CVD thin film forming apparatus.

第1図において、lはCVD薄膜形成装置、3は円錐状
カバー、5は中間リング、7は反応炉本体、9 aおよ
び9bは反応ガス挿入ノズル、11は円錐状バッファ、
13はウェハiJIRg1台をそれぞれ示す。
In FIG. 1, 1 is a CVD thin film forming apparatus, 3 is a conical cover, 5 is an intermediate ring, 7 is a reactor main body, 9 a and 9 b are reaction gas injection nozzles, 11 is a conical buffer,
13 indicates one wafer iJIRg.

第1図に示されるように、円錐状カバー3の外壁面上に
冷却手段を構成する銅パイプの蛇管26aを配設する。
As shown in FIG. 1, a copper pipe 26a constituting a cooling means is disposed on the outer wall surface of the conical cover 3.

同様に、中間リング5の外壁面上にも銅パイプの蛇管2
0bを配設する。蛇管20aおよび20bは各外壁面上
に点溶接により溶着させることもできるし、あるいは、
溶接などの固設処理をすることなく弔に外壁面上に配置
するだけでもよい。
Similarly, a coiled copper pipe 2 is also placed on the outer wall surface of the intermediate ring 5.
Allocate 0b. The flexible pipes 20a and 20b can be welded onto each outer wall surface by spot welding, or
It is also possible to just place it on the outer wall surface without any fixing process such as welding.

銅パイプ蛇管の内部には液状冷媒(例えば、冷却水)ま
たは圧縮ガス状冷媒(例えば、フレオン)を循環させる
。銅パイプは蛇管状だけでなくコイル状に成形して使用
することもできる。
A liquid refrigerant (for example, cooling water) or a compressed gaseous refrigerant (for example, Freon) is circulated inside the copper pipe corrugation. Copper pipes can be used not only in a serpentine shape but also in a coil shape.

パイプとパイプとの間に高熱伝導性材料30を填隙し、
パイプの全表面を被包する。第1図に示されるように、
高熱伝導性材料30を隙間な(填隙し、その上面に断熱
性カバー40を被覆すれば冷却効率は−・層高まる。別
法として、第2図に示されるように、パイプ20aを高
熱伝導性材料30で被包するだけで、山と山の間に谷が
形成されるような態様で実施することもできる。
A high thermal conductive material 30 is filled between the pipes,
Covers the entire surface of the pipe. As shown in Figure 1,
If a highly thermally conductive material 30 is filled in the gap and the upper surface is covered with a heat insulating cover 40, the cooling efficiency will be further increased. Alternatively, as shown in FIG. It can also be implemented in such a manner that valleys are formed between the peaks simply by covering with the flexible material 30.

本発明で使用できる高熱伝導性材料は例えば、銅または
アルミニウムのような金属の粉末あるいは熱伝導性接着
剤である。熱伝導性接着剤は例えば、銅粉またはアルミ
ニウム紛の配合された2液性エポキシ配合樹脂などであ
る。その他の熱伝導性空間填隙材も同様に使用できる。
Highly thermally conductive materials that can be used in the present invention are, for example, metal powders such as copper or aluminum or thermally conductive adhesives. The thermally conductive adhesive is, for example, a two-component epoxy resin blended with copper powder or aluminum powder. Other thermally conductive space-filling materials can be used as well.

このような材料は当又者に周知である。Such materials are well known to those skilled in the art.

円錐状カバーおよび中間リングなどウェハの加熱に直接
必要のない部分の表面温度を前記冷却手段により、成膜
反応開始温度よりも低い温度、例えば90℃以下に冷却
する。各部における表面温度が所定の設定値以下に保た
れているか否か測定するために、各部に一個以上の表面
温度計を設置することもできる。
The surface temperature of portions not directly required for heating the wafer, such as the conical cover and the intermediate ring, is cooled by the cooling means to a temperature lower than the film forming reaction starting temperature, for example, 90° C. or lower. One or more surface thermometers may be installed in each part to measure whether the surface temperature in each part is maintained below a predetermined set value.

かくして、円錐状カバーおよび中間リングなどウェハの
加熱に直接必要のない部分で反応ガスが反応して、これ
らの部分に酸化物微粒子のフレークを生成・付着させ、
かつ、ガスの有効利用率を低ドさせるような不都合なI
nの発生は効果的に防11・、される。
In this way, the reactive gas reacts in areas that are not directly necessary for heating the wafer, such as the conical cover and the intermediate ring, forming and depositing flakes of oxide particles on these areas.
In addition, there is no inconvenient I that lowers the effective utilization rate of gas.
The occurrence of n is effectively prevented by 11.

以1−1本発明をCVD薄膜形成装置について説明して
きたが、本発明は冷却を必要とする気相反応装置全般に
ついて実施できる。
Although 1-1 the present invention has been described with respect to a CVD thin film forming apparatus, the present invention can be practiced on any gas phase reaction apparatus that requires cooling.

[発明の効果コ 以上説明したように、本発明の冷却型気相反応装置では
、外壁面上に配設された冷却手段が高熱伝導性材料で被
包されている。
[Effects of the Invention] As explained above, in the cooling type gas phase reaction apparatus of the present invention, the cooling means disposed on the outer wall surface is covered with a highly thermally conductive material.

その結果、従来は冷却に全く関与していない、あるいは
利用されていなかった非溶接部分も有効に活用されるの
で冷却効率が飛躍的に向上する。
As a result, the non-welded parts, which were not involved in cooling at all or were not used in the past, are effectively utilized, resulting in a dramatic improvement in cooling efficiency.

更に、冷却手段と冷却手段との間が熱伝導性材料で埋め
尽くされているので、従来のような点溶接の場合に比べ
て、壁面の温度分布がほぼ均一になる。
Furthermore, since the space between the cooling means is filled with a thermally conductive material, the temperature distribution on the wall surface becomes more uniform than in the case of conventional spot welding.

冷却効率の向上と温度分布の均一化により、CVD装置
のような気相反応装置の反応炉内壁面の表面温度を成膜
反応開始温度よりも低い温度に維持する。
By improving the cooling efficiency and making the temperature distribution uniform, the surface temperature of the inner wall surface of the reactor of a gas phase reactor such as a CVD apparatus is maintained at a temperature lower than the film-forming reaction start temperature.

原因については現在のところ明らかではないが、反応炉
内のH20蒸気が壁面で結露し、壁面へ付着してきた5
iO21ツ遊拉rを表面張力で覆うことにより、これら
がフレークへ成長していくのを抑$11シているのでは
ないかと思われる。
The cause is not clear at present, but the H20 vapor inside the reactor has condensed on the walls and adhered to them5.
It seems that by covering the iO2 particles with surface tension, their growth into flakes is suppressed.

史に、壁面温度が反応開始温度よりも低いので、反応炉
の内壁面」−で反応ガスが反応することは殆どなくなる
Historically, since the wall surface temperature is lower than the reaction initiation temperature, reaction gases hardly react on the inner wall surface of the reactor.

その結果、内壁面上にSiOあるいは5i02などの酸
化物微粒rのフレークが生成・付着することは効果的に
防I卜される。従って、これらフレーク(5F4物)が
ウェハ表面に落下付着してウェハの蒸着膜にピンホール
を発生させたりするような不都合な事態の発生も防止さ
れ、半導体素子の製造歩留りを向上させることができる
As a result, the formation and adhesion of flakes of fine oxide particles such as SiO or 5i02 on the inner wall surface can be effectively prevented. Therefore, the occurrence of an inconvenient situation such as the occurrence of pinholes in the vapor deposited film of the wafer due to these flakes (5F4 particles) falling and adhering to the wafer surface is also prevented, and the manufacturing yield of semiconductor devices can be improved. .

更に、反応炉内に給送した反応ガスが極めて有効に利用
されることになるばかりか、CVD膜の成長速度も向−
1−するので、半導体素子の製造コストを低下させるこ
とができる。
Furthermore, not only will the reaction gas fed into the reactor be used extremely effectively, but the growth rate of the CVD film will also be improved.
1-, the manufacturing cost of semiconductor elements can be reduced.

4 、 図面ノ[?11−な説明 第1図は本発明の気相反応装置の外壁面−1−への冷却
手段の配設の・実施例を示す部分概要図であり、第2図
は別の配設実施例を示す部分W11図であり、第3図は
従来の冷却り段配設嘘様を示す概誤図である。
4. Drawing no [? 11- Explanation FIG. 1 is a partial schematic diagram showing an embodiment of the arrangement of the cooling means on the outer wall surface-1 of the gas phase reactor of the present invention, and FIG. 2 is a partial schematic diagram showing another embodiment of the arrangement. FIG. 3 is a schematic erroneous diagram showing a conventional arrangement of cooling stages.

1・・・反応炉、3・・・円錐状カバー、5・・・中間
リング、7・・・反応炉本体、9aおよび9b・・・反
応ガス挿入ノズル、11・・・バッファ、13・・・ウ
ェハ載置台、20aおよび20b・・・銅パイプ冷却手
段、30・・・高熱伝導性材料、40aおよび40b・
・・断熱性カバー
DESCRIPTION OF SYMBOLS 1... Reactor, 3... Conical cover, 5... Intermediate ring, 7... Reactor main body, 9a and 9b... Reaction gas insertion nozzle, 11... Buffer, 13...・Wafer mounting table, 20a and 20b...Copper pipe cooling means, 30...High thermal conductive material, 40a and 40b・
・・Insulating cover

Claims (7)

【特許請求の範囲】[Claims] (1)外壁面上に冷却手段を配設し、前記冷却手段を高
熱伝導性材料で被包したことを特徴とする気相反応装置
(1) A gas phase reaction apparatus characterized in that a cooling means is disposed on an outer wall surface, and the cooling means is covered with a highly thermally conductive material.
(2)高熱伝導性材料がアルミニウムまたは銅の粉末で
ある特許請求の範囲第1項に記載の気相反応装置。
(2) The gas phase reactor according to claim 1, wherein the highly thermally conductive material is aluminum or copper powder.
(3)高熱伝導性材料が熱伝導性接着剤である特許請求
の範囲第1項に記載の気相反応装置。
(3) The gas phase reactor according to claim 1, wherein the highly thermally conductive material is a thermally conductive adhesive.
(4)熱伝導性接着剤が金属粉混入2液性エポキシ配合
樹脂である特許請求の範囲第3項に記載の気相反応装置
(4) The gas phase reactor according to claim 3, wherein the thermally conductive adhesive is a two-component epoxy compound resin mixed with metal powder.
(5)金属粉がアルミニウムまたは銅の粉末である特許
請求の範囲第4項に記載の気相反応装置。
(5) The gas phase reactor according to claim 4, wherein the metal powder is aluminum or copper powder.
(6)前記冷却手段は内部に液状冷媒または圧縮ガス状
冷媒が循環される冷却パイプの蛇管あるいはコイルであ
ることを特徴とする特許請求の範囲第1項から第5項ま
でのいずれかに記載の気相反応装置。
(6) The cooling means is a coil or coil of a cooling pipe in which a liquid refrigerant or a compressed gas refrigerant is circulated. gas phase reactor.
(7)CVD装置である特許請求の範囲第1項から第6
項のいずれかに記載の気相反応装置。
(7) Claims 1 to 6 which are CVD equipment
The gas phase reactor according to any one of paragraphs.
JP12500686A 1986-05-30 1986-05-30 Cooling type vapor phase reactor Pending JPS62280367A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12500686A JPS62280367A (en) 1986-05-30 1986-05-30 Cooling type vapor phase reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12500686A JPS62280367A (en) 1986-05-30 1986-05-30 Cooling type vapor phase reactor

Publications (1)

Publication Number Publication Date
JPS62280367A true JPS62280367A (en) 1987-12-05

Family

ID=14899537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12500686A Pending JPS62280367A (en) 1986-05-30 1986-05-30 Cooling type vapor phase reactor

Country Status (1)

Country Link
JP (1) JPS62280367A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5027746A (en) * 1988-03-22 1991-07-02 U.S. Philips Corporation Epitaxial reactor having a wall which is protected from deposits
JP2005326068A (en) * 2004-05-13 2005-11-24 Daikin Ind Ltd Plate for heat exchanger and heat exchanger
JPWO2006062191A1 (en) * 2004-12-09 2008-06-12 日立化成工業株式会社 Support unit for microfluidic system and method for manufacturing the same
US8480971B2 (en) 2004-11-30 2013-07-09 Hitachi Chemical Co., Ltd. Analytical pretreatment device
US8865090B2 (en) 2002-02-25 2014-10-21 Hitachi Chemical Co., Ltd. Micro fluid system support and manufacturing method thereof
JP5792364B1 (en) * 2014-07-31 2015-10-07 株式会社日立国際電気 Substrate processing apparatus, chamber lid assembly, semiconductor device manufacturing method, program, and recording medium

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50161539A (en) * 1974-06-20 1975-12-27
JPS6024377A (en) * 1983-07-21 1985-02-07 Canon Inc Method and device for producing deposited film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50161539A (en) * 1974-06-20 1975-12-27
JPS6024377A (en) * 1983-07-21 1985-02-07 Canon Inc Method and device for producing deposited film

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5027746A (en) * 1988-03-22 1991-07-02 U.S. Philips Corporation Epitaxial reactor having a wall which is protected from deposits
US8865090B2 (en) 2002-02-25 2014-10-21 Hitachi Chemical Co., Ltd. Micro fluid system support and manufacturing method thereof
US8889084B2 (en) 2002-02-25 2014-11-18 Hitachi Chemical Company, Ltd. Micro fluid system support and manufacturing method thereof
JP2005326068A (en) * 2004-05-13 2005-11-24 Daikin Ind Ltd Plate for heat exchanger and heat exchanger
US8480971B2 (en) 2004-11-30 2013-07-09 Hitachi Chemical Co., Ltd. Analytical pretreatment device
US8480970B2 (en) 2004-11-30 2013-07-09 Hitachi Chemical Co., Ltd. Analytical pretreatment device
JPWO2006062191A1 (en) * 2004-12-09 2008-06-12 日立化成工業株式会社 Support unit for microfluidic system and method for manufacturing the same
JP2011104590A (en) * 2004-12-09 2011-06-02 Hitachi Chem Co Ltd Manufacturing method of support unit for micro fluid system
JP5792364B1 (en) * 2014-07-31 2015-10-07 株式会社日立国際電気 Substrate processing apparatus, chamber lid assembly, semiconductor device manufacturing method, program, and recording medium
US9518321B2 (en) 2014-07-31 2016-12-13 Hitachi Kokusai Electric Inc. Atomic layer deposition processing apparatus to reduce heat energy conduction

Similar Documents

Publication Publication Date Title
US5456757A (en) Susceptor for vapor deposition
US20110244693A1 (en) Component for semiconductor processing apparatus and manufacturing method thereof
CN101665918B (en) Film forming method and film forming apparatus
JP3699142B2 (en) Thin film forming equipment
US6117772A (en) Method and apparatus for blanket aluminum CVD on spherical integrated circuits
Jonas et al. FTIR in situ studies of the gas phase reactions in chemical vapor deposition of SiC
JPS62280367A (en) Cooling type vapor phase reactor
US6328804B1 (en) Chemical vapor deposition of metals on a spherical shaped semiconductor substrate
KR100287100B1 (en) Chemical Vapor Deposition (CVD) of metals that can accommodate nickel or alloys thereof using iodide
JPH01293970A (en) Fitting and manufacture thereof and method of joining part
US20050084692A1 (en) Plasma resistant member
JP3929140B2 (en) Corrosion resistant member and manufacturing method thereof
JP2991830B2 (en) Chemical vapor deposition apparatus and chemical vapor deposition method using the same
EP0992472A2 (en) Corrosion-resistant members against a chlorine-based gas
JPS63270468A (en) Cvd thin film forming device
JP3442077B2 (en) Method for producing CVD silicon nitride
JPS62238365A (en) Device for forming cvd thin film
JPH0233925A (en) Cvd apparatus
JPS6233014Y2 (en)
JPH0639709B2 (en) Plasma CVD equipment
JPS6376334A (en) Device for forming cvd thin-film
JPS63144537A (en) Wafer transfer device
JPS62278270A (en) Cvd thin film forming device
JPS62158877A (en) Apparatus for forming cvd film
JPH0532471B2 (en)