JPH0233440A - Air-fuel ratio control device for internal combustion engine - Google Patents

Air-fuel ratio control device for internal combustion engine

Info

Publication number
JPH0233440A
JPH0233440A JP18403888A JP18403888A JPH0233440A JP H0233440 A JPH0233440 A JP H0233440A JP 18403888 A JP18403888 A JP 18403888A JP 18403888 A JP18403888 A JP 18403888A JP H0233440 A JPH0233440 A JP H0233440A
Authority
JP
Japan
Prior art keywords
air
cylinder
fuel ratio
fuel
feedback correction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18403888A
Other languages
Japanese (ja)
Other versions
JPH0833132B2 (en
Inventor
Yuji Kishimoto
雄治 岸本
Seishi Wataya
綿谷 晴司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP18403888A priority Critical patent/JPH0833132B2/en
Publication of JPH0233440A publication Critical patent/JPH0233440A/en
Publication of JPH0833132B2 publication Critical patent/JPH0833132B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To aim at improving the purification of exhaust gas to the air considerably by stopping the operation of a fuel injection valve to the air cylinder concerned when an accidental fire is detected and having the feedback correction made by the other air cylinders as well as its learning stopped. CONSTITUTION:The driving pulse widths of fuel injection valves 5a-5d are obtained at a control device 10 from the signals outputted from an air flow sensor 4 and a rotation sensor 7, and the feedback correction and injection are made by the output of an O2 sensor 9 as well as the learning value of the feedback correction quantity is storaged in a memory. When an accidental fire in the air cylinder on the side of an engine 1 is detected, the fuel supply to the air cylinder is stopped so as to prevent the considerable amount of HC emission, the other air cylinders are enriched by the feedback control of the air-fuel ratio so as to aim at decreasing NOx, and the HC, CO enriched is purified by means of a catalyser 11. At the same time, the learning of the feedback correction quantity is inhibited so as to prevent wrong learning. As a result, the purification of exhaust gas can be considerably improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、自動車用多気筒内燃機関、特に排気ガスの
悪化を防止する空燃比制御装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a multi-cylinder internal combustion engine for automobiles, and particularly to an air-fuel ratio control device for preventing deterioration of exhaust gas.

(従来の技術〕 自動車用ガソリンエンジンにおいては、排出ガスの浄化
のため従来から種々の方法が用いられている。そのうち
燃料系の有力な手段の一つとしてマルチポイント式燃料
噴射装置が多用化されている。この装置は多気筒エンジ
ンの各気筒への燃料分配特性が気化器やシングルポイン
トインジェクションに較べて優れており、構造上吸気管
内の′壁面付着燃料が少ないため、良好な排出ガス性能
や応答性が得られる。これらの満足しうる性能はエンジ
ンの燃料供給系、失火系、エンジン本体が全て正常な時
には発揮されるが、何らかの異常により半数または複数
の気筒が失火状態になると、いわゆる生ガスが放出され
排出ガスは著しく悪化し、かつ触媒装置が過熱する。特
に1気筒のみ失火している場合には車輌としては他の正
常気筒がら得られる出力によって走行には大きな支障が
ないため、運転者が気が付きにくく排出ガスが悪化しそ
のまま放置されるばかりか、触媒が過熱し損傷に至るこ
とがある。
(Prior Art) Various methods have been used to purify exhaust gas in gasoline engines for automobiles. Among these, multi-point fuel injection devices have been widely used as one of the effective means for fuel systems. This device has better fuel distribution characteristics to each cylinder of a multi-cylinder engine than a carburetor or single point injection, and because of its structure, there is less fuel adhering to the wall inside the intake pipe, resulting in better exhaust gas performance and better performance. These satisfactory performances are achieved when the engine's fuel supply system, misfire system, and engine body are all normal, but if half or more of the cylinders are in a misfire state due to some abnormality, a so-called failure occurs. Gas is released, the exhaust gas deteriorates significantly, and the catalyst device overheats.In particular, if only one cylinder misfires, there is no major problem in running the vehicle due to the output obtained from the other normal cylinders. Not only is it difficult for the driver to notice and the exhaust gas is left unattended, but the catalyst may overheat and be damaged.

上記のような問題点を解決するために失火を検出して当
該気筒の燃料供給を停止する方法が例えば特開昭61−
23876号公報に提案されている。このような従来の
動作を第1図の構成図および第2図のフローチャートを
用いて説明する。
In order to solve the above-mentioned problems, a method of detecting a misfire and stopping the fuel supply to the relevant cylinder is proposed, for example, in Japanese Patent Application Laid-Open No.
This is proposed in Japanese Patent No. 23876. Such conventional operation will be explained using the configuration diagram of FIG. 1 and the flowchart of FIG. 2.

第2図はマルチポイント式燃料噴射装置の構成を示すも
ので、1はエンジン、2は吸気管、3はスロットル弁、
4は吸入空気量を検出するためのエアフローセンサ、5
a〜5dは各気筒の吸気管2a〜2dに設置され、電気
パルスによって駆動される燃料噴射弁、6a〜6dはエ
ンジンlの筒内圧力を検出する筒内圧センサ、7はエン
ジン1のクランク角パルスを発生する回転センサ、8は
排気管、9は排気ガス中の成分から空燃比を検出する酸
素センサ、10はエアフローセンサ4及び回転センサ7
、酸素センサ9などの運転パラメータから所要燃料量を
演算しエンジンの回転に同期して付勢される燃料噴射弁
5a〜5dの駆動パルス幅を制御するとともに筒内圧セ
ンサ6a〜6dの信号波形を処理し各気筒の失火の有無
を判別する制御装置、11は排気ガスを浄化する触媒装
置である。以上の構成による燃料噴射制御の動作につい
ては既に公知例がなく存在するのでここでは省略し、又
制御装置10についても、従来から広く用いられている
メモリや演算部などからなるマイクロコンピュータと入
出力回路とで構成されているのでその機構の説明は省略
し、動作のみ第3図のフローチャートについて説明する
Figure 2 shows the configuration of a multi-point fuel injection system, where 1 is the engine, 2 is the intake pipe, 3 is the throttle valve,
4 is an air flow sensor for detecting the amount of intake air; 5
Numerals a to 5d are fuel injection valves installed in the intake pipes 2a to 2d of each cylinder and driven by electric pulses, 6a to 6d are cylinder pressure sensors that detect the cylinder pressure of the engine 1, and 7 is a crank angle of the engine 1. A rotation sensor that generates pulses; 8 an exhaust pipe; 9 an oxygen sensor that detects the air-fuel ratio from components in the exhaust gas; 10 an air flow sensor 4 and a rotation sensor 7;
, calculates the required amount of fuel from operating parameters such as the oxygen sensor 9, controls the drive pulse width of the fuel injection valves 5a to 5d, which are energized in synchronization with engine rotation, and controls the signal waveforms of the cylinder pressure sensors 6a to 6d. A control device processes the exhaust gas and determines whether there is a misfire in each cylinder, and 11 is a catalyst device that purifies the exhaust gas. Since there is no known example of the operation of fuel injection control with the above configuration, it is omitted here.The control device 10 also includes a microcomputer consisting of a memory, arithmetic unit, etc. that has been widely used in the past, and input/output. Since it consists of a circuit, the explanation of its mechanism will be omitted, and only the operation will be explained with reference to the flowchart of FIG. 3.

スタートしてからまずステップ100でエアフローセン
サや回転センサ7の信号を読込み、ステップ101でこ
れらの情報に基づき燃料噴射弁5a〜5dの駆動パルス
幅を演算する。このパルス幅は基本的には吸入空気量を
エンジン回転数で除した値にほぼ比例し、かつフィール
ドバンク補正量の中央値からの偏差をもってエアフロー
センサ4や燃料噴射弁5a〜5dの誤差を求める学習補
正を行なう、燃料噴射弁5a〜5dからはその駆動パル
ス幅に比例した燃料がそれぞれの気筒の吸気管2a〜2
dに対して所定サイクル毎に噴射され、各気筒内で混合
気が燃焼される。
After starting, first, in step 100, signals from the air flow sensor and rotation sensor 7 are read, and in step 101, the driving pulse widths of the fuel injection valves 5a to 5d are calculated based on these information. This pulse width is basically approximately proportional to the value obtained by dividing the amount of intake air by the engine speed, and the error of the air flow sensor 4 and fuel injection valves 5a to 5d is determined based on the deviation from the median value of the field bank correction amount. The fuel injectors 5a to 5d, which undergo learning correction, inject fuel proportional to the driving pulse width into the intake pipes 2a to 2 of the respective cylinders.
d is injected every predetermined cycle, and the air-fuel mixture is combusted in each cylinder.

次にステップ102で各気筒に設置された筒内圧センサ
6a〜6dの信号波形を回転センサ7から得られる回転
パルスに同期して逐次読込む、この信号波形は第4図に
示す如く、通常クランク角がTDCの近傍において燃焼
による圧力上昇が図の実線のように大きくなるが、何ら
かの支障により当該気筒が失火即ち燃焼が行なわれない
時には破線で示すように低い値を示す。従って公知例(
特開昭61−23876号公報)に示されているように
TDCを中心として以前、以後の2点の筒内圧力の比較
又は筒内圧のピーク値を比較することにより夫々の気筒
が失火しているか否かを検知することが可能であり、ス
テップ103にてこの判別が行なわれる。
Next, in step 102, the signal waveforms of the cylinder pressure sensors 6a to 6d installed in each cylinder are sequentially read in synchronization with the rotation pulse obtained from the rotation sensor 7.This signal waveform is normally used for crankshafts as shown in FIG. When the angle is close to TDC, the pressure increase due to combustion becomes large as shown by the solid line in the figure, but if the cylinder misfires due to some problem, that is, combustion does not occur, the pressure rise becomes low as shown by the broken line. Therefore, the known example (
As shown in Japanese Unexamined Patent Publication No. 61-23876), by comparing the cylinder pressure at two points before and after TDC, or by comparing the peak value of the cylinder pressure, it is possible to determine whether each cylinder has misfired. It is possible to detect whether or not the vehicle is present, and this determination is made in step 103.

気筒の失火を招く要因としてはここでは図示していない
イグニフシッンコイル、イグナイタ、高圧コード、失火
プラグなどの点火系デバイスの故障や、これらを接続す
るコネクタ部分の接触不良、更に点火プラグの汚損、燃
料噴射弁を駆動する回路部101a〜101dの故障、
気筒内への水漏れなどによる燃焼不全などがある。
Factors that can cause cylinder misfires include malfunctions in ignition system devices (not shown here) such as ignition coils, igniters, high-voltage cords, and misfire plugs, poor contact in the connectors that connect these devices, and failures in the spark plugs. Contamination, failure of the circuit parts 101a to 101d that drive the fuel injection valves,
There may be combustion failure due to water leaking into the cylinder.

筒内圧センサの方式としては圧電タイプや圧力センサを
実用に供することが可能であり、更に他の方法(振動、
燃焼光など)を用いることによっても失火の検出は可能
である。
Piezoelectric types and pressure sensors can be used as cylinder pressure sensors, and other methods (vibration,
Misfires can also be detected by using combustion light, etc.).

失火が検出されるとステップ104で当該気筒の燃料噴
射弁の駆動が停止され、他の気筒は酸素センサ9の信号
に基づき第5図に示すように空燃比のフィードバック制
御が行なわれる。この時、失火気筒への燃料供給は停止
されるので生ガスの排出は防止されるが、酸素センサは
当該気筒からの新気即ち大量の酸素にさらされるので、
他の気筒の空燃比を正確に検知することができず、トー
タルとしてリーンと判別する。従って、正常気筒の燃料
噴射弁の駆動パルス幅はリンチ側にシフトして動作する
。上記の結果、フィードバック補正量によって求められ
る学習補正量もリンチ側に動作することとなる。
When a misfire is detected, the drive of the fuel injection valve of the relevant cylinder is stopped in step 104, and the air-fuel ratios of the other cylinders are subjected to feedback control as shown in FIG. 5 based on the signal from the oxygen sensor 9. At this time, the fuel supply to the misfiring cylinder is stopped, preventing raw gas from being discharged, but the oxygen sensor is exposed to fresh air, that is, a large amount of oxygen, from the cylinder.
The air-fuel ratio of other cylinders cannot be accurately detected, and the system is determined to be lean overall. Therefore, the driving pulse width of the fuel injection valve of the normal cylinder is shifted to the Lynch side. As a result of the above, the learning correction amount determined by the feedback correction amount also operates on the Lynch side.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、一つの気筒が失火して該気筒への燃料供
給を停止し他の気筒へのフィードバック補正を行なうと
、他の正常な気筒の空燃比がリッチ側に移行してHc、
Coが増加し、しかも失火気筒から大量に酸素が供給さ
れるため三元触媒での反応熱が増大し、もともと排気温
の高い運転領域では触媒の劣化をきたすこととなる。ま
たアイドル領域等のように排気温が低い領域では触媒が
活性化しにクク、かつ失火気筒から低温空気が排出され
ると活性化温度に到達しないため、トータルでの空燃比
が理論空燃比となっても触媒での反応なく大気へHc、
Coが排出されることとなる。さらにフィードバック中
にリッチ側へ学習が移行すると、例えばエンジン冷態時
の暖機運転中等にフィードバック補正を停止し空燃比の
リッチ化を行なうが、学習のリッチ化と重畳してオーバ
ーリッチとなり、正常気筒さえ失火に至るという課題が
あった。
However, when one cylinder misfires and the fuel supply to that cylinder is stopped and feedback correction is performed to the other cylinders, the air-fuel ratio of the other normal cylinders shifts to the rich side and Hc,
As Co increases and a large amount of oxygen is supplied from the misfiring cylinder, the reaction heat in the three-way catalyst increases, causing deterioration of the catalyst in an operating range where the exhaust gas temperature is originally high. In addition, in areas where the exhaust temperature is low, such as in the idle area, the catalyst is activated and does not reach the activation temperature if low-temperature air is exhausted from the misfiring cylinder, so the total air-fuel ratio becomes the stoichiometric air-fuel ratio. Even if Hc is released into the atmosphere without any reaction with the catalyst,
Co will be discharged. Furthermore, if the learning shifts to the rich side during feedback, for example during warm-up when the engine is cold, feedback correction will be stopped and the air-fuel ratio will be enriched, but this will overlap with the rich learning and result in over-rich, which will cause normal operation. There was a problem that even the cylinders would misfire.

この発明は上記のような課題を解消するためになされた
もので、気筒が失火したとき触媒での浄化が可能な領域
ではフィードバック制御nを行なって排気ガスを浄化す
ると共に、エンジンや触媒に損傷を与えることのない内
燃機関の空燃比制御装置を得ることを目的とする。
This invention was made to solve the above-mentioned problems, and when a cylinder misfires, in the range where the catalyst can purify the exhaust gas, feedback control is performed to purify the exhaust gas, and it also prevents damage to the engine and catalyst. An object of the present invention is to obtain an air-fuel ratio control device for an internal combustion engine that does not give

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る空燃比制御装置は、各気筒の吸気管に各
々燃料噴射弁を備えた多気筒内燃機関において、各気筒
の失火の有無を検出する失火検出手段と、排気管に設け
た空燃比検出手段と、この空燃比検出手段の出力により
空燃比を帰還制御する帰還補正手段と、この帰還補正手
段の出力の少なくとも一部を記憶する記憶手段とを備え
、上記失火検出手段の出力により失火を検出すると失火
気筒への燃料噴射弁の作動を停止させ、非失火気筒によ
る帰還補正を行なうと共に記憶手段の作動を停止させる
ようにしたものである。
The air-fuel ratio control device according to the present invention is used in a multi-cylinder internal combustion engine in which each cylinder has a fuel injection valve in its intake pipe. A detection means, a feedback correction means for feedback-controlling the air-fuel ratio based on the output of the air-fuel ratio detection means, and a storage means for storing at least a part of the output of the feedback correction means, the misfire being detected by the output of the misfire detection means. When detected, the operation of the fuel injection valve to the misfired cylinder is stopped, feedback correction is performed by the non-misfired cylinder, and the operation of the storage means is stopped.

〔作 用〕[For production]

この発明においては、失火を検出した気筒への燃料を停
止した上で吸入空気量または吸入空気量に対応したエン
ジンのパラメータにより触媒が損傷を受けることなく、
排気ガスの浄化が可能な運転領域では他の気筒によるフ
ィードバック制御を継続することによりHc、Co、t
iox の大気への排出を防止すると共に、フィードバ
ック中における偏差によるエアフローセンサ、燃料噴射
弁の誤差を課題に学習することを禁止し、エンジンの暖
機運転等空燃比フィードバック制御停止中における未失
火気筒への燃料供給がオーバーリッチとなり失火を防止
することができる。
In this invention, after stopping the fuel supply to the cylinder in which a misfire has been detected, the catalyst is prevented from being damaged by the intake air amount or engine parameters corresponding to the intake air amount.
In the operating range where exhaust gas purification is possible, feedback control by other cylinders is continued to reduce Hc, Co, and t.
In addition to preventing the emission of iox into the atmosphere, it also prohibits learning of errors in airflow sensors and fuel injection valves due to deviations during feedback, and prevents misfires from occurring in non-misfired cylinders when air-fuel ratio feedback control is stopped, such as during engine warm-up. It is possible to prevent misfires due to over-rich fuel supply.

(実施例〕 以下、この発明の一実施例を図について説明する。第1
図はこの発明による空燃比制御装置において各気筒への
燃料制御の手順を示すフローチャートで、暖機運転、エ
ンジンの過減速運転等の過渡の燃料演算等は第3図にお
ける従来例と同様であるので省略する。また、第3図と
同じステップは同一の処理を行なう。この発明ではステ
ップ104と105の間に触媒浄化可能領域か否かの判
定を行なうステップ107を設ける。例えば、吸入空気
量が少なすぎて排温が低く、触媒での浄化が期待できな
い領域または吸入空気量が多く排温か高いため空燃比フ
ィードバックにより未失火気筒から排出されるHc、C
oを触媒で反応させると触媒が高温となり劣化又は損傷
が生じる可能性がある領域では空燃比フィードバックを
停止してステップ100へ戻る。ステップ107の判定
において触媒浄化可能領域であれば第3図と同様ステッ
プ105,106により未失火気筒をリッチ化させ、N
oxの発生を押えると共に、失火気筒より排出される酸
素により過剰の)lc、Coを触媒で反応させることに
より大気中への排気ガスを浄化させることができる。
(Example) Hereinafter, an example of the present invention will be explained with reference to the drawings.
The figure is a flowchart showing the procedure of fuel control for each cylinder in the air-fuel ratio control device according to the present invention, and transient fuel calculations such as warm-up operation and engine over-deceleration operation are the same as in the conventional example shown in Fig. 3. Therefore, it will be omitted. Further, the same steps as in FIG. 3 perform the same processing. In the present invention, a step 107 is provided between steps 104 and 105 in which it is determined whether or not the catalyst purification is possible. For example, if the amount of intake air is too small and the exhaust temperature is low and purification by the catalyst cannot be expected, or if the amount of intake air is large and the exhaust temperature is high, Hc and C are discharged from the non-misfired cylinder due to air-fuel ratio feedback.
When reacting o with a catalyst, the catalyst becomes high in temperature, and in a region where there is a possibility of deterioration or damage, the air-fuel ratio feedback is stopped and the process returns to step 100. If the determination in step 107 is in the catalyst purification possible range, the non-misfired cylinders are enriched in steps 105 and 106 as in FIG. 3, and the N
In addition to suppressing the generation of ox, the exhaust gas discharged into the atmosphere can be purified by causing excess lc and cobalt to react with the oxygen discharged from the misfiring cylinder using a catalyst.

更にこの発明ではステップ108にて失火気筒を含む空
燃比フィードバック中においてはステップ109の学習
値の演算を禁止する様にしているため、学習値は全ての
気筒が正常に燃焼している時のエアフローセンサ及び燃
料噴射弁等の機差を補償する値を適切に保持することが
でき、第3図及び第1図において図示していない演算の
暖機運転時におけるリンチ補正時、及びエンジンの過渡
運転時における加減速補正時等に過度に空燃比をリッチ
化し失火に至る不具合が生じることがない。
Furthermore, in this invention, the calculation of the learned value in step 109 is prohibited during the air-fuel ratio feedback including the misfiring cylinder in step 108, so the learned value is based on the air flow when all cylinders are burning normally. Values that compensate for machine differences in sensors, fuel injection valves, etc. can be appropriately held, and during Lynch correction during warm-up operation of calculations not shown in Fig. 3 and Fig. 1, and during transient operation of the engine. This prevents problems such as excessive enrichment of the air-fuel ratio during acceleration/deceleration correction, which may lead to misfires.

又、この発明の他の実施例として触媒での浄化が可能か
否かを検出する手段として触媒温度センサを設け、該セ
ンサの出力によりステップ107の判定を行なうことに
より本発明の効果が上げられることは明確である。
Further, as another embodiment of the present invention, a catalyst temperature sensor is provided as a means for detecting whether purification by the catalyst is possible or not, and the determination in step 107 is made based on the output of the sensor, thereby increasing the effect of the present invention. That is clear.

又、触媒の温度が損傷を受けない臨界温度範囲内で空燃
比フィードバック制御の補正量に制限を加えることによ
り、より広い運転領域に渡ってフィードバック補正が行
なえ、排気ガスの浄化が可能となることは明らかである
Additionally, by limiting the correction amount of air-fuel ratio feedback control within the critical temperature range where the catalyst temperature is not damaged, feedback correction can be performed over a wider operating range, making it possible to purify exhaust gas. is clear.

〔発明の効果〕〔Effect of the invention〕

以上説明したようにこの発明によれば、気筒が失火した
とき、当該気筒への燃料供給を停止し多量のHeを排出
するのを防止し、他の気筒を空燃比フィードバックにて
リッチ化させてNoxを減少させ、かつ触媒でリッチ化
によるHc、Coを浄化させるようにしているため、大
気への排ガスの浄化率を大幅に向上させることができる
。また、フィードバック中の学習を禁止していることに
より、フィードバック停止状態における空燃比を誤った
学習によりリッチ化することもなく円滑なエンジンの運
転が維持でき、しかもHeの大幅な排出も防止できる。
As explained above, according to the present invention, when a cylinder misfires, the fuel supply to the cylinder is stopped to prevent a large amount of He from being discharged, and the other cylinders are enriched by air-fuel ratio feedback. Since Nox is reduced and Hc and Co are purified by enrichment using a catalyst, the purification rate of exhaust gas to the atmosphere can be significantly improved. Further, by prohibiting learning during feedback, smooth engine operation can be maintained without enriching the air-fuel ratio in the feedback stopped state due to erroneous learning, and it is also possible to prevent a large amount of He from being discharged.

さらに、この発明においては、触媒での浄化が可能か否
かを温度センサ等で検出しているため、触媒の損傷を与
えることなく触媒での浄化の期待できる領域のみフィー
ドバックのリッチ化を行なうため触媒で未反応のまま大
気へHc、Goが排出されることがないという優れた効
果がある。
Furthermore, in this invention, since a temperature sensor or the like is used to detect whether or not purification by the catalyst is possible, the feedback is enriched only in areas where purification by the catalyst can be expected without damaging the catalyst. This has the excellent effect that Hc and Go are not discharged into the atmosphere unreacted by the catalyst.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例による空燃比制御装置にお
いて各気筒への燃料制御の手順を示すフローチャート図
、第2図は燃料噴射装置の構成図、第3図は従来の燃料
制御の手順を示すフローチャート図、第4図は筒内圧セ
ンサの特性図、第5図は空燃比制御の特性図である。 5a〜5d・・・燃料噴射弁、6・・・筒内圧センサ、
9・・・酸素センサ、10・・・制御装置。
FIG. 1 is a flowchart showing the procedure for fuel control to each cylinder in an air-fuel ratio control device according to an embodiment of the present invention, FIG. 2 is a configuration diagram of a fuel injection device, and FIG. 3 is a conventional fuel control procedure. FIG. 4 is a characteristic diagram of the cylinder pressure sensor, and FIG. 5 is a characteristic diagram of air-fuel ratio control. 5a to 5d... fuel injection valve, 6... cylinder pressure sensor,
9... Oxygen sensor, 10... Control device.

Claims (1)

【特許請求の範囲】[Claims] 各気筒の吸気管に各々燃料噴射弁を備えた多気筒内燃機
関において、各気筒の失火の有無を検出する失火検出手
段と、排気管に設けた空燃比検出手段と、この空燃比検
出手段の出力により空燃比を帰還制御する帰還補正手段
と、この帰還補正手段の出力の少なくとも一部を記憶す
る記憶手段とを備え、上記失火検出手段の出力により失
火を検出する失火気筒への燃料噴射弁の作動を停止させ
、非失火気筒による帰還補正を行なうと共に記憶手段の
作動を停止させることを特徴とする内燃機関の空燃比制
御装置。
In a multi-cylinder internal combustion engine having a fuel injection valve in each cylinder's intake pipe, there is a misfire detection means for detecting the presence or absence of a misfire in each cylinder, an air-fuel ratio detection means provided in the exhaust pipe, and a misfire detection means for detecting the presence or absence of a misfire in each cylinder. A fuel injection valve for a misfiring cylinder, comprising a feedback correction means for feedback-controlling an air-fuel ratio based on the output, and a storage means for storing at least a part of the output of the feedback correction means, and detecting a misfire based on the output of the misfire detection means. 1. An air-fuel ratio control device for an internal combustion engine, characterized in that the operation of a non-misfire cylinder is stopped, feedback correction is performed using a non-misfire cylinder, and the operation of a storage means is also stopped.
JP18403888A 1988-07-22 1988-07-22 Air-fuel ratio control device for internal combustion engine Expired - Fee Related JPH0833132B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18403888A JPH0833132B2 (en) 1988-07-22 1988-07-22 Air-fuel ratio control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18403888A JPH0833132B2 (en) 1988-07-22 1988-07-22 Air-fuel ratio control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH0233440A true JPH0233440A (en) 1990-02-02
JPH0833132B2 JPH0833132B2 (en) 1996-03-29

Family

ID=16146273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18403888A Expired - Fee Related JPH0833132B2 (en) 1988-07-22 1988-07-22 Air-fuel ratio control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JPH0833132B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH045450A (en) * 1990-04-19 1992-01-09 Mitsubishi Electric Corp Fuel injection device for internal combustion engine
JPH048844A (en) * 1990-04-26 1992-01-13 Mitsubishi Electric Corp Intake air quantity controller of engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH045450A (en) * 1990-04-19 1992-01-09 Mitsubishi Electric Corp Fuel injection device for internal combustion engine
JPH048844A (en) * 1990-04-26 1992-01-13 Mitsubishi Electric Corp Intake air quantity controller of engine

Also Published As

Publication number Publication date
JPH0833132B2 (en) 1996-03-29

Similar Documents

Publication Publication Date Title
US6763707B2 (en) Failure determination system and method for internal combustion engine and engine control unit
US6594987B2 (en) Apparatus for detecting fault in exhaust system of internal combustion engine
US7387011B2 (en) Deterioration diagnosis system for exhaust gas sensor
US5035220A (en) Fuel controller for an internal combustion engine
KR930007613Y1 (en) Control apparatus for internal combustion engine
JP3902399B2 (en) Air-fuel ratio control device for internal combustion engine
US7168240B2 (en) Control apparatus for an internal combustion engine
JPS60237142A (en) Controller for internal-combustion engine
JP2885813B2 (en) Engine misfire detection and exhaust system
JP2907001B2 (en) Lean combustion control and failure determination device for internal combustion engine
JP2000073850A (en) Misfire detecting device for internal combustion engine
JP2004108183A (en) Air-fuel ratio control device for internal combustion engine
JPH0233440A (en) Air-fuel ratio control device for internal combustion engine
JP2002130009A (en) Controller for internal combustion engine
JP4055256B2 (en) Exhaust gas purification device for internal combustion engine
JPH0763097A (en) Fuel controller of engine
JPH0544538A (en) Air-fuel ratio control method and device for multicylinder internal combustion engine
JP4604361B2 (en) Control device for internal combustion engine
JP3170046B2 (en) Air-fuel ratio learning method for internal combustion engine
JPH0233447A (en) Fuel injection control device for engine
JPS603445A (en) Method of controlling air-fuel ratio of internal- combustion engine
JPH09137717A (en) Self diagnostic device in secondary air supplying device of internal combustion engine
JP2804867B2 (en) Internal combustion engine control device
JPH08218928A (en) Excessive rotation preventing device for engine
JP2004293351A (en) Control method of cutting engine fuel

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees