JP2001004877A - Optical waveguide, optical module and optical system - Google Patents

Optical waveguide, optical module and optical system

Info

Publication number
JP2001004877A
JP2001004877A JP11175056A JP17505699A JP2001004877A JP 2001004877 A JP2001004877 A JP 2001004877A JP 11175056 A JP11175056 A JP 11175056A JP 17505699 A JP17505699 A JP 17505699A JP 2001004877 A JP2001004877 A JP 2001004877A
Authority
JP
Japan
Prior art keywords
optical
core
optical waveguide
light
cladding layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11175056A
Other languages
Japanese (ja)
Inventor
Makoto Takahashi
誠 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP11175056A priority Critical patent/JP2001004877A/en
Publication of JP2001004877A publication Critical patent/JP2001004877A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To highly efficiently connect the light from a semiconductor laser to an optical fiber in an easy mounting process without damaging the oscillating characteristic by using a metal or photonic crystal(PC) material for at least a part of a clad layer. SOLUTION: A PC clad 2 is provided vertically and laterally around an InP core 1, and the light of a semiconductor laser is received from the left front end surface, and the right rear end surface is connected to an optical fiber. Since the clad is formed of PC, the light incident on the InP core 1 from the front end surface is propagated within the InP core 1 without dissipation regardless of the incident position and entirely emitted from the rear end surface. When the thickness and width of the InP core 1 in the front end surface is extended to about 30 μm, most of the emitted light of the semiconductor laser can be incident on the InP core 1 without using any lens. Even if the optical axis of the semiconductor laser is shifted from the optical axis of a waveguide type lens, most of the emitted light of the semiconductor laser can be incident on the InP core 1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、導波路型レンズお
よび光モジュールおよび光通信システムに関する。
The present invention relates to a waveguide lens, an optical module, and an optical communication system.

【0002】[0002]

【従来の技術】一般に半導体レーザはビーム放射角が広
いため、光ファイバと直接結合した場合には、十分な光
結合効率は得られない。このため、従来から、光モジュ
ール内で光ファイバと半導体レーザを結合させる場合に
は、光学レンズを用いる方法や、先球ファイバと呼ばれ
る先端にレンズ機能を持たせた光ファイバを用いる方法
が取られてきた。また、半導体レーザにビーム放射角を
狭めるためのビーム拡大器を集積する試みも成されてき
た。なお、先球ファイバに関する記載は、IEEEPhoton.
Technol. Lett.,vol.PTL-16, No.3, pp.465-471,
1998に、また、ビーム拡大器集積化半導体レーザに関
する記載は特開平9−102651にある。
2. Description of the Related Art In general, a semiconductor laser has a wide beam emission angle, so that when directly coupled to an optical fiber, sufficient optical coupling efficiency cannot be obtained. For this reason, conventionally, when an optical fiber and a semiconductor laser are coupled in an optical module, a method using an optical lens or a method using an optical fiber having a lens function at the tip called a tip spherical fiber has been adopted. Have been. Attempts have also been made to integrate a beam expander for narrowing the beam emission angle in a semiconductor laser. The description of the spherical fiber is described in IEEE Photon.
Technol. Lett., Vol. PTL-16, No. 3, pp. 465-471,
A description of a semiconductor laser integrated with a beam expander in 1998 is given in Japanese Patent Application Laid-Open No. 9-102651.

【0003】[0003]

【発明が解決しようとする課題】ところで、上記光学レ
ンズを用いる方法では、半導体レーザ、光学レンズおよ
び光ファイバの光軸を高い精度で合わせる必要があり、
組み立て工程が複雑になるという問題がある。また、先
球ファイバを用いる場合にも同様の高い位置合わせ精度
が必要である。また、ビーム拡大器集積化半導体レーザ
には、ビーム拡大器の集積に伴い、レーザ発振特性が劣
化し易いという問題があった。
By the way, in the method using the above optical lens, it is necessary to align the optical axes of the semiconductor laser, the optical lens and the optical fiber with high accuracy.
There is a problem that the assembly process becomes complicated. Also, when using a spherical fiber, similar high positioning accuracy is required. In addition, the beam expander-integrated semiconductor laser has a problem that the laser oscillation characteristics are likely to deteriorate with the integration of the beam expander.

【0004】本発明の目的は、簡易な実装工程でかつ発
振特性を損なうことなく、半導体レーザからの光を高効
率で光ファイバに結合させることができる光導波路およ
びそれを用いた光モジュール、光システムを提供するこ
とにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an optical waveguide capable of coupling light from a semiconductor laser to an optical fiber with high efficiency in a simple mounting process and without deteriorating oscillation characteristics, an optical module using the same, and an optical module. It is to provide a system.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
には、光源との光軸ズレが大きくても集光が可能なレン
ズがあればよい。そこで、本発明では、クラッド層の少
なくとも一部に、金属もしくはフォトニッククリスタル
(Photonic Crystal;以下、単にPCと略記する)と
呼ばれる材料を用い、上記特徴を有する導波路型レンズ
を提供する。
In order to solve the above-mentioned problems, it is only necessary to provide a lens capable of condensing light even if the optical axis deviation from the light source is large. Therefore, the present invention provides a waveguide type lens having the above characteristics by using a material called metal or photonic crystal (hereinafter simply abbreviated as PC) for at least a part of the cladding layer.

【0006】以下に本発明の導波路型レンズが上記特徴
を有する理由を述べる。光の波長がPCのPhotonic ba
ndgap内にある場合には、光は入射角度に関わらずPC
の表面で全反射される。このため、光導波路のクラッド
層にPCを用いれば、導波路形状に関わらず、コアに入
射した全ての光をコア内に閉じ込めて散逸させることな
く導波することができる。また、クラッド層に金属を用
いてもほぼ同様の効果が得られることが知られている。
Hereinafter, the reason why the waveguide type lens of the present invention has the above characteristics will be described. Light wavelength is PC Photonic ba
When in the ndgap, the light is transmitted to the PC regardless of the angle of incidence.
It is totally reflected on the surface of. Therefore, if PC is used for the cladding layer of the optical waveguide, all the light incident on the core can be guided without being confined in the core and dissipated irrespective of the waveguide shape. Also, it is known that substantially the same effect can be obtained even if a metal is used for the cladding layer.

【0007】このため、本発明の導波路型レンズでは、
コア径を前端面から内部に向いテーパ状に変調すること
によって、コアに入射した半導体レーザからの広がった
光をほぼ全て光ファイバの固有モードに変換して後端面
から放射することができる。光ファイバの固有モード同
士では光軸ズレが多少あっても良好な光結合効率が得ら
れるので、本導波路型レンズから放射された光からは、
光ファイバとの位置合わせ精度が低くても十分な光結合
効率が得られる。
Therefore, in the waveguide type lens of the present invention,
By modulating the core diameter in a tapered shape from the front end face toward the inside, almost all of the spread light from the semiconductor laser incident on the core can be converted into the eigenmode of the optical fiber and emitted from the rear end face. Since good optical coupling efficiency can be obtained between the eigenmodes of the optical fiber even if there is a slight optical axis deviation, from the light radiated from the present waveguide type lens,
Sufficient optical coupling efficiency can be obtained even if the alignment accuracy with the optical fiber is low.

【0008】また、本導波路型レンズでは、半導体レー
ザからの光はコアに入射しさえすればよく、いずれの位
置や角度で入射してもよい。そこで、前端面でのコア径
に余裕を持たせれば、半導体レーザと本導波路型レンズ
との間で光軸ズレが生じていても、半導体レーザの光の
大半を直接コアに入射できるので、位置合わせ精度が低
くても十分な光結合効率が得られる。
In the present waveguide type lens, the light from the semiconductor laser only needs to be incident on the core, and may be incident at any position or angle. Therefore, if a margin is provided for the core diameter at the front end face, even if an optical axis shift occurs between the semiconductor laser and the present waveguide type lens, most of the light of the semiconductor laser can directly enter the core. Even if the positioning accuracy is low, sufficient optical coupling efficiency can be obtained.

【0009】なお、金属もしくはPCをクラッドに用い
ると、T分岐やL曲がりを有する低損失導波路が作れる
ことは従来から示されているが、これらの材料の性質を
利用した導波路型レンズの提案はなかった。
It has been shown that a low-loss waveguide having a T-branch or an L-bend can be formed by using metal or PC for the clad. However, a waveguide type lens utilizing the properties of these materials has been proposed. There was no suggestion.

【0010】[0010]

【発明の実施の形態】図1に、本発明の第1の実施例を
示す。本実施例はクラッドにPCを用いた導波路型レン
ズである。本実施例では、InPコア1の上下左右にP
Cクラッド2を設け、左側の前端面から半導体レーザの
光を受け、右側の後端面を光ファイバに接続する。本構
造ではクラッドがPCであるため、前端面からInPコ
ア1に入射した光は、入射位置に関わらず、散逸するこ
となくInPコア1内を伝搬し、すべて後端面から出射
される。
FIG. 1 shows a first embodiment of the present invention. This embodiment is a waveguide type lens using a PC as a clad. In the present embodiment, P
The C clad 2 is provided, receives the light of the semiconductor laser from the left front end face, and connects the right rear end face to the optical fiber. In this structure, since the cladding is made of PC, light incident on the InP core 1 from the front end face propagates through the InP core 1 without being dissipated, regardless of the incident position, and is entirely emitted from the rear end face.

【0011】この時、前端面でInPコア1の厚さおよ
び幅を30μm程度に広くしておけば、図2(a)に示
すように、レンズを用いなくても半導体レーザ3の出射
光4の大半をInPコア1に入射させることができる。
また、この時、InPコア1の厚さおよび幅が広いの
で、半導体レーザ3の光軸6と本導波路型レンズの光軸
5とがずれても、図2(b)に示すように半導体レーザ
3の出射光4の大半をInPコア1に入射させることが
できる。さらに、後端面でInPコア1の厚さおよび幅
を光ファイバのコア径程度にすれば、後端面からの出射
光と光ファイバとの間で高い光結合効率が得られる。
At this time, if the thickness and the width of the InP core 1 are increased to about 30 μm at the front end face, as shown in FIG. Can be incident on the InP core 1.
At this time, since the thickness and width of the InP core 1 are large, even if the optical axis 6 of the semiconductor laser 3 and the optical axis 5 of the present waveguide type lens are shifted, as shown in FIG. Most of the emitted light 4 of the laser 3 can be made incident on the InP core 1. Further, when the thickness and width of the InP core 1 at the rear end face are set to be about the core diameter of the optical fiber, high optical coupling efficiency can be obtained between the light emitted from the rear end face and the optical fiber.

【0012】このように本導波路型レンズを用いれば、
位置合わせ精度が低くても、半導体レーザと光ファイバ
との間で高い光結合効率を得ることができる。また、本
導波路型レンズを光回路と集積すれば、半導体レーザと
光回路との間で容易に高い光結合効率を得ることができ
る。
As described above, if the present waveguide type lens is used,
Even if the positioning accuracy is low, high optical coupling efficiency can be obtained between the semiconductor laser and the optical fiber. In addition, if the present waveguide lens is integrated with an optical circuit, high optical coupling efficiency can be easily obtained between the semiconductor laser and the optical circuit.

【0013】また、コア径の広い導波路の固有モードの
ビーム放射角は狭いので、本発明ではコア径を十分広く
しておけば、コア形状をテーパ状に変化させなくてもレ
ンズ機能を得ることができる。
Also, since the beam emission angle of the eigenmode of a waveguide having a large core diameter is narrow, in the present invention, if the core diameter is made sufficiently large, a lens function can be obtained without changing the core shape into a tapered shape. be able to.

【0014】なお、PCクラッド2は、例えばInPと
空気からなる格子をウェハー融着法により積層すれば形
成できる。この時、各ウェハーにおいてコアを形成する
部分ではInPを除去しないように格子の周期を変調す
れば、図1に示すテーパ状のInPコア1も同時に形成
できる。
The PC clad 2 can be formed, for example, by laminating a lattice composed of InP and air by a wafer fusion method. At this time, by modulating the period of the lattice so that InP is not removed from the portion where the core is formed in each wafer, the tapered InP core 1 shown in FIG. 1 can be formed at the same time.

【0015】また、上記説明ではコア層の材料をInP
としたが、空気もしくは絶縁体等の他の材料を用いても
よい。コア層の材料を空気とすれば、この場合もウェハ
ー融着法によりPCクラッドおよびコアを同時に作成で
きる。また、PCクラッド2の材料および作成法につい
ても、InPおよびウエハー融着法に限定されない。例
えば、バイアススパッタリングによるSiおよびSiO
2の交互成長によりPCクラッド2を作成してもよい。
In the above description, the material of the core layer is InP.
However, other materials such as air or an insulator may be used. If air is used as the material of the core layer, the PC clad and the core can be formed simultaneously by the wafer fusion method also in this case. Further, the material and the method of forming the PC clad 2 are not limited to the InP and the wafer fusion method. For example, Si and SiO by bias sputtering
The PC clad 2 may be formed by alternate growth of the two.

【0016】図3に本発明の第2の実施例を示す。本実
施例は、第1の実施例においてInPコア1の形状を垂
直方向においても対称にしたものである。
FIG. 3 shows a second embodiment of the present invention. In this embodiment, the shape of the InP core 1 in the first embodiment is symmetrical also in the vertical direction.

【0017】図4に、クラッドの一部に金属を用いた導
波路型レンズと光ファイバを集積した本発明の第3の実
施例を示す。本実施例では、通常の光ファイバのSiO
2コア11およびSiO2クラッド12を、前端面に向け
てテーパ状に広げ、さらにテーパ領域を金属膜13で覆
う。
FIG. 4 shows a third embodiment of the present invention in which a waveguide type lens using a metal for a part of the cladding and an optical fiber are integrated. In this embodiment, the SiO 2 of a normal optical fiber is used.
The two- core 11 and the SiO 2 cladding 12 are tapered toward the front end face, and the tapered region is covered with a metal film 13.

【0018】本構造の導波路型レンズでは、テーパ領域
のクラッドを金属にすることができるため、前述の実施
例と同様の特徴が得られる。なお、本実施例では、前述
の実施例と異なり、導波路型レンズと光ファイバを接続
する工程は不要となる。本構造において、SiO2コア
11をテーパ状に広げた領域においてSiO2クラッド
12を除去し、金属膜13がSiO2コア11を直接覆
うようにしてもよい。また、金属膜13の代わりにPC
を用いてもよい。
In the waveguide type lens of the present structure, the cladding in the tapered region can be made of metal, so that the same features as those of the above-described embodiment can be obtained. Note that, in the present embodiment, unlike the above-described embodiment, the step of connecting the waveguide type lens and the optical fiber becomes unnecessary. In this structure, the SiO 2 core 11 to remove the SiO 2 cladding 12 in a region spread tapered, the metal film 13 may be covered with SiO 2 core 11 directly. Also, instead of the metal film 13, a PC
May be used.

【0019】本発明は、コア層、金属およびPCの組成
および材料に関わらず有効であり、上記実施例で説明し
た場合に制限されない。
The present invention is effective irrespective of the composition and material of the core layer, metal and PC, and is not limited to the case described in the above embodiment.

【0020】[0020]

【発明の効果】本発明の導波路型レンズを用いれば、組
み立て工程が簡単になるため光モジュールの低価格化が
可能となる。また、半導体レーザを良好な特性のまま用
いることができるため、光通信および光情報処理システ
ム全体の温度特性、変調特性、消費電力特性、信頼性等
が向上する。
By using the waveguide type lens of the present invention, the assembling process is simplified, so that the cost of the optical module can be reduced. In addition, since the semiconductor laser can be used with good characteristics, the temperature characteristics, modulation characteristics, power consumption characteristics, reliability, and the like of the entire optical communication and optical information processing system are improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による第1の実施例を示す光導波路の斜
視図。
FIG. 1 is a perspective view of an optical waveguide showing a first embodiment according to the present invention.

【図2】本発明による第1の実施例の効果を示す光導波
路の側断面図。
FIG. 2 is a side sectional view of an optical waveguide showing an effect of the first embodiment according to the present invention.

【図3】本発明による第2の実施例を示す光導波路の斜
視図。
FIG. 3 is a perspective view of an optical waveguide showing a second embodiment according to the present invention.

【図4】本発明による第3の実施例を示す光導波路の斜
視図。
FIG. 4 is a perspective view of an optical waveguide showing a third embodiment according to the present invention.

【符号の説明】[Explanation of symbols]

1…InPコア、2…PCクラッド、3…半導体レー
ザ、4…半導体レーザの出射光、5…導波路型レンズの
光軸、6…半導体レーザの光軸、11…SiO2コア、
12…SiO2クラッド、13…金属膜。
1 ... InP core, 2 ... PC cladding, 3 ... semiconductor laser, 4 ... semiconductor laser emitting light, 5 ... optical axis of the waveguide lens, the optical axis of 6 ... semiconductor laser, 11 ... SiO 2 core,
12: SiO 2 clad, 13: metal film.

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】光軸に垂直な方向での断面積が両端面で異
なるように形状が光軸方向の少なくとも一部でテーパ状
に変化するコアを有し、光軸方向の少なくとも一部にお
いて、クラッド層またはクラッド層の外側の層が、フォ
トニッククリスタルまたは金属であることを特徴とする
光導波路。
1. A core having a shape that changes in a tapered shape in at least a part of the optical axis direction so that a cross-sectional area in a direction perpendicular to the optical axis is different at both end faces. An optical waveguide, wherein the cladding layer or a layer outside the cladding layer is a photonic crystal or a metal.
【請求項2】少なくともコアの断面積が大きい方の端面
では、クラッド層もしくはクラッド層の外側の層がフォ
トニッククリスタルまたは金属であることを特徴とする
請求項1記載の光導波路。
2. The optical waveguide according to claim 1, wherein the cladding layer or a layer outside the cladding layer is made of a photonic crystal or a metal at least at an end face having a larger cross-sectional area of the core.
【請求項3】コアの断面積が大きい方の端面でのコアの
幅もしくは厚さもしくは径が少なくとも30μm以上あ
ることを特徴とする請求項1または請求項2記載の光導
波路。
3. The optical waveguide according to claim 1, wherein a width, a thickness, or a diameter of the core at an end face having a larger sectional area of the core is at least 30 μm or more.
【請求項4】コアの断面積が小さい方の端面でのコアの
幅もしくは厚さもしくは径が、光ファイバと同等である
ことを特徴とする請求項1ないし請求項3のいずれか記
載の光導波路。
4. The light guide according to claim 1, wherein the width, thickness, or diameter of the core at the end face having the smaller cross-sectional area of the core is equal to that of the optical fiber. Wave path.
【請求項5】コアの断面積が小さい方の端面で光ファイ
バもしくは他の導波路と光軸方向に集積することを特徴
とする請求項1ないし請求項4のいずれか記載の光導波
路。
5. An optical waveguide according to claim 1, wherein the optical waveguide is integrated with an optical fiber or another waveguide in an optical axis direction at an end face having a smaller sectional area of the core.
【請求項6】コアが半導体もしくは絶縁体もしくは空気
で形成されることを特徴とする請求項1ないし請求項5
のいずれか記載の光導波路。
6. The semiconductor device according to claim 1, wherein the core is made of a semiconductor, an insulator, or air.
An optical waveguide according to any one of the above.
【請求項7】光軸に垂直な方向でのコアの幅もしくは厚
さもしくは径が少なくとも30μm以上あり、光軸方向
の少なくとも一部において、クラッド層またはクラッド
層の外側の層がフォトニッククリスタルまたは金属であ
ることを特徴とする光導波路。
7. The core has a width, thickness or diameter of at least 30 μm or more in a direction perpendicular to the optical axis, and in at least a part of the optical axis direction, the cladding layer or a layer outside the cladding layer is a photonic crystal or An optical waveguide characterized by being a metal.
【請求項8】少なくとも一方の端面ではクラッド層また
はクラッド層の外側の層がフォトニッククリスタルまた
は金属であることを特徴とする請求項7記載の光導波
路。
8. The optical waveguide according to claim 7, wherein at least one end face of the cladding layer or a layer outside the cladding layer is made of a photonic crystal or metal.
【請求項9】請求項1ないし請求項6のいずれか記載の
光導波路の、コアの断面積が大きい方の端面に、光源か
らの光が入射するように組み立てられていることを特徴
とする光モジュール。
9. The optical waveguide according to any one of claims 1 to 6, wherein the optical waveguide is assembled so that light from a light source is incident on an end face having a larger cross-sectional area of a core. Optical module.
【請求項10】請求項7記載の光導波路のコアに、光源
からの光が入射するように組み立てられていることを特
徴とする光モジュール。
10. An optical module characterized in that it is assembled so that light from a light source is incident on the core of the optical waveguide according to claim 7.
【請求項11】請求項8記載の光導波路のクラッド層ま
たはクラッド層の外側の層がフォトニッククリスタルま
たは金属である方の端面に光源からの光が入射するよう
に組み立てられていることを特徴とする光モジュール。
11. The optical waveguide according to claim 8, wherein the cladding layer or the outer layer of the cladding layer is assembled so that light from a light source is incident on an end face of the optical waveguide which is a photonic crystal or metal. Optical module.
【請求項12】光源が半導体レーザであることを特徴と
する請求項9ないし請求項11のいずれか記載の光モジ
ュール。
12. The optical module according to claim 9, wherein the light source is a semiconductor laser.
【請求項13】請求項1ないし請求項8のいずれか記載
の光導波路を少なくとも一個、もしくは、請求項9ない
し請求項12のいずれか記載の光モジュールを少なくと
も一個用いて形成したことを特徴とする光通信システム
13. An optical waveguide formed by using at least one optical waveguide according to any one of claims 1 to 8 or at least one optical module according to any one of claims 9 to 12. Optical communication system
【請求項14】請求項1ないし請求項8のいずれか記載
の光導波路を少なくとも一個、もしくは、請求項9ない
し請求項12のいずれか記載の光モジュールを少なくと
も一個用いて形成したことを特徴とする光情報処理シス
テム。
14. An optical waveguide formed by using at least one optical waveguide according to any one of claims 1 to 8, or at least one optical module according to any one of claims 9 to 12. Optical information processing system.
JP11175056A 1999-06-22 1999-06-22 Optical waveguide, optical module and optical system Pending JP2001004877A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11175056A JP2001004877A (en) 1999-06-22 1999-06-22 Optical waveguide, optical module and optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11175056A JP2001004877A (en) 1999-06-22 1999-06-22 Optical waveguide, optical module and optical system

Publications (1)

Publication Number Publication Date
JP2001004877A true JP2001004877A (en) 2001-01-12

Family

ID=15989470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11175056A Pending JP2001004877A (en) 1999-06-22 1999-06-22 Optical waveguide, optical module and optical system

Country Status (1)

Country Link
JP (1) JP2001004877A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003023473A1 (en) * 2001-09-10 2003-03-20 California Institute Of Technology Structure and method for coupling light between dissimilar waveguides
JP2004191399A (en) * 2002-12-06 2004-07-08 Hitachi Cable Ltd Low loss ultra-violet transmission fiber and ultraviolet irradiation apparatus using the same
JP2004191400A (en) * 2002-12-06 2004-07-08 Hitachi Cable Ltd Single mode ultra-violet transmission fiber and ultraviolet irradiation apparatus using the same
JP2004279745A (en) * 2003-03-17 2004-10-07 Mitsubishi Cable Ind Ltd Tapered photonic crystal fiber, its manufacturing method, and method for splicing photonic crystal fibers
US6834152B2 (en) 2001-09-10 2004-12-21 California Institute Of Technology Strip loaded waveguide with low-index transition layer
US6839488B2 (en) 2001-09-10 2005-01-04 California Institute Of Technology Tunable resonant cavity based on the field effect in semiconductors
US6931189B2 (en) * 2002-04-24 2005-08-16 Hitachi, Ltd. Optical waveguides and optical devices with optical waveguides
US6993236B1 (en) 2002-06-24 2006-01-31 Luxtera, Inc. Polysilicon and silicon dioxide light scatterers for silicon waveguides on five layer substrates
JP2006508398A (en) * 2002-11-27 2006-03-09 ゼネラル・エレクトリック・カンパニイ Optical vias for 3D interconnects
US7046894B1 (en) 2002-06-24 2006-05-16 Luxtera, Inc. Polysilicon light scatterers for silicon waveguides
US7116878B2 (en) * 2003-04-24 2006-10-03 Mesophotonics Ltd. Optical waveguide structure
JPWO2007007388A1 (en) * 2005-07-11 2009-01-29 三菱電機株式会社 Lighting device
JP2010139629A (en) * 2008-12-10 2010-06-24 Oki Electric Ind Co Ltd Spot size converter
US8909595B2 (en) 2001-08-01 2014-12-09 T-System, Inc. Method for entering, recording, distributing and reporting data

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8909595B2 (en) 2001-08-01 2014-12-09 T-System, Inc. Method for entering, recording, distributing and reporting data
US6990257B2 (en) 2001-09-10 2006-01-24 California Institute Of Technology Electronically biased strip loaded waveguide
US7082235B2 (en) 2001-09-10 2006-07-25 California Institute Of Technology Structure and method for coupling light between dissimilar waveguides
WO2003023473A1 (en) * 2001-09-10 2003-03-20 California Institute Of Technology Structure and method for coupling light between dissimilar waveguides
US6834152B2 (en) 2001-09-10 2004-12-21 California Institute Of Technology Strip loaded waveguide with low-index transition layer
US6839488B2 (en) 2001-09-10 2005-01-04 California Institute Of Technology Tunable resonant cavity based on the field effect in semiconductors
US6895148B2 (en) 2001-09-10 2005-05-17 California Institute Of Technology Modulator based on tunable resonant cavity
US6917727B2 (en) 2001-09-10 2005-07-12 California Institute Of Technology Strip loaded waveguide integrated with electronics components
US6931189B2 (en) * 2002-04-24 2005-08-16 Hitachi, Ltd. Optical waveguides and optical devices with optical waveguides
US7054534B1 (en) 2002-06-24 2006-05-30 Luxtera, Inc Light scattering structures formed in silicon strip loaded waveguides
US7251403B1 (en) 2002-06-24 2007-07-31 Luxtera, Inc. Light scattering structures formed in silicon waveguides
US6993236B1 (en) 2002-06-24 2006-01-31 Luxtera, Inc. Polysilicon and silicon dioxide light scatterers for silicon waveguides on five layer substrates
US7046894B1 (en) 2002-06-24 2006-05-16 Luxtera, Inc. Polysilicon light scatterers for silicon waveguides
US7054533B1 (en) 2002-06-24 2006-05-30 Luxtera, Inc Light scattering structures formed in upper layers of strip loaded waveguides
US7095936B1 (en) 2002-06-24 2006-08-22 Luxtera, Inc. Polysilicon and silicon dioxide light scatterers for silicon waveguides
US7058273B1 (en) 2002-06-24 2006-06-06 Luxtera, Inc. Polysilicon light scatterers for silicon waveguides on five layer substrates
US7079742B1 (en) 2002-06-24 2006-07-18 Luxtera, Inc. Light scattering structures formed in lower layers of strip loaded waveguides
US7082245B1 (en) 2002-06-24 2006-07-25 Luxtern, Inc. Light scattering structures formed in upper layer of strip loaded waveguides
US7082246B1 (en) 2002-06-24 2006-07-25 Luxtera, Inc. Light scattering structures formed in lower layer of strip loaded waveguides
JP2006508398A (en) * 2002-11-27 2006-03-09 ゼネラル・エレクトリック・カンパニイ Optical vias for 3D interconnects
KR100997611B1 (en) * 2002-11-27 2010-11-30 제너럴 일렉트릭 캄파니 Optical via for three dimensional interconnection
JP2004191400A (en) * 2002-12-06 2004-07-08 Hitachi Cable Ltd Single mode ultra-violet transmission fiber and ultraviolet irradiation apparatus using the same
JP2004191399A (en) * 2002-12-06 2004-07-08 Hitachi Cable Ltd Low loss ultra-violet transmission fiber and ultraviolet irradiation apparatus using the same
JP2004279745A (en) * 2003-03-17 2004-10-07 Mitsubishi Cable Ind Ltd Tapered photonic crystal fiber, its manufacturing method, and method for splicing photonic crystal fibers
US7116878B2 (en) * 2003-04-24 2006-10-03 Mesophotonics Ltd. Optical waveguide structure
JPWO2007007388A1 (en) * 2005-07-11 2009-01-29 三菱電機株式会社 Lighting device
JP5058798B2 (en) * 2005-07-11 2012-10-24 三菱電機株式会社 Lighting device
JP2010139629A (en) * 2008-12-10 2010-06-24 Oki Electric Ind Co Ltd Spot size converter

Similar Documents

Publication Publication Date Title
US5710847A (en) Semiconductor optical functional device
JP2929481B2 (en) Optical function element
US5995692A (en) Light emitting device module
JP2001004877A (en) Optical waveguide, optical module and optical system
JP3244115B2 (en) Semiconductor laser
US11435522B2 (en) Grating coupled laser for Si photonics
JPH08171020A (en) Optical coupling device
JPH10282364A (en) Assembly of optical device
JP3666729B2 (en) Semiconductor optical amplifier and method for manufacturing the same
JP2850996B2 (en) Optical coupling device
JPH0915435A (en) Optical coupling device and optical function device
JPH04136824A (en) Semiconductor laser amplifier and semiconductor laser amplifier device
JPS59197184A (en) Semiconductor laser
JP3104650B2 (en) Optical coupling device and optical coupling method
JP3006666B2 (en) Optical coupling device and optical coupling method
KR100401204B1 (en) Optical communication module comprising an optical device with a curved optical waveguide
JP2007033853A (en) Soa array optical module
US7215686B2 (en) Waveguide structure having improved reflective mirror features
JPH0667043A (en) Spot conversion element and its production
JP2003255164A (en) Optical coupling element and optical device
US20220229229A1 (en) Surface Emission Optical Circuit and Surface Emission Light Source Using the Same
US6914924B2 (en) Optical device and fabrication thereof
JP3302839B2 (en) Optical communication unit
JP3278591B2 (en) Optical waveguide
JPH05114762A (en) Optically coupled device