JPH0833132B2 - Air-fuel ratio control device for internal combustion engine - Google Patents

Air-fuel ratio control device for internal combustion engine

Info

Publication number
JPH0833132B2
JPH0833132B2 JP18403888A JP18403888A JPH0833132B2 JP H0833132 B2 JPH0833132 B2 JP H0833132B2 JP 18403888 A JP18403888 A JP 18403888A JP 18403888 A JP18403888 A JP 18403888A JP H0833132 B2 JPH0833132 B2 JP H0833132B2
Authority
JP
Japan
Prior art keywords
air
cylinder
fuel ratio
misfire
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18403888A
Other languages
Japanese (ja)
Other versions
JPH0233440A (en
Inventor
雄治 岸本
晴司 綿谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP18403888A priority Critical patent/JPH0833132B2/en
Publication of JPH0233440A publication Critical patent/JPH0233440A/en
Publication of JPH0833132B2 publication Critical patent/JPH0833132B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、自動車用多気筒内燃機関、特に排気ガス
の悪化を防止する空燃比制御装置に関するものである。
Description: TECHNICAL FIELD The present invention relates to a multi-cylinder internal combustion engine for automobiles, and more particularly to an air-fuel ratio control device for preventing deterioration of exhaust gas.

〔従来の技術〕[Conventional technology]

自動車用ガソリンエンジンにおいては、排出ガスの浄
化のため従来から種々の方法が用いられている。そのう
ち燃料系の有力な手段の一つとしてマルチポイント式燃
料噴射装置が多用されている。この装置は多気筒エンジ
ンの各気筒への燃料分配特性が気化器やシングルポイン
トインジェクションに較べて優れており、構造上吸気管
内の壁面付着燃料が少ないため、良好な排出ガス性能や
応答性が得られる。これらの満足しうる性能はエンジン
の燃料供給系、点火系、エンジン本体が全て正常な時に
は発揮されるが、何らかの異常により半数または複数の
気筒が失火状態になると、いわゆる生ガスが放出され排
出ガスは著しく悪化し、かつ触媒装置が過熱する。特に
1気筒のみ失火している場合には車輌としては他の正常
気筒から得られる出力によって走行には大きな支障がな
いため、運転者が気が付きにくく排出ガスが悪化しその
まま放置されるばかりか、触媒が過熱し損傷に至ること
がある。
Various methods have been conventionally used in automobile gasoline engines for purification of exhaust gas. Among them, the multi-point fuel injection device is often used as one of the powerful means of the fuel system. This device has a better fuel distribution characteristic to each cylinder of a multi-cylinder engine than a carburetor or single point injection, and because of the structure, the amount of fuel adhering to the wall in the intake pipe is small, so good exhaust gas performance and responsiveness are obtained. To be These satisfactory performances are exhibited when the fuel supply system of the engine, the ignition system, and the engine body are all normal, but when half or more of the cylinders become misfired due to some abnormality, so-called raw gas is released and exhaust gas is emitted. Deteriorates significantly and the catalytic device overheats. Especially when only one cylinder is misfiring, the output obtained from other normal cylinders does not significantly affect the running of the vehicle. Therefore, it is difficult for the driver to notice, the exhaust gas deteriorates, and it is left as it is. May overheat and become damaged.

上記のような問題点を解決するために失火を検出して
当該気筒の燃料供給を停止する方法が例えば特開昭61-2
3876号公報に提案されている。このような従来の動作を
第2図の構成図および第3図のフローチャートを用いて
説明する。
In order to solve the above problems, a method of detecting misfire and stopping the fuel supply to the cylinder is disclosed in, for example, JP-A-61-2.
It is proposed in Japanese Patent No. 3876. Such a conventional operation will be described with reference to the configuration diagram of FIG. 2 and the flowchart of FIG.

第2図はマルチポイント式燃料噴射装置の構成を示す
もので、1はエンジン、2は吸気管、3はスロットル
弁、4は吸入空気量を検出するためのエアフローセン
サ、5a〜5dは各気筒の吸気管2a〜2dに設置され、電気パ
ルスによって駆動される燃料噴射弁、6a〜6dはエンジン
1の筒内圧力を検出する筒内圧センサ、7はエンジン1
のクランク角パルスを発生する回転センサ、8は排気
管、9は排気ガス中の成分から空燃比を検出する酸素セ
ンサ、10はエアフローセンサ4及び回転センサ7,酸素セ
ンサ9などの運転パラメータから所要燃料量を演算しエ
ンジンの回転に同期して付勢される燃料噴射弁5a〜5dの
駆動パルス幅を制御するとともに筒内圧センサ6a〜6dの
信号波形を処理し各気筒の失火の有無を判別する制御装
置、11は排気ガスを浄化する触媒装置である。以上の構
成による燃料噴射制御の動作については既に公知例が多
く存在するのでここでは省略し、又制御装置10について
も、従来から広く用いられているメモリや演算部などか
らなるマイクロコンピュータと入出力回路とで構成され
ているのでその機構の説明は省略し、動作のみ第3図の
フローチャートについて説明する。
FIG. 2 shows the structure of a multi-point fuel injection device. 1 is an engine, 2 is an intake pipe, 3 is a throttle valve, 4 is an air flow sensor for detecting the amount of intake air, and 5a to 5d are cylinders. Of the intake pipes 2a to 2d, driven by electric pulses, 6a to 6d are in-cylinder pressure sensors for detecting the in-cylinder pressure of the engine 1, and 7 is the engine 1
, A rotation sensor that generates a crank angle pulse, 8 is an exhaust pipe, 9 is an oxygen sensor that detects an air-fuel ratio from components in exhaust gas, and 10 is required from operating parameters such as an air flow sensor 4, a rotation sensor 7, and an oxygen sensor 9. Calculates the amount of fuel and controls the drive pulse width of the fuel injection valves 5a-5d that are energized in synchronization with the rotation of the engine and processes the signal waveforms of the in-cylinder pressure sensors 6a-6d to determine whether or not there is a misfire in each cylinder. A control device 11 for controlling the exhaust gas is a catalyst device for purifying the exhaust gas. Since there are many known examples of the fuel injection control operation with the above-described configuration, the description thereof is omitted here, and the control device 10 is also input / output to / from a microcomputer including a memory and a calculation unit that have been widely used in the past. Since it is composed of a circuit, the description of its mechanism will be omitted and only the operation will be described with reference to the flowchart of FIG.

スタートしてからまずステップ100でエアフローセン
サや回転センサ7の信号を読込み、ステップ101でこれ
らの情報に基づき燃料噴射弁5a〜5dの駆動パルス幅を演
算する。このパルス幅は基本的には吸入空気量をエンジ
ン回転数で除した値にほぼ比例し、かつフィールドバッ
ク補正量の中央値からの偏差をもってエアフローセンサ
4や燃料噴射弁5a〜5dの誤差を求める学習補正を行な
う。燃料噴射弁5a〜5dからはその駆動パルス幅に比例し
た燃料がそれぞれの気筒の吸気管2a〜2dに対して所定サ
イクル毎に噴射され、各気筒内で混合気が燃焼される。
After the start, first in step 100, the signals of the air flow sensor and the rotation sensor 7 are read, and in step 101, the drive pulse width of the fuel injection valves 5a to 5d is calculated based on this information. This pulse width is basically proportional to the value obtained by dividing the intake air amount by the engine speed, and the error of the air flow sensor 4 and the fuel injection valves 5a to 5d is obtained from the deviation from the median value of the field back correction amount. Perform learning correction. Fuel proportional to the drive pulse width is injected from the fuel injection valves 5a to 5d to the intake pipes 2a to 2d of each cylinder in every predetermined cycle, and the air-fuel mixture is burned in each cylinder.

次にステップ102で各気筒に設置された筒内圧センサ6
a〜6dの信号波形を回転センサ7から得られる回転パル
スに同期して逐次読込む。この信号波形は第4図に示す
如く、通常クランク角がTDCの近傍において燃焼による
圧力上昇が図の実線のように大きくなるが、何らかの支
障により当該気筒が失火即ち燃焼が行なわれない時には
破線で示すように低い値を示す。従って公知例(特開昭
61-23876号公報)に示されているようにTDCを中心とし
て以前,以後の2点の筒内圧力の比較又は筒内圧のピー
ク値を比較することにより夫々の気筒が失火しているか
否かを検知することが可能であり、ステップ103にてこ
の判別が行なわれる。
Next, in step 102, the in-cylinder pressure sensor 6 installed in each cylinder
The signal waveforms a to 6d are sequentially read in synchronization with the rotation pulse obtained from the rotation sensor 7. As shown in FIG. 4, this signal waveform shows that the pressure increase due to combustion becomes large as shown by the solid line in the figure when the crank angle is near TDC, but it is broken by a broken line when the cylinder concerned misfires or does not burn due to some trouble. It shows a low value as shown. Therefore, a known example (Japanese Patent Laid-Open No.
61-23876), whether or not each cylinder is misfiring by comparing the in-cylinder pressure at two points before or after the TDC, or by comparing the peak values of the in-cylinder pressure. Can be detected, and this determination is made in step 103.

気筒の失火を招く要因としてはここでは図示していな
いイグニッションコイル,イグナイタ,高圧コード,点
火プラグなどの点火系デバイスの故障や、これらを接続
するコネクタ部分の接触不良、更に点火プラグの汚損、
燃料噴射弁を駆動する回路部101a〜101dの故障、気筒内
への水漏れなどによる燃焼不全などがある。
The causes of misfire of the cylinder are failure of ignition system devices such as an ignition coil, an igniter, a high-voltage cord, and a spark plug (not shown here), a contact failure of a connector portion connecting them, and further, a contamination of the spark plug.
There are failures in the circuit units 101a to 101d that drive the fuel injection valve, combustion failure due to water leakage into the cylinder, and the like.

筒内圧センサの方式としては圧電タイプや圧力センサ
を実用に供することが可能であり、更に他の方法(振
動,燃焼光など)を用いることによっても失火の検出は
可能である。
As a cylinder pressure sensor method, a piezoelectric type or a pressure sensor can be put to practical use, and misfire can be detected by using other methods (vibration, combustion light, etc.).

失火が検出されるとステップ104で当該気筒の燃料噴
射弁の駆動が停止され、他の気筒は酸素センサ9の信号
に基づき第5図に示すように空燃比のフィードバック制
御が行なわれる。この時、失火気筒への燃料供給は停止
されるので生ガスの排出は防止されるが、酸素センサは
当該気筒からの新気即ち大量の酸素にさらされるので、
他の気筒の空燃比を正確に検知することができず、トー
タルとしてリーンと判別する。従って、正常気筒の燃料
噴射弁の駆動パルス幅はリッチ側にシフトして動作す
る。上記の結果、フィードバック補正量によって求めら
れる学習補正量もリッチ側に動作することとなる。
When the misfire is detected, the drive of the fuel injection valve of the cylinder concerned is stopped in step 104, and the other cylinders are subjected to the feedback control of the air-fuel ratio based on the signal of the oxygen sensor 9 as shown in FIG. At this time, since the fuel supply to the misfiring cylinder is stopped, the discharge of raw gas is prevented, but the oxygen sensor is exposed to fresh air from the cylinder, that is, a large amount of oxygen,
Since the air-fuel ratios of the other cylinders cannot be accurately detected, it is judged to be lean as a total. Therefore, the drive pulse width of the fuel injection valve of the normal cylinder shifts to the rich side to operate. As a result, the learning correction amount calculated by the feedback correction amount also operates on the rich side.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

しかしながら、一つの気筒が失火して該気筒への燃料
供給を停止し他の気筒へのフィードバック補正を行なう
と、他の正常な気筒の空燃比がリッチ側に移行してHc,C
oが増加し、しかも失火気筒から大量に酸素が供給され
るため三元触媒での反応熱が増大し、もともと排気温の
高い運転領域では触媒の劣化をきたすこととなる。また
アイドル領域等のように排気温が低い領域では触媒が活
性化しにくく、かつ失火気筒から低温空気が排出される
と活性化温度に到達しないため、トータルでの空燃比が
理論空燃比となっても触媒での反応なく大気へHc,Coが
排出されることとなる。さらにフィードバック中にリッ
チ側へ学習が移行すると、例えばエンジン冷態時の暖機
運転中等にフィードバック補正を停止し空燃比のリッチ
化を行なうが、学習のリッチ化と重畳してオーバーリッ
チとなり、正常気筒さえ失火に至るという課題があっ
た。
However, if one cylinder misfires and the fuel supply to that cylinder is stopped and feedback correction to other cylinders is performed, the air-fuel ratio of the other normal cylinders shifts to the rich side and Hc, C
As a result, a large amount of oxygen is supplied from the misfiring cylinder, and the reaction heat in the three-way catalyst increases, causing deterioration of the catalyst in the operating region where the exhaust temperature is originally high. In addition, the catalyst is difficult to activate in a region where the exhaust temperature is low, such as in the idle region, and the activation temperature does not reach when low temperature air is discharged from the misfiring cylinder, so the total air-fuel ratio becomes the theoretical air-fuel ratio. However, Hc and Co are discharged to the atmosphere without any reaction by the catalyst. Further, if learning shifts to the rich side during feedback, feedback correction is stopped and the air-fuel ratio is made rich, for example, during warm-up operation when the engine is in a cold state. There was a problem that even a cylinder could lead to misfire.

この発明は上記のような課題を解消するためになされ
たもので、気筒が失火したとき触媒での浄化が可能な領
域ではフィードバック制御を行なって排気ガスを浄化す
ると共に、エンジンや触媒に損傷を与えることのない内
燃機関の空燃比制御装置を得ることを目的とする。
The present invention has been made to solve the above problems, and in a region where purification by a catalyst is possible when a cylinder misfires, feedback control is performed to purify exhaust gas and damage to an engine and a catalyst. An object of the present invention is to obtain an air-fuel ratio control device for an internal combustion engine that does not give a fuel.

〔課題を解決するための手段〕[Means for solving the problem]

この発明に係る空燃比制御装置は、各気筒の吸気管に
各々燃料噴射弁を備えた多気筒内燃機関において、各気
筒の失火の有無を検出する失火検出手段と、排気管に設
けた空燃比検出手段と、この空燃比検出手段の出力によ
り空燃比を帰還制御する帰還補正手段と、この帰還補正
手段の出力の少なくとも一部を記憶する記憶手段とを備
え、上記失火検出手段の出力により失火を検出すると失
火気筒への燃料噴射弁の作動を停止させ、非失火気筒に
よる帰還補正を行なうと共に記憶手段の作動を停止させ
るようにしたものである。
The air-fuel ratio control device according to the present invention is a multi-cylinder internal combustion engine having a fuel injection valve in each intake pipe of each cylinder, and a misfire detection means for detecting the presence or absence of misfire in each cylinder, and an air-fuel ratio provided in the exhaust pipe. A detection means, a feedback correction means for feedback-controlling the air-fuel ratio by the output of the air-fuel ratio detection means, and a storage means for storing at least a part of the output of the feedback correction means are provided, and misfire is caused by the output of the misfire detection means. Is detected, the operation of the fuel injection valve to the misfiring cylinder is stopped, the feedback correction is performed by the non-misfiring cylinder, and the operation of the storage means is stopped.

又、この発明に係る空燃比制御装置は、失火検出手段
の出力に応答して、触媒浄化可能領域であるか否かを判
定する触媒浄化可能領域検出手段を備え、触媒浄化可能
領域が検出されたときに帰還補正を行なうようにしたも
のである。
Further, the air-fuel ratio control device according to the present invention is provided with catalyst cleanable region detecting means for determining whether or not the catalyst is cleanable region in response to the output of the misfire detecting means, and the catalyst cleanable region is detected. It is designed such that feedback correction is carried out when it is turned on.

〔作用〕[Action]

この発明においては、失火を検出した気筒への燃料を
停止した上で吸入空気量または吸入空気量に対応したエ
ンジンのパラメータにより触媒が損傷を受けることな
く、排気ガスの浄化が可能な運転領域では他の気筒によ
るフィードバック制御を継続することによりHc,Co,Nox
の大気への排出を防止すると共に、フィードバック中に
おける偏差によるエアフローセンサ、燃料噴射弁の誤差
を過大に学習することを禁止し、エンジンの暖機運転等
空燃比フィードバック制御停止中における未失火気筒へ
の燃料供給がオーバーリッチによる失火を防止すること
ができる。
According to the present invention, in the operating region where the exhaust gas can be purified without stopping the fuel to the cylinder in which the misfire is detected, the catalyst is not damaged by the intake air amount or the engine parameter corresponding to the intake air amount. By continuing the feedback control by other cylinders, Hc, Co, Nox
Of the air flow sensor and fuel injection valve due to deviation during feedback is prohibited to prevent excessive learning of the air flow sensor and fuel injection valve. It is possible to prevent misfire due to over-rich fuel supply.

又、この発明においては、触媒での浄化が期待できる
領域のみ帰還補正によりリッチ化を行ない、未反応の有
害ガスを大気中に排出させないようにする。
Further, in the present invention, only the region where purification by the catalyst can be expected is enriched by feedback correction so that unreacted harmful gas is not discharged into the atmosphere.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。第
1図はこの発明による空燃比制御装置において各気筒へ
の燃料制御の手順を示すフローチャートで、暖機運転、
エンジンの過減速運転等の過渡の燃料演算等は第3図に
おける従来例と同様であるので省略する。また、第3図
と同じステップは同一の処理を行なう。この発明ではス
テップ104と105の間に触媒浄化可能領域か否かの判定を
行なうステップ107を設ける。例えば、吸入空気量が少
なすぎて排温が低く、触媒での浄化が期待できない領域
または吸入空気量が多く排温が高いため空燃比フィード
バックにより未失火気筒から排出されるHc,Coを触媒で
反応させると触媒が高温となり劣化又は損傷が生じる可
能性がある領域では空燃比フィードバックを停止してス
テップ100へ戻る。ステップ107の判定において触媒浄化
可能領域であれば第3図と同様ステップ105,106により
未失火気筒をリッチ化させ、Noxの発生を押えると共
に、失火気筒より排出される酸素により過剰のHc,Coを
触媒で反応させることにより大気中への排気ガスを浄化
させることができる。
An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a flow chart showing the procedure of fuel control to each cylinder in the air-fuel ratio control device according to the present invention.
The transient fuel calculation such as the over-deceleration operation of the engine is the same as that of the conventional example shown in FIG. The same steps as those in FIG. 3 perform the same processing. In the present invention, step 107 is provided between steps 104 and 105 to determine whether or not the area is a catalyst purifying area. For example, the amount of intake air is too small and the exhaust temperature is low, so that it is not possible to expect purification with a catalyst or the amount of intake air is high and the exhaust temperature is high. When the reaction is performed, the temperature of the catalyst becomes high and deterioration or damage may occur, the air-fuel ratio feedback is stopped, and the process returns to step 100. If it is determined in step 107 that the catalyst can be cleaned, the unfired cylinders are made rich by steps 105 and 106 as in FIG. 3 to suppress the generation of Nox, and the excess Hc and Co are catalyzed by the oxygen discharged from the misfired cylinders. The exhaust gas to the atmosphere can be purified by reacting with.

更にこの発明ではステップ108にて失火気筒を含む空
燃比フィードバック中においてはステップ109の学習値
の演算を禁止する様にしているため、学習値は全ての気
筒が正常に燃焼している時のエアフローセンサ及び燃料
噴射弁等の機差を補償する値を適切に保持することがで
き、第3図及び第1図において図示していない演算の暖
機運転時におけるリッチ補正時、及びエンジンの過渡運
転時における加減速補正時等に過度に空燃比をリッチ化
し失火に至る不具合が生じることがない。
Further, in the present invention, since the calculation of the learning value in step 109 is prohibited during the air-fuel ratio feedback including the misfiring cylinder in step 108, the learning value is the air flow when all the cylinders are normally burning. Values for compensating for machine differences such as sensors and fuel injection valves can be appropriately held, and during rich correction during warm-up operation of calculations not shown in FIGS. 3 and 1, transient engine operation. When the acceleration / deceleration is corrected, the air-fuel ratio will not be excessively rich and misfiring will not occur.

又、この発明の他の実施例として触媒での浄化が可能
か否かを検出する手段として触媒温度センサを設け、該
センサの出力によりステップ107の判定を行なうことに
より本発明の効果が上げられることは明確である。
Further, as another embodiment of the present invention, a catalyst temperature sensor is provided as a means for detecting whether purification with a catalyst is possible, and the effect of the present invention is enhanced by making the determination of step 107 based on the output of the sensor. That is clear.

又、触媒の温度が損傷を受けない臨界温度範囲内で空
燃比フィードバック制御の補正量に制限を加えることに
より、より広い運転領域に渡ってフィードバック補正が
行なえ、排気ガスの浄化が可能となることは明らかであ
る。
Further, by limiting the correction amount of the air-fuel ratio feedback control within the critical temperature range where the temperature of the catalyst is not damaged, the feedback correction can be performed over a wider operating range, and the exhaust gas can be purified. Is clear.

〔発明の効果〕〔The invention's effect〕

以上説明したようにこの発明によれば、気筒が失火し
たとき、当該気筒への燃料供給を停止し多量のHcを排出
するのを防止し、他の気筒を空燃比フィードバックにて
リッチ化させてNoxを減少させ、かつ触媒でリッチ化に
よるHc,Coを浄化させるようにしているめ、大気への排
ガスの浄化率を大幅に向上させることができる。また、
フィードバック中の学習を禁止していることにより、フ
ィードバック停止状態における空燃比を謝った学習によ
りリッチ化することもなく円滑なエンジンの運転が維持
でき、しかもHcの大幅な排出も防止できる。さらに、こ
の発明においては、触媒での浄化が可能か否かを温度セ
ンサ等で検出しているため、触媒の損傷を与えることな
く触媒での浄化の期待できる領域のみフィードバックの
リッチ化を行なうため触媒での未反応のまま大気へHc,C
oが排出されることがないという優れた効果がある。
As described above, according to the present invention, when a cylinder misfires, the fuel supply to the cylinder is stopped, a large amount of Hc is prevented from being discharged, and other cylinders are enriched by air-fuel ratio feedback. Since NOx is reduced and Hc and Co are purified by enrichment with a catalyst, the purification rate of exhaust gas to the atmosphere can be significantly improved. Also,
By prohibiting learning during feedback, smooth engine operation can be maintained without enriching the air-fuel ratio in the feedback stopped state due to apologized learning, and a large amount of Hc emission can also be prevented. Further, in the present invention, since it is detected by the temperature sensor or the like whether or not purification by the catalyst is possible, feedback enrichment is performed only in the region where purification by the catalyst can be expected without damaging the catalyst. Hc, C to the atmosphere without reaction with the catalyst
It has the excellent effect that o is not emitted.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の一実施例による空燃比制御装置にお
いて各気筒への燃料制御の手順を示すフローチャート
図、第2図は燃料噴射装置の構成図、第3図は従来の燃
料制御の手順を示すフローチャート図、第4図は筒内圧
センサの特性図、第5図は空燃比制御の特性図である。 5a〜5d……燃料噴射弁、6……筒内圧センサ、9……酸
素センサ、10……制御装置。
FIG. 1 is a flow chart showing a procedure of fuel control to each cylinder in an air-fuel ratio control apparatus according to an embodiment of the present invention, FIG. 2 is a configuration diagram of a fuel injection device, and FIG. 3 is a conventional fuel control procedure. 4 is a characteristic diagram of the in-cylinder pressure sensor, and FIG. 5 is a characteristic diagram of air-fuel ratio control. 5a to 5d ... Fuel injection valve, 6 ... In-cylinder pressure sensor, 9 ... Oxygen sensor, 10 ... Control device.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】各気筒の吸気管に各々燃料噴射弁を備えた
多気筒内燃機関において、 各気筒の失火の有無を検出する失火検出手段と、 排気管に設けた空燃比検出手段と、 この空燃比検出手段の出力により空燃比を帰還制御する
帰還補正手段と、 この帰還補正手段の出力の少なくとも一部を記憶する記
憶手段と を備え、 上記失火検出手段の出力により失火を検出する失火気筒
への燃料噴射弁の作動を停止させ、非失火気筒による帰
還補正を行なうと共に記憶手段の作動を停止させること
を特徴とする内燃機関の空燃比制御装置。
1. In a multi-cylinder internal combustion engine having a fuel injection valve in each intake pipe of each cylinder, there is provided misfire detection means for detecting the presence or absence of misfire in each cylinder, and air-fuel ratio detection means provided in the exhaust pipe. A misfire cylinder that includes feedback correction means that feedback-controls the air-fuel ratio based on the output of the air-fuel ratio detection means, and storage means that stores at least a portion of the output of the feedback correction means, and detects misfire by the output of the misfire detection means. To stop the operation of the fuel injection valve for the internal combustion engine, perform feedback correction by the non-misfiring cylinder, and stop the operation of the storage means.
【請求項2】上記失火検出手段の出力に応答して、触媒
浄化可能領域であるか否かを判定する触媒浄化可能領域
検出手段を備え、 触媒浄化可能領域が検出されたときに上記帰還補正を行
なうことを特徴とする特許請求の範囲第1項記載の内燃
機関の空燃比制御装置。
2. A catalyst cleanable area detecting means for determining whether or not the catalyst is cleanable area in response to an output of the misfire detecting means, wherein the feedback correction is made when the catalyst cleanable area is detected. The air-fuel ratio control device for an internal combustion engine according to claim 1, wherein
JP18403888A 1988-07-22 1988-07-22 Air-fuel ratio control device for internal combustion engine Expired - Fee Related JPH0833132B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18403888A JPH0833132B2 (en) 1988-07-22 1988-07-22 Air-fuel ratio control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18403888A JPH0833132B2 (en) 1988-07-22 1988-07-22 Air-fuel ratio control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH0233440A JPH0233440A (en) 1990-02-02
JPH0833132B2 true JPH0833132B2 (en) 1996-03-29

Family

ID=16146273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18403888A Expired - Fee Related JPH0833132B2 (en) 1988-07-22 1988-07-22 Air-fuel ratio control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JPH0833132B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2672877B2 (en) * 1990-04-19 1997-11-05 三菱電機株式会社 Fuel injection device for internal combustion engine
JP2666519B2 (en) * 1990-04-26 1997-10-22 三菱電機株式会社 Engine intake air control system

Also Published As

Publication number Publication date
JPH0233440A (en) 1990-02-02

Similar Documents

Publication Publication Date Title
US5035220A (en) Fuel controller for an internal combustion engine
CA2060433C (en) Control apparatus for speedily warming up catalyst in internal combustion engine
US7387011B2 (en) Deterioration diagnosis system for exhaust gas sensor
US6311482B1 (en) Air-fuel ratio control apparatus for internal combustion engines
KR930007613Y1 (en) Control apparatus for internal combustion engine
US4962740A (en) Fuel controller for internal combustion engine
US7047727B2 (en) Rapid catalyst warm-up control device for internal combustion engine
JP6669100B2 (en) Abnormality diagnosis device for internal combustion engine
JP2000073850A (en) Misfire detecting device for internal combustion engine
JPH0833132B2 (en) Air-fuel ratio control device for internal combustion engine
US7614212B2 (en) Engine control apparatus
JP2000283015A (en) Control device of engine
JP3632325B2 (en) Engine torque control device
JP3211542B2 (en) Fuel injection control device for internal combustion engine
JPH0233447A (en) Fuel injection control device for engine
JPH0544538A (en) Air-fuel ratio control method and device for multicylinder internal combustion engine
JPH09166041A (en) Misfire detector of internal combustion engine
JP2804867B2 (en) Internal combustion engine control device
KR930002079B1 (en) Fuel control device
JPS603445A (en) Method of controlling air-fuel ratio of internal- combustion engine
JP2697057B2 (en) Abnormality diagnosis device for internal combustion engine
JPH0370104B2 (en)
JPH07103034A (en) Air fuel ratio controller for multicylinder internal combustion engine
JP2002089331A (en) Control device for internal combustion engine
JPH05172011A (en) Purge introduction control device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees