JPH0231515B2 - HAKUMAKUHIKARIDOHAKINOSOSHI - Google Patents

HAKUMAKUHIKARIDOHAKINOSOSHI

Info

Publication number
JPH0231515B2
JPH0231515B2 JP16007484A JP16007484A JPH0231515B2 JP H0231515 B2 JPH0231515 B2 JP H0231515B2 JP 16007484 A JP16007484 A JP 16007484A JP 16007484 A JP16007484 A JP 16007484A JP H0231515 B2 JPH0231515 B2 JP H0231515B2
Authority
JP
Japan
Prior art keywords
waveguide
optical waveguide
active layer
optical
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16007484A
Other languages
Japanese (ja)
Other versions
JPS6139594A (en
Inventor
Keisuke Sasaki
Hiroshi Ito
Mutsumi Serizawa
Juichi Aoki
Akio Takigawa
Koichi Maeda
Ikuo Tago
Motoaki Yoshida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP16007484A priority Critical patent/JPH0231515B2/en
Publication of JPS6139594A publication Critical patent/JPS6139594A/en
Publication of JPH0231515B2 publication Critical patent/JPH0231515B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)
  • Optical Integrated Circuits (AREA)

Description

【発明の詳細な説明】 3.1 産業上の利用分野 本発明は、新規なエバネツセントレーザー素子
に関するものである。
[Detailed Description of the Invention] 3.1 Industrial Application Field The present invention relates to a novel evanescent laser device.

3.2 従来技術 光通信は既に実用段階に入つているが、実際に
光が用いられているのはその伝送系のみであり、
その他の部分は全て一般の電気回路が用いられて
いる。しかしその周波数の高さにより、光の伝達
し得る情報量が電気系のそれに比してはるかに多
い事や誘導電波による雑音の生じない事、伝送媒
体で発生する熱による損失の小さい事など、光機
能素子、特に光制御光機能素子が実用化された場
合、それに期待しうる要素が多いばかりか、その
集積化も非常に有利であると考えられ、各方面で
様々な研究がなされている。
3.2 Prior Art Although optical communication has already entered the practical stage, the only place where light is actually used is in its transmission system.
All other parts use general electric circuits. However, due to its high frequency, the amount of information that light can transmit is much larger than that of electrical systems, there is no noise caused by induced radio waves, and there is less loss due to heat generated in the transmission medium. If optical functional devices, especially optically controlled optical functional devices, are put into practical use, not only will there be many elements that can be expected of them, but their integration is also considered to be extremely advantageous, and various studies are being conducted in various fields. .

光機能素子の中でも特に重要と考えられている
のが光増幅器、あるいは光発振器であり、現在光
通信用光源として半導体接合レーザーが用いられ
ている。これとは別に、伝送系又は光集積回路を
構成する光導波系に直接接続し、あるいは一体化
した双方向性の増幅系、エバネツセントレーザー
が考えられている。
Among optical functional elements, optical amplifiers or optical oscillators are considered to be particularly important, and semiconductor junction lasers are currently used as light sources for optical communications. Apart from this, bidirectional amplification systems and evanescent lasers are being considered that are directly connected to or integrated with optical waveguide systems constituting transmission systems or optical integrated circuits.

エバネツセントレーザーは1971年、ベル研究所
のShank等によつて、光フアイバーをレーザー発
振可能な色素を溶かしたアルコール中に置き、そ
の色素をN2レーザーで励起することにより初め
て観測された。出力光は導波路中に直接結合され
るので、光の導波路結合のための素子等を必要と
しないのが特色である。このシステムを用いて、
カリフオルニア大学やマツクスプランク研究所の
チームでは、一定周波数の入力光が効果的に増幅
し得る事を示した。又、本発明者等は、光導波路
の複素伝搬定数虚数部と増幅媒質のもつ固有のゲ
インとの間の関係を示し、このシステムに依つて
そのゲインの測定が可能である事を明らかにし
た。又、それと方向性結合器を組合せる事によつ
て増幅振動が生ずる事が確認された。
Evanescent lasers were first observed in 1971 by Shank et al. of Bell Laboratories, who placed an optical fiber in alcohol containing a dye capable of laser oscillation and excited the dye with an N 2 laser. Since the output light is directly coupled into the waveguide, it is distinctive in that it does not require any elements for coupling the light into the waveguide. Using this system,
A team from the University of California and the Max Planck Institute has shown that input light at a certain frequency can be effectively amplified. The inventors also demonstrated the relationship between the imaginary part of the complex propagation constant of an optical waveguide and the inherent gain of the amplification medium, and clarified that the gain can be measured using this system. . It was also confirmed that amplified vibrations were generated by combining this with a directional coupler.

この増幅系に共振器を付加する事により、ここ
でレーザ発振が生ずる。この共振器としてShank
らはグレーデイング導波路を用いた分布共振器型
導波路を考案している。また、導波路の端面をハ
ーフミラーにしたり、カツプミラーを用いて光路
を導波路の外部へとり出しておいてからそれを鏡
ではさんだりしてフアブリーペロー型共振器を形
成することもできる。
By adding a resonator to this amplification system, laser oscillation occurs here. Shank as this resonator
have devised a distributed cavity waveguide using a grading waveguide. Furthermore, a Fabry-Perot resonator can be formed by making the end face of the waveguide a half mirror, or by using a cup mirror to take out the optical path to the outside of the waveguide and then sandwiching it between mirrors.

3.3 発明が解決しようとする問題点 しかしながら、前記した様な共振器の設置方法
では種々の問題が生ずる。まず、分布共振器型導
波路の場合、グレーテイングの微細加工が必要に
なるが、たとえば集積化する場合には単位素子は
なるべくシンプルな形状のものである事が望まし
く、この様な複雑な形態は適当でない。従つて、
共振器はフアブリーペロー型を用いる事が好まし
い。ところが、フアブリーペロー型共振器に於い
てこれまでに知られている形態は前記の様に導波
路の実質的に外部に設置するものであり、この様
な形態ではやはり、集積化は困難である。
3.3 Problems to be Solved by the Invention However, various problems arise with the resonator installation method described above. First, in the case of a distributed resonator waveguide, fine processing of the grating is required, but for example, when integrating, it is desirable that the unit element be as simple as possible, and such complex shapes is not appropriate. Therefore,
It is preferable to use a Fabry-Perot type resonator. However, in the Fabry-Perot type resonator that has been known so far, it is installed substantially outside the waveguide as described above, and integration is still difficult in such a form.

3.4 問題点を解決するための手段 基板上にこれよりも屈折率の高い薄膜光導波路
を設け、この光導波路に接して、レーザー媒質よ
り成るまたはレーザー媒質を含む、前記光導波路
よりも屈折率の低い活性層を基板とは反対の側に
設けたエバネツセントレーザー素子に於いて、前
記光導波路の活性層が接した部分の膜厚がその他
の部分の膜厚よりも相対的に厚く、膜厚の変化は
ステツプ状を呈しており、このステツプの側面は
相互に平行であり、かつ前記活性層と該光導波路
との界面に対して垂直である構造とする。
3.4 Means for solving the problem A thin film optical waveguide having a higher refractive index than this is provided on the substrate, and a thin film optical waveguide made of or including a laser medium and having a refractive index higher than that of the optical waveguide is provided in contact with this optical waveguide. In an evanescent laser device in which a low active layer is provided on the side opposite to the substrate, the film thickness of the part of the optical waveguide in contact with the active layer is relatively thicker than that of other parts, and The thickness change has a step shape, and the side surfaces of the steps are parallel to each other and perpendicular to the interface between the active layer and the optical waveguide.

本発明に於ける基板と光導波路の関係は通常こ
れらの間に要求される関係と同じであり、基板の
屈折率をNS、光導波路の屈折率をNGとすればNS
<NGである必要がある。これらの材料には使用
する波長域に於いて透明であれば何を用いてもか
まわない。たとえば石英、ガラス、金属酸化物、
塩類の結晶、プラスチツク、熱硬化性樹脂などで
ある。この屈折率NGの薄膜光導波路上にレーザ
ー媒質、又はレーザー媒質を含む物質より成る活
性層を設ける。この活性層の屈折率をNAとすれ
ばNA<NGでなければならない。活性層の材質に
は通常レーザー媒質や、レーザー媒質を含んだ物
質、たとえばルビー、Nd3+イオンを含むYAGや
ガラス、色中心を有するNaF結晶、色素を含ん
だ高分子材料などを用いることができる。
The relationship between the substrate and the optical waveguide in the present invention is the same as the relationship normally required between them, and if the refractive index of the substrate is N S and the refractive index of the optical waveguide is N G , then N S
NG Must be. Any material may be used as long as it is transparent in the wavelength range used. For example, quartz, glass, metal oxides,
These include salt crystals, plastics, and thermosetting resins. An active layer made of a laser medium or a substance containing a laser medium is provided on this thin film optical waveguide having a refractive index N G . If the refractive index of this active layer is N A , then N A <N G must be satisfied. The material of the active layer can usually be a laser medium or a substance containing a laser medium, such as ruby, YAG or glass containing Nd 3+ ions, NaF crystal with a color center, or a polymer material containing a dye. can.

本発明に於いては、前記光導波路の活性層が接
した部分を他の部分に対してステツプ状に盛り上
げておき、膜厚の変化する部分を活性層との界面
に対して垂直に立つた面にしておく。また、この
面は前記光導波路内を導波する光の進行方向に対
しても垂直となつていなければならない。
In the present invention, the part of the optical waveguide in contact with the active layer is raised in a step shape relative to other parts, and the part where the film thickness changes stands perpendicular to the interface with the active layer. Keep it facing up. Further, this plane must also be perpendicular to the traveling direction of the light guided within the optical waveguide.

3.5 作用 活性層を、ポンピング光源たとえばN2レーザ
ーやHe−Neレーザーからの光をシリンドリカル
レンズで細長く集光したビームで上部から照射し
て励起する。ビームの長手方向は導波路内で光を
取り出す方向に一致させる。活性層内で励振され
た光は下の導波路へと結合導波し、ステツプ状部
両端面の間で共振増幅され、同時にその一部は膜
厚の相対的に薄い部分へと取り出されて、導波路
中を伝搬する。導波路の膜厚及びステツプ状部の
膜厚は伝搬する光の波長やモードなどから決定す
る。
3.5 Action The active layer is excited by irradiating it from above with a beam from a pumping light source, such as an N 2 laser or a He-Ne laser, which is focused into a long thin beam using a cylindrical lens. The longitudinal direction of the beam is made to coincide with the direction in which light is extracted within the waveguide. The light excited in the active layer is coupled and guided to the waveguide below, where it is resonantly amplified between both end faces of the step-shaped part, and at the same time, a part of it is extracted to a relatively thin part of the film. , propagates in the waveguide. The thickness of the waveguide and the thickness of the step portion are determined based on the wavelength and mode of the propagating light.

3.6 発明の効果 本発明は、導波路の一部を共振器とした素子で
あるので、微細化、集積化が容易である。従つて
光集積回路の一部を発振素子や増幅素子にする場
合などは、その部分の導波路を本発明の如くに加
工すれば良く、本発明は、光回路の集積化に対し
て大きな寄与をなし得る。
3.6 Effects of the Invention Since the present invention is an element in which a part of the waveguide is a resonator, miniaturization and integration are easy. Therefore, if a part of an optical integrated circuit is to be used as an oscillation element or an amplification element, the waveguide of that part can be processed as in the present invention, and the present invention will greatly contribute to the integration of optical circuits. can be done.

3.7 実施例 次に実施例を用いて本発明を更に詳細に説明す
る。
3.7 Examples Next, the present invention will be explained in more detail using examples.

第1図〜第4図に本発明の一例を示す。 An example of the present invention is shown in FIGS. 1 to 4.

第1図は斜め上から見た図、第2図〜第4図は
それぞれ第1図に於ける平面図及びX方向、Y方
向から見た側面図である。
FIG. 1 is a diagram viewed obliquely from above, and FIGS. 2 to 4 are a plan view and side views of FIG. 1 viewed from the X direction and Y direction, respectively.

第1図〜第4図に於いて1は活性媒質、2は導
波路のステツプ状隆起部分でX方向に活性媒質1
とほぼ同一幅にわたつて設けられており、3は導
波路、4は基板である。第1図及び第2図の一点
鎖線で示した部分に、ポンピング光をシリンドカ
ルレンズを用いて線状に集束させること、活性媒
質が励起されてレーザー光を発振する。発振され
た光は導波路凸部2に結合導波し、この部分の両
端面2A,2Bの間で共振増幅される。そして導
波路3へとり出される。
In Figs. 1 to 4, 1 is the active medium, 2 is the step-like raised part of the waveguide, and the active medium 1 is shown in the X direction.
3 is a waveguide, and 4 is a substrate. The pumping light is linearly focused using a cylindrical lens on the part indicated by the dashed line in FIGS. 1 and 2, and the active medium is excited to oscillate a laser beam. The oscillated light is coupled and guided to the waveguide convex portion 2, and is resonantly amplified between both end surfaces 2A and 2B of this portion. Then, it is taken out to the waveguide 3.

第5図〜第10図に本発明の他の実施例を示
す。第5図は斜め上から見たところ、第6図〜第
10図はそれぞれ平面図およびX1,X2,Y1,Y2
の方向から見た側面図である。本例では単一波長
発振を目的とする為に、共振器中に波長選択媒質
を組み込んでいる。第5図〜第10図において1
は活性媒質、2は導波路のステツプ状隆起部分、
3は導波路、4は基板、5は波長選択媒質であ
る。波長選択媒質5には、例えば活性媒質にロー
ダミン−6Gを用いる場合には、Cdsなどを用いる
と良い。
Other embodiments of the present invention are shown in FIGS. 5 to 10. Figure 5 is a view seen diagonally from above, and Figures 6 to 10 are plan views and X 1 , X 2 , Y 1 , Y 2 respectively.
FIG. In this example, a wavelength selective medium is incorporated into the resonator in order to achieve single wavelength oscillation. 1 in Figures 5 to 10
is the active medium, 2 is the step-shaped raised part of the waveguide,
3 is a waveguide, 4 is a substrate, and 5 is a wavelength selection medium. For the wavelength selection medium 5, for example, when rhodamine-6G is used as the active medium, Cds or the like may be used.

3.8 試験例 溶融石英基板4上にコーニング7059ガラスを
RFスパツタし、約0.5μm厚の導波路3を形成し
た。次に第11図に示した様なマスク10を被せ
て引き続きスパツタし、ステツプ状隆起部2を形
成した。次に、ポリウレタンに対して1×
10-2mol/Kgのローダミン6Gを含んだポリウレタ
ンモノマーのメチルエチルケトン溶液を導波路上
に塗布し、60℃で30分間加熱して溶媒を蒸発させ
つつ硬化させる。この様にして形成したローダミ
ン6Gを含むポリウレタン膜をカツターで切つ
て、ステツプ状部以外の部分を剥ぎ取つて、第1
図に示したものと同じ様な薄膜素子を作製した。
また、これとは別に比較例として、溶融石英基板
上にコーニング7059ガラスをRFスパツタして
0.5μm膜厚の導波路を形成し、ステツプ状隆起部
を設けずに、ローダミン6Gを含むポリウレタン
薄膜のトツプ層をつけた薄膜素子を作製した。
3.8 Test example Corning 7059 glass on fused silica substrate 4
RF sputtering was performed to form a waveguide 3 with a thickness of approximately 0.5 μm. Next, a mask 10 as shown in FIG. 11 was applied and sputtering was continued to form step-like raised portions 2. Then 1x for polyurethane
A methyl ethyl ketone solution of polyurethane monomer containing 10 -2 mol/Kg of rhodamine 6G is applied onto the waveguide and heated at 60°C for 30 minutes to evaporate the solvent and cure. The polyurethane film containing Rhodamine 6G formed in this way was cut with a cutter, the part other than the step-shaped part was peeled off, and the first
A thin film device similar to the one shown in the figure was fabricated.
In addition, as a comparative example, Corning 7059 glass was RF sputtered onto a fused silica substrate.
A thin film device was fabricated in which a waveguide with a film thickness of 0.5 μm was formed and a top layer of a thin polyurethane film containing rhodamine 6G was attached without providing a step-like protrusion.

これら2種類の光導波素子に、レーザー光源1
1の出射光を四辺形アパーチヤーを通しシリンド
リカルレンズ12でライン状に集光させたポンピ
ング光13を照射する。第12図はステツプ状隆
起のないものにポンピング光を照射した場合を示
す。活性媒質2上に集光させたN2レーザービー
ムの幅は約0.1mm〜0.3mmであり、最小出力ビーム
径も同程度である。本例に於いては出力光をプリ
ズム14を用いてデカツプルしてとり出した。
A laser light source 1 is attached to these two types of optical waveguide elements.
1 passes through a quadrilateral aperture and is condensed into a line by a cylindrical lens 12 to irradiate pumping light 13. FIG. 12 shows the case where pumping light is irradiated onto an object without step-like protuberances. The width of the N 2 laser beam focused on the active medium 2 is about 0.1 mm to 0.3 mm, and the minimum output beam diameter is also about the same. In this example, the output light is decoupled and extracted using a prism 14.

フアーフイールドパターンで観察した結果、ス
テツプ状隆起部のないものでは、y軸方向へのビ
ーム15の広がりが非常に大きく、かつy軸方向
への横モードが多少観測されるものの余りはつき
りとはしていないのに対し、本願発明のステツプ
状隆起部のあるものではビームは拡がらずにスポ
ツト状を示しており、かつX軸方向、Y軸方向共
にビーム内に微細な周期構造を持つている。この
周期構造の存在はコヒーレンシーがある程度以上
あることを示している。
As a result of observation using a far-field pattern, the spread of the beam 15 in the y-axis direction is very large in the case without the step-like protuberance, and although some transverse modes are observed in the y-axis direction, the rest is not large. On the other hand, in the case of the step-shaped raised portion of the present invention, the beam does not spread out and shows a spot shape, and the beam has a fine periodic structure in both the X-axis direction and the Y-axis direction. ing. The existence of this periodic structure indicates that there is a certain degree of coherency.

この様なステツプ状導波路の方で観測された特
徴はレーザーの特色として挙げられるものであ
る。更に第13図に示す様に2個のピンホール1
6,17から出力光をとり出して干渉させ、二光
束間干渉フアーフイールドパターンを得た。第1
4図はそのミクロフオトメトリー結果である。こ
れらの結果より、ステツプ状導波路からの出力光
の空間的コヒーレンシーは0.6mmの間で80%、時
間的コヒーレンシーは10μm以上と推定される。
これらの数値はレーザー光のコヒーレンシーとし
ては一見悪い様であるが、このレーザーは多モー
ド多振であり、100A程度のほぼ連続したスペク
トル範囲の光波によつて得られたものであること
を考慮すれば、実際の各々のモードでのコヒーレ
ンシーはこれよりはるかに高い。
The characteristics observed in such step-shaped waveguides can be cited as characteristics of lasers. Furthermore, as shown in Fig. 13, two pinholes 1
The output lights from 6 and 17 were taken out and interfered with to obtain an interference far-field pattern between the two beams. 1st
Figure 4 shows the microphotometry results. From these results, it is estimated that the spatial coherency of the output light from the step waveguide is 80% within 0.6 mm, and the temporal coherency is 10 μm or more.
At first glance, these numbers seem to be poor in terms of the coherency of the laser beam, but it should be taken into consideration that this laser is multi-mode and has many vibrations, and was obtained using light waves in a nearly continuous spectral range of about 100 A. For example, the actual coherency in each mode is much higher than this.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す斜視図、第2
図は第1図の平面図、第3図は第1図のX方向か
ら見た側面図、第4図は第1図のY方向から見た
側面図、第5図は本発明の他の実施例を示す斜視
図、第6図は第5図の平面図、第7図は第5図の
X1方向から見た側面図、第8図は第5図のX2
向から見た側面図、第9図は第1図のY1方向か
ら見た側面図、第10図は第5図のY2方向から
見た側面図、第11図は本発明の導波路隆起部分
を形成する方法の一例を示す側面図、第12図は
エバネツセントレーザー素子を励起させている状
態を示す斜視図、第13図は本発明の素子の出力
光で二光束間干渉を生成させた状態を示す斜視
図、第14図は第13図の方法で得られるフアー
フイールドパターンのミクロフオトメトリー結果
を示すグラフである。 1……活性媒質、2……導波路隆起部分、3…
…導波路、4……基板。
Fig. 1 is a perspective view showing one embodiment of the present invention;
The figure is a plan view of FIG. 1, FIG. 3 is a side view seen from the X direction of FIG. 1, FIG. 4 is a side view seen from the Y direction of FIG. 1, and FIG. A perspective view showing the embodiment, FIG. 6 is a plan view of FIG. 5, and FIG. 7 is a plan view of FIG. 5.
Fig. 8 is a side view seen from the X 1 direction of Fig. 5 , Fig. 9 is a side view seen from the Y 1 direction of Fig. 1, and Fig. 10 is a side view seen from the Y 1 direction of Fig. 5. FIG . 11 is a side view showing an example of the method of forming the waveguide raised portion of the present invention, and FIG. 12 is a perspective view showing a state in which the evanescent laser element is excited. 13 is a perspective view showing a state in which interference between two beams is generated with the output light of the device of the present invention, and FIG. 14 shows the microphotometry results of a far-field pattern obtained by the method shown in FIG. 13. It is a graph. 1... Active medium, 2... Waveguide raised portion, 3...
...Waveguide, 4...Substrate.

Claims (1)

【特許請求の範囲】[Claims] 1 基板上にこれよりも屈折率の高い薄膜光導波
路を設け、この光導波路に接して、レーザー媒質
より成る、またはレーザー媒質を含む、前記光導
波路よりも屈折率の低い活性層を基板とは反対の
側に設けたエバネツセントレーザー素子に於い
て、前記光導波路の活性層が接した部分の膜厚が
その他の部分の膜厚よりも相対的に厚く、膜厚の
変化はステツプ状を呈しており、このステツプの
側面は相互に平行であり、かつ前記活性層と該光
導波路との界面に対して垂直であることを特徴と
する薄膜光導波機能素子。
1. A thin-film optical waveguide with a higher refractive index than this is provided on a substrate, and in contact with this optical waveguide, an active layer consisting of or containing a laser medium and having a lower refractive index than the optical waveguide is called a substrate. In the evanescent laser device provided on the opposite side, the film thickness of the part in contact with the active layer of the optical waveguide is relatively thicker than the film thickness of other parts, and the film thickness changes in a step-like manner. A thin film optical waveguide functional element characterized in that the side surfaces of the steps are parallel to each other and perpendicular to the interface between the active layer and the optical waveguide.
JP16007484A 1984-07-30 1984-07-30 HAKUMAKUHIKARIDOHAKINOSOSHI Expired - Lifetime JPH0231515B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16007484A JPH0231515B2 (en) 1984-07-30 1984-07-30 HAKUMAKUHIKARIDOHAKINOSOSHI

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16007484A JPH0231515B2 (en) 1984-07-30 1984-07-30 HAKUMAKUHIKARIDOHAKINOSOSHI

Publications (2)

Publication Number Publication Date
JPS6139594A JPS6139594A (en) 1986-02-25
JPH0231515B2 true JPH0231515B2 (en) 1990-07-13

Family

ID=15707318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16007484A Expired - Lifetime JPH0231515B2 (en) 1984-07-30 1984-07-30 HAKUMAKUHIKARIDOHAKINOSOSHI

Country Status (1)

Country Link
JP (1) JPH0231515B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2827128B2 (en) * 1990-03-14 1998-11-18 キヤノン株式会社 Optical amplifier and optical communication system using the same
JP4534919B2 (en) * 2005-09-12 2010-09-01 株式会社デンソー Laser device manufacturing method

Also Published As

Publication number Publication date
JPS6139594A (en) 1986-02-25

Similar Documents

Publication Publication Date Title
EP0753767B1 (en) Diffracting optical apparatus
AU641238B2 (en) A method of forming a refractive index grating in an optical waveguide
JPH03200125A (en) Optical element and its manufacture
JPH04504930A (en) external cavity semiconductor laser
US8837869B2 (en) SOA-PLC hybrid integrated polarization diversity circuit and method for manufacturing the same
KR100576712B1 (en) High frequency optical source integrated 3 dB coupler with gratings and method for fabricating the same
Krauss et al. Impact of output coupler configuration on operating characteristics of semiconductor ring lasers
JPH077135B2 (en) Optical waveguide, optical wavelength conversion element, and method for manufacturing short wavelength laser light source
US4905252A (en) Ring laser cavities
JP2001004877A (en) Optical waveguide, optical module and optical system
JPH11168252A (en) Small solid-state laser
JPH0231515B2 (en) HAKUMAKUHIKARIDOHAKINOSOSHI
JPS63164386A (en) Semiconductor laser
Nightingale et al. Monolithic Nd: YAG fiber laser
JPS59154086A (en) Frequency stabilized semiconductor laser
JP2001177182A (en) External resonator semiconductor laser and optical waveguide device
JPH04264409A (en) Optical coupling circuit
JPH087647Y2 (en) Optical waveguide type laser device
JP4208126B2 (en) Gain clamp optical amplifier module
JPH06235846A (en) Coherent light receiver
JPH05291655A (en) Planer optical-waveguide type laser element and laser device
JP2004020571A (en) Wavelength transformation device
JPH02199882A (en) Semiconductor optical amplifier
JPH04275483A (en) Semiconductor laser light amplifier
JPH02222186A (en) Glass waveguide laser array