JPH02310331A - High purity zirconium material and its manufacture - Google Patents

High purity zirconium material and its manufacture

Info

Publication number
JPH02310331A
JPH02310331A JP1131508A JP13150889A JPH02310331A JP H02310331 A JPH02310331 A JP H02310331A JP 1131508 A JP1131508 A JP 1131508A JP 13150889 A JP13150889 A JP 13150889A JP H02310331 A JPH02310331 A JP H02310331A
Authority
JP
Japan
Prior art keywords
zirconium
zircaloy
purity
tin
purity zirconium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1131508A
Other languages
Japanese (ja)
Other versions
JP2877351B2 (en
Inventor
Takashi Ishigami
隆 石上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1131508A priority Critical patent/JP2877351B2/en
Publication of JPH02310331A publication Critical patent/JPH02310331A/en
Application granted granted Critical
Publication of JP2877351B2 publication Critical patent/JP2877351B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To manufacture the high purity zirconium material at low cost by repeatedly executing the operation of heating and cooling to a zirconium alloy in a hydrogen air flow and executing the decomposition of halide and electron beam melting. CONSTITUTION:A zirconium alloy such as zircaloy-2 and zircaloy-4 is subjected to the treatment of repeating heating and cooling for one or several times in a hydrogen air flow to remove tin. Next, heavy metal and oxygen remaining in zirconium are removed by a halide decomposing method and an electron beam(EB) melting method. In this way, the high purity zirconium material having <=20ppm oxygen content and each <=20ppm content of heavy metal elements of iron, nickel, chromium and tin can be obtd.

Description

【発明の詳細な説明】 [発明の目的コ (産業上の利用分野) 本発明は高純度ジルコニウム材およびその製造方法に関
し、さらに詳しくは沸騰水型原子炉の燃料被膜管として
用いられるジルコニウムライナー管の内面に用いる高純
度ジルコニウム材およびその製造方法に関する。
Detailed Description of the Invention [Objective of the Invention (Industrial Application Field) The present invention relates to a high-purity zirconium material and a method for producing the same, and more specifically to a zirconium liner pipe used as a fuel coated pipe for a boiling water nuclear reactor. This invention relates to a high-purity zirconium material used for the inner surface of a zirconium material and a method for producing the same.

(従来の技術) 現在、ジルコニウムおよびその合金は主に原子力燃料と
して多く利用されている。その中でも特に沸騰水型原子
炉の燃料被膜管にはジルコニウム合金の一つであるジル
カロイ−2が使用されているが、改良型沸騰水型原子炉
(A−BWR)への転換に対応して、高性能の燃料被膜
管の開発が行われている。A−BWRにおける燃料は、
燃焼度が上昇しさらに高い経済性を得るために負荷追従
運転が行われる予定である。その際、最も問題となると
考えられることがペレット・クラッド・相互作用である
。つまり、高燃焼度および燃焼度の急激な変化によって
核燃料(ペレット)に“°膨れ゛あるいは“反り°゛な
どの変形が生じ、燃料被膜管(クラッド)と接触して負
荷を与えることにより燃料被膜管の破壊を促進する可能
性が考えられる。
(Prior Art) Currently, zirconium and its alloys are widely used mainly as nuclear fuel. Among these, Zircaloy-2, a zirconium alloy, is particularly used in the fuel coating tubes of boiling water reactors, but in response to the conversion to advanced boiling water reactors (A-BWR), , high-performance fuel-coated tubes are being developed. The fuel in A-BWR is
Load-following operation will be performed to increase burnup and obtain even higher economic efficiency. In this case, the pellet-cladding interaction is considered to be the most problematic. In other words, due to high burnup and rapid changes in burnup, nuclear fuel (pellets) undergo deformations such as bulging or warping, and when they come into contact with the fuel cladding tube (cladding) and apply a load, the fuel cladding becomes thinner. There is a possibility that this may accelerate the destruction of the tube.

上述した対策の一つに燃料被膜管としてジルコニウムラ
イナー管が開発されている。これはジルカロイ−2製管
の内面にジルカロイ−2より硬度の小さい純ジルコニウ
ムをライニングし、ペレットによる負荷をクッション効
果により吸収するものである。このクッション効果はジ
ルコニウムライナ一層が柔らかいほど大きい、したがっ
てジルコニウムの純度が高い程、その効果は大であり、
現在市販されている原子炉板スポンジジルコニウムでは
酸素の不純物が多く、その効果は低い、また鉄、クロム
、ニッケル、スズなどの重金属ではジルコニウム中の溶
解度が小さく、析出物として存在しやすい。析出物周辺
では化学的に活性であり、化学的に攻撃されやすく、特
に粒界上の析出物はジルコニウムに応力が加わった場合
、応力集中部となりクラックの起点となる。これに対し
てスポンジジルコニウムをさらに精製した高純度ジルコ
ニウム材によりライナ一層を形成した場合には最もクッ
ション効果が大きく、被膜管を健全に保つことが可能で
あることが既に明らかにされている。したがって、今後
高性能燃料被膜管として高純度ジルコニウム材をライニ
ングしたジルコニウムライナー管が使用されると考えら
れ、その需要も相当大きいと予想される。
As one of the above-mentioned measures, a zirconium liner pipe has been developed as a fuel coated pipe. This is a pipe made of Zircaloy-2 whose inner surface is lined with pure zirconium, which has a lower hardness than Zircaloy-2, so that the load caused by the pellets is absorbed by the cushioning effect. This cushioning effect is greater as the zirconium liner layer is softer, so the higher the purity of the zirconium, the greater the effect.
Currently commercially available reactor plate sponge zirconium contains many oxygen impurities, making it less effective, and heavy metals such as iron, chromium, nickel, and tin have low solubility in zirconium and tend to exist as precipitates. The area around the precipitates is chemically active and easily attacked chemically. In particular, when stress is applied to the precipitates on grain boundaries, the precipitates become stress concentration areas and become starting points for cracks. On the other hand, it has already been revealed that when the liner is made of a single layer of high-purity zirconium material obtained by further refining sponge zirconium, the cushioning effect is the greatest and it is possible to maintain the coated pipe in good health. Therefore, it is thought that zirconium liner pipes lined with high-purity zirconium material will be used as high-performance fuel coated pipes in the future, and the demand for them is expected to be quite large.

現在、高純度ジルコニウム材はスポンジジルコニウムま
たはジルコニウム合金を原料として通常ハロゲン化物分
解法、特にヨウ化物分解法と称される精製方法により製
造されている。ヨウ化物分解法は化学輸送法の一種であ
り、ジルコニウム(Zr)を始めチタン(Ti)、ハフ
ニウム(Hf)などの活性金属の精製に使用される方法
である。精製は次式(1)、(2)の反応を利用して行
われる。
At present, high-purity zirconium materials are manufactured from sponge zirconium or zirconium alloys by a purification method usually called a halide decomposition method, particularly an iodide decomposition method. The iodide decomposition method is a type of chemical transport method, and is a method used for purifying active metals such as zirconium (Zr), titanium (Ti), and hafnium (Hf). Purification is performed using the reactions of the following formulas (1) and (2).

Zr+2I2→ZrI4       (1)(200
〜500°C) Zr I4−+Zr+21.          (2
)(1100〜1500℃) すなわちジルコニウムZr(1点1857℃)はヨウ素
I2  (融点114℃、沸点185℃)と200〜5
00℃の温度で激しく反応しZrI。
Zr+2I2→ZrI4 (1) (200
~500°C) Zr I4-+Zr+21. (2
) (1100~1500℃) That is, zirconium Zr (1 point 1857℃) and iodine I2 (melting point 114℃, boiling point 185℃) and 200~5
ZrI reacts violently at a temperature of 00°C.

(昇華性固体)を生成する((1)式)、さらにZr 
I4は1100〜1500℃の高温で前記(2)式に示
すようにジルコニウムとヨウ素に分解する。
(sublimable solid) (formula (1)), and further Zr
I4 decomposes into zirconium and iodine at a high temperature of 1,100 to 1,500°C as shown in formula (2) above.

一方、高純度ジルコニウム材の原料は工業的にはスポン
ジジルコニウムが使用されている。スポンジジルコニウ
ムは、まず鉱石から粗製の四塩化ジルコニウムZ r 
Cl 4として、ハフニウムHfを分離して精製酸化ジ
ルコニウムZrO2とする。
On the other hand, sponge zirconium is industrially used as a raw material for high-purity zirconium materials. Sponge zirconium is first produced from crude zirconium tetrachloride Zr from ore.
As Cl 4 , hafnium Hf is separated to produce purified zirconium oxide ZrO 2 .

さらに酸化ジルコニウムを塩化して四塩化ジルコニウム
とし、精製して不純物を除く、精製されな四塩化ジルコ
ニウムは、マグネシウムで還元しくクロール法)、ある
いはナトリウムで還元しくフンター法)スポンジジルコ
ニウムとなる0以上のような複雑な過程によりジルコニ
ウムの精製が行われるなめ、スポンジジルコニウム自体
高価なものとなる。また一方、今後高純度ジルコニウム
材の需要はジルコニウムライナー管の普及によりさらに
伸びることが予想され、高純度ジルコニウム材をさらに
安価に製造する必要がある。そのためには高純度ジルコ
ニウム材の製造過程をさらに詳細に検討し、製造コスト
を下げることは必要であるが、前述のように原料である
スポンジジルコニウムの値段が高く、その高純度ジルコ
ニウム材の製造コストに占める割合は大きい、したがっ
て高純度ジルコニウム材の製造コストを大幅に低下させ
るには、原料自体を検討する必要がある。
Furthermore, zirconium oxide is chlorinated to produce zirconium tetrachloride, and purified to remove impurities. Because zirconium is purified through such a complicated process, sponge zirconium itself is expensive. On the other hand, the demand for high-purity zirconium materials is expected to further increase in the future due to the widespread use of zirconium liner pipes, and there is a need to manufacture high-purity zirconium materials at even lower prices. To achieve this, it is necessary to examine the manufacturing process of high-purity zirconium material in more detail and reduce the manufacturing cost, but as mentioned above, the price of sponge zirconium, which is a raw material, is high, and the manufacturing cost of high-purity zirconium material is high. Therefore, in order to significantly reduce the manufacturing cost of high-purity zirconium materials, it is necessary to consider the raw material itself.

ところで、ジルコニウムは熱中性子の吸収断面積が金属
生鰻も小さく、しかも機械的性質、耐食性に優れている
ため、ジルカロイ−2あるいはジルカロイ−4などのジ
ルコニウム合金が原子炉内構造材料として用いられてい
る。これらの合金中には以下の第1表に示すようにジル
コニウムに微量の鉄、二・・Iケル、クロム、スズなど
の重金属を含んでいる。
By the way, zirconium has a small thermal neutron absorption cross section and has excellent mechanical properties and corrosion resistance, so zirconium alloys such as Zircaloy-2 and Zircaloy-4 are used as structural materials in nuclear reactors. There is. As shown in Table 1 below, these alloys contain trace amounts of heavy metals such as zirconium, iron, 2...I, chromium, and tin.

第1表 (単位 wt%) これらジルコニウム合金製原子炉内構造部品の製造過程
において大量のスクラップが発生する。また本来、我国
はジルコニウム資源に乏しく、スクラップを再利用する
ことは資源の有効利用の点からも重要な意味を持ってい
る。特にこれらスクラップを高純度ジルコニウム材の原
料として利用できれば安価で、しかも高純度ジルコニウ
ム材の原料の安定な供給源となり得る。
Table 1 (wt%) A large amount of scrap is generated in the manufacturing process of these zirconium alloy reactor internal structural parts. Furthermore, since our country is originally poor in zirconium resources, reusing scrap is also important from the point of view of effective resource utilization. In particular, if these scraps can be used as raw materials for high-purity zirconium materials, they will be inexpensive and can be a stable source of raw materials for high-purity zirconium materials.

(発明が解決しようとする課題) 以上の方法により原料にスポンジジルコニウムを用いて
得られた高純度ジルコニウム材はスポンジジルコニウム
の製造過程が複雑多岐にわたるため、原料であるスポン
ジジルコニウムの値段が高く、高純度ジルコニウム材の
製造コストに占める割合が大きくなりコスト高となって
いる。また本来我国はジルコニウム資源に乏しく、その
安定供給も重要な課題である。
(Problems to be Solved by the Invention) The high-purity zirconium material obtained by using sponge zirconium as a raw material by the above method is expensive because the manufacturing process of sponge zirconium is complicated and diverse. The proportion of the manufacturing cost of pure zirconium material increases, resulting in high costs. In addition, our country lacks zirconium resources, and stable supply of zirconium is also an important issue.

特開昭63−28836号公報等では原料にジルコニウ
ム合金を用いてコストの低減を図ってはいるものの、ま
だその純度は十分とは言えず、なお一層の高純度化が要
求されている。
Although JP-A-63-28836 and other publications attempt to reduce costs by using a zirconium alloy as a raw material, its purity is still not sufficient, and even higher purity is required.

上記問題点を鑑みて、本発明では高純度ジルコニウム材
およびジルコニウム合金を原料として高純度ジルコニウ
ム材を製造する方法を提供することを目0勺とするもの
である。
In view of the above-mentioned problems, the present invention aims to provide a method for producing a high-purity zirconium material using a high-purity zirconium material and a zirconium alloy as raw materials.

(課題を解決するための手段および作用)本発明は、酸
素含有量20ppm以下;鉄。
(Means and Effects for Solving the Problems) The present invention provides iron with an oxygen content of 20 ppm or less;

ニッケル、クロム、スズの各重金属元素の含有量が各々
20ppm以下;であることを特徴とする高純度ジルコ
ニウム材であり、さらには少なくとも (a)水素気流中で加熱・冷却を繰り返す(b)ハロゲ
ン化物分解法を用いる (c)電子線(EB)溶解する という手段を具備する高純度ジルコニウム材の製造方法
である。
It is a high-purity zirconium material characterized by having a content of heavy metal elements of nickel, chromium, and tin of 20 ppm or less, and further comprising at least (a) repeated heating and cooling in a hydrogen stream (b) halogen. This is a method for producing high-purity zirconium material, which includes (c) electron beam (EB) melting using a compound decomposition method.

つまり、本発明においては高純度ジルコニウム材を精製
する際にジルコニウム合金(ジルカロイ=2あるいはジ
ルカロイ−4など)を原料として用い、従来のハロゲン
化物分解法およびEB溶解では除去しにくかったスズを
水素気流中で加熱・冷却を1回ないし数回繰り返すこと
により除去した後、なおジルコニウム中に残存する重金
属およびジルコニウムの硬度に影響を及ぼす酸素を除去
するためにハロゲン化物分解法およびEB溶解を用いる
ものである。また、ここで水素気流中で加熱・冷却を繰
り返すのは、金属ジルコニウムはこの温度範囲では水素
化物を形成せず、これを急冷するとジルコニウムは水素
化物を形成し、熱膨張率の変化により割れを生じ新しい
断面が露出される。充分に冷却後再び昇温する。この操
作を繰り返すことにより、金属ジルコニウムの水素化物
は次第に微細な粒子となり、表面積が増加する。それに
伴って、ジルコニウム粒子の表面に存在するスズの除去
がさらに容易となるためである。
In other words, in the present invention, when refining high-purity zirconium materials, zirconium alloys (Zircaloy = 2 or Zircaloy-4, etc.) are used as raw materials, and tin, which is difficult to remove with conventional halide decomposition methods and EB melting, is removed using hydrogen gas. This method uses the halide decomposition method and EB melting to remove the heavy metals that still remain in the zirconium and the oxygen that affects the hardness of the zirconium after being removed by repeating heating and cooling once or several times in the zirconium. be. In addition, the reason for repeating heating and cooling in a hydrogen stream is that metal zirconium does not form hydrides in this temperature range, and when it is rapidly cooled, zirconium forms hydrides, which causes cracks due to changes in the coefficient of thermal expansion. A new cross section is exposed. After sufficiently cooling, the temperature is raised again. By repeating this operation, the metal zirconium hydride gradually becomes finer particles and its surface area increases. This is because it becomes easier to remove tin present on the surface of the zirconium particles.

ここで酸素含有量を20ppmを超える場合には精製し
たジルコニウムのクッション効果が落ちてしまうため本
発明の主旨からはずれる。
If the oxygen content exceeds 20 ppm, the cushioning effect of purified zirconium will deteriorate, which is outside the scope of the present invention.

一方、鉄、ニッケル、クロム、スズの各重金属元素の含
有量が1種類でも20ppmを超える堝合においては、
ジルコニウムに応力が加わった場合G;応力集中部とな
りクラックの起点となるため好ましくない。
On the other hand, in cases where the content of even one of the heavy metal elements iron, nickel, chromium, and tin exceeds 20 ppm,
When stress is applied to zirconium (G): This is not preferable because it becomes a stress concentration area and becomes a starting point for cracks.

(実施例) 以下、図面を参照して本発明の詳細な説明する。(Example) Hereinafter, the present invention will be described in detail with reference to the drawings.

第1図は本発明の第1の実施例の第1の不純物除去手段
であるスズ除去装置の概略を示す図である。
FIG. 1 is a diagram schematically showing a tin removal device which is a first impurity removal means in a first embodiment of the present invention.

約1.2kgのジルカロイ−2粒状スクラップ(1)を
スズ除去装置(2)中に封入し、ヒータ(3)により約
900℃とした後、水素ガス(4)を矢印方向に流す、
これを2時間継続した後、ヒータ(3)を切り、ジルカ
ロイ−2粒状スクラップ(1)を急令する。この操作を
1回ないし数回繰り返し実行し、ジルカロイ−2粒状ス
クラップ(1)中からスズを除去した後、ヨウ化物分解
法(ハロゲン化物分解法の一つでハロゲンとしてヨウ素
を用いるもの)を用いた。
Approximately 1.2 kg of Zircaloy-2 granular scrap (1) is sealed in a tin removal device (2), heated to approximately 900°C by a heater (3), and then hydrogen gas (4) is flowed in the direction of the arrow.
After continuing this for 2 hours, the heater (3) is turned off and the Zircaloy-2 granular scrap (1) is expedited. After repeating this operation once or several times to remove tin from the Zircaloy-2 granular scrap (1), the iodide decomposition method (one of the halide decomposition methods that uses iodine as a halogen) is used. there was.

第2図は本発明の第1の実施例の第2の不純物除去手段
であるヨウ化物分解法を行う装置の概略を示す図である
FIG. 2 is a diagram schematically showing an apparatus for performing the iodide decomposition method, which is the second impurity removal means of the first embodiment of the present invention.

1− Okgの上記処理したジルカロイ−2粒状スクラ
ップ(5)と20gのヨウ素(6)を反応容器(7)内
に封入し、この反応容器(7)全体を外部から加熱して
250°Cに保持した。その後、直径約2mmのジルコ
ニウムフィラメント(8)に電源(9)よりリード線(
10a、10b)さらに給電治具(lla、llb>を
通して通電してこれを1400℃に加熱して従来の技術
で説明した反応((1)式および(2)式)により、純
ジルコニウムをフィラメント(8)上に析出させた。こ
れを150時間継続したところ、平均直径28mmの純
ジルコニウムを得な。
1- O kg of the above-treated Zircaloy-2 granular scrap (5) and 20 g of iodine (6) were sealed in a reaction vessel (7), and the entire reaction vessel (7) was heated from the outside to 250 °C. held. After that, the lead wire (
10a, 10b) Further, electricity is applied through the power supply jig (lla, llb>, heated to 1400°C, and the reactions (equations (1) and (2)) explained in the conventional technology are carried out to transform pure zirconium into a filament ( 8) When this was continued for 150 hours, pure zirconium with an average diameter of 28 mm was obtained.

この純ジルコニウムを本発明の第1の実施例の第3の不
純物除去手段であるEB溶解を用いて真空度5.0XI
O−’torr以・下で実行した結果、平均直径30m
mの高純度ジルコニウムのインゴットを得た。
This pure zirconium was melted at a vacuum degree of 5.0XI using EB melting which is the third impurity removal means of the first embodiment of the present invention
As a result of execution under O-'torr, the average diameter was 30 m.
An ingot of high purity zirconium of m was obtained.

次に、本発明の第2の実施例を示す。第3図は本発明の
第2の実施例の第1の不純物除去手段であるスズ除去装
置の概略を示す図である。なお、以下において本発明の
第1の実施例と同一の名称については第1の実施例と同
一の番号を用いることとし、説明も省略することとする
Next, a second embodiment of the present invention will be described. FIG. 3 is a diagram schematically showing a tin removal device which is the first impurity removal means of the second embodiment of the present invention. In addition, in the following, for the same names as in the first embodiment of the present invention, the same numbers as in the first embodiment will be used, and the explanation will be omitted.

約1.2kgのジルカロイ−4粒状スクラップ(12)
をスズ除去装置(2)中に封入し、ヒータ(3)により
約900℃とした後、水素ガス(4)を矢印方向に流す
、これを2時間継続した後、ヒータ(3)を切り、ジル
カロイ−4粒状スクラップ(12)を急令する。この操
作を1回ないし数回繰り返し実行し、ジルカロイ−4粒
状スクラップ(12)中からスズを除去し、ヨウ化物分
解法を用いた。
Approximately 1.2 kg Zircaloy-4 granular scrap (12)
was sealed in a tin removal device (2), heated to approximately 900°C by a heater (3), and then hydrogen gas (4) was flowed in the direction of the arrow. After this continued for 2 hours, the heater (3) was turned off. Zircaloy-4 granular scrap (12) is urgently ordered. This operation was repeated once or several times to remove tin from the Zircaloy-4 granular scrap (12) and use the iodide decomposition method.

第4図は本発明の第2の実施例の第2の不純物除去手段
であるヨウ化物分解法を行う装置の概略を示す図である
FIG. 4 is a diagram schematically showing an apparatus for performing the iodide decomposition method, which is the second impurity removal means of the second embodiment of the present invention.

1.0kgの上記処理したジルカロイ−4粒状スクラッ
プ(13)と20gのヨウ素(6)を反応容器(7)内
に封入し、この反応容器(7)全体を外部から加熱して
250°Cに保持した。その後、直径約2mmのジルコ
ニウムフィラメント(8)に電源(9)よりリード線(
10a、10b)さらに給電治具(lla、1lb)を
通して通電してこれを1400℃に加熱して従来の技術
で説明した反応により、純ジルコニウムをフィラメント
(8)上に析出させた。これを150時間継続しなとこ
ろ、平均直径28mmの純ジルコニウムを得た。
1.0 kg of the above-treated Zircaloy-4 granular scrap (13) and 20 g of iodine (6) were sealed in a reaction vessel (7), and the entire reaction vessel (7) was heated from the outside to 250°C. held. After that, the lead wire (
10a, 10b) Electricity was further applied through the power supply jig (lla, 1lb) to heat it to 1400° C., and pure zirconium was deposited on the filament (8) by the reaction described in the conventional technique. When this was continued for 150 hours, pure zirconium with an average diameter of 28 mm was obtained.

この純ジルコニウムを本発明の第2の実施例の第3の不
純物除去手段であるEB溶解を用いて真空度5.0XI
O−’torr以下で実行した結果、平均直径30mm
の高純度ジルコニウムのインゴットを得た。
This pure zirconium was melted at a vacuum degree of 5.0
As a result of running below O-'torr, the average diameter was 30mm
A high purity zirconium ingot was obtained.

このジルカロイ−2およびジルカロイ−4を原料として
製造した高純度ジルコニウム材の分析結果を第2表に示
す、第2表には従来の方法によりスポンジジルコニウム
を原料として製造した高純度ジルコニウム材およびジル
コニウム合金(ジルカロイ−2)を用いてヨウ化物分解
法のみを用いて製造した高純度ジルコニウム材の分析結
果も一緒に示す。
Table 2 shows the analysis results of high-purity zirconium materials manufactured using Zircaloy-2 and Zircaloy-4 as raw materials. The analysis results of a high-purity zirconium material produced using only the iodide decomposition method using (Zircaloy-2) are also shown.

以下余白 第2表より明らかなように、本発明による高純度ジルコ
ニウム材は従来の方法により製造したジルコニウム材よ
り酸素含有量が3分の1以下二鉄。
As is clear from Table 2 below, the high-purity zirconium material according to the present invention has less than one-third the oxygen content of the zirconium material produced by the conventional method.

クロム、ニッケル、スズの各重金属元素の含有量がそれ
ぞれ半分以下と不純物量が大きく減少し、従来の方法に
より製造したジルコニウム材より高い純度を有している
ことがわかる。
It can be seen that the content of each of the heavy metal elements chromium, nickel, and tin is less than half each, and the amount of impurities is greatly reduced, and the material has higher purity than the zirconium material produced by the conventional method.

[発明の効果] 以上、詳述したように、本発明の製造方法により得られ
る高純度ジルコニウム材は、原料として安価なジルコニ
ウム合金を用いることにより製造コストが大幅に低減し
、しかも従来品よりも高い純度の高純度ジルコニウム材
が製造可能であり、またそのままならば廃棄されるべき
スクラップを用いることにより本来ジルコニウム資源に
乏しい我国においてジルコニウムの安定供給源と成り得
り、資源の有効利用にも大いに役立つ。
[Effects of the Invention] As detailed above, the high-purity zirconium material obtained by the production method of the present invention has a significantly reduced production cost by using an inexpensive zirconium alloy as a raw material, and is more cost effective than conventional products. It is possible to produce high-purity zirconium material, and by using scrap that would otherwise be discarded, it can become a stable source of zirconium in Japan, which is originally poor in zirconium resources, and it will greatly contribute to the effective use of resources. Helpful.

【図面の簡単な説明】 第1図は本発明の第1の実施例の第1の不純物除去手段
であるスズ除去装置の概略図、第2図は本発明の第1の
実施例の第2の不純物除去手段であるヨウ化物分解法を
行う装置の概略図、第3図は本発明の第2の実施例の第
1の不純物除去手段であるスズ除去装置の概略図、第4
図は本発明の第2の実施例の第2の不純物除去手段であ
るヨウ化物分解法を行う装置の概略図である。 1・・・ジルカロイ−2粒状スクラップ2・・・スズ除
去装置 3・・・ヒータ ー4・・・水素ガス(H2) 5・・・スズ除去後のジルカロイ−2粒状スクラップ6
・・・ヨウ素(T2) 7・・・反応容器 8・・・ジルコニウムフィラメント 9・・・電源 10a、10b−−−リード線 11a、llb・・・給電治具 12−・・ジルカロイ−4粒状スクラップ13・・・ス
ズ除去後のジルカロイ−4粒状スクラップ 図面の浄書(内容に変更なし) 第2図 図面の浄書(内容に変更なし) 第4−(2) 手続補正書(方式) 1,9.−6 平成 年 月  日
[BRIEF DESCRIPTION OF THE DRAWINGS] FIG. 1 is a schematic diagram of a tin removal device which is a first impurity removal means of a first embodiment of the present invention, and FIG. 2 is a schematic diagram of a tin removal device of a first embodiment of the present invention. FIG. 3 is a schematic diagram of an apparatus for performing an iodide decomposition method which is an impurity removing means of the second embodiment of the present invention, and FIG.
The figure is a schematic diagram of an apparatus for performing an iodide decomposition method, which is a second impurity removal means in a second embodiment of the present invention. 1... Zircaloy-2 granular scrap 2... Tin removal device 3... Heater 4... Hydrogen gas (H2) 5... Zircaloy-2 granular scrap after tin removal 6
...Iodine (T2) 7...Reaction vessel 8...Zirconium filament 9...Power source 10a, 10b---Lead wires 11a, llb...Power supply jig 12...Zircaloy-4 granular scrap 13... Engraving of Zircaloy-4 granular scrap drawing after tin removal (no change in content) Engraving of drawing of Figure 2 (no change in content) Section 4-(2) Procedural amendment (method) 1,9. -6 Month, Day, 1998

Claims (3)

【特許請求の範囲】[Claims] (1)酸素、含有量20pμm以下;鉄、ニッケル、ク
ロム、スズの各重金属元素の含有量が各々20ppm以
下:であることを特徴とする高純度ジルコニウム材。
(1) A high-purity zirconium material, characterized in that the content of oxygen is 20 ppm or less; the content of each heavy metal element of iron, nickel, chromium, and tin is 20 ppm or less.
(2)高純度ジルコニウム材の製造方法において、その
原料となるジルコニウム合金に少なくとも (a)水素気流中で加熱・冷却を繰り返す (b)ハロゲン化物分解法を用いる (c)電子線(EB)溶解する という手段を具備することを特徴とする高純度ジルコニ
ウム材の製造方法。
(2) In the method for producing high-purity zirconium material, the raw material zirconium alloy is at least (a) repeatedly heated and cooled in a hydrogen stream, (b) using a halide decomposition method, and (c) electron beam (EB) melting. A method for producing a high-purity zirconium material, comprising the steps of:
(3)高純度ジルコニウムを製造する際に、ジルカロイ
−2あるいはジルカロイ−4からなるジルコニウム合金
のスクラップを原料として用いることを特徴とする請求
項2記載の高純度ジルコニウム材の製造方法。
(3) The method for producing a high-purity zirconium material according to claim 2, characterized in that when producing the high-purity zirconium, scraps of a zirconium alloy consisting of Zircaloy-2 or Zircaloy-4 are used as a raw material.
JP1131508A 1989-05-26 1989-05-26 High purity zirconium material and method for producing the same Expired - Lifetime JP2877351B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1131508A JP2877351B2 (en) 1989-05-26 1989-05-26 High purity zirconium material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1131508A JP2877351B2 (en) 1989-05-26 1989-05-26 High purity zirconium material and method for producing the same

Publications (2)

Publication Number Publication Date
JPH02310331A true JPH02310331A (en) 1990-12-26
JP2877351B2 JP2877351B2 (en) 1999-03-31

Family

ID=15059672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1131508A Expired - Lifetime JP2877351B2 (en) 1989-05-26 1989-05-26 High purity zirconium material and method for producing the same

Country Status (1)

Country Link
JP (1) JP2877351B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002029125A1 (en) * 2000-10-02 2002-04-11 Nikko Materials Company, Limited High purity zirconium or hafnium, sputtering target comprising the high purity zirconium or hafnium and thin film formed using the target, and method for producing high purity zirconium or hafnium and method for producing powder of high purity zirconium or hafnium
EP2413125A1 (en) * 2009-03-23 2012-02-01 JX Nippon Mining & Metals Corporation Zirconium crucible

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002029125A1 (en) * 2000-10-02 2002-04-11 Nikko Materials Company, Limited High purity zirconium or hafnium, sputtering target comprising the high purity zirconium or hafnium and thin film formed using the target, and method for producing high purity zirconium or hafnium and method for producing powder of high purity zirconium or hafnium
US6861030B2 (en) 2000-10-02 2005-03-01 Nikko Materials Company, Limited Method of manufacturing high purity zirconium and hafnium
EP1743949A1 (en) * 2000-10-02 2007-01-17 Nippon Mining & Metals Co., Ltd. Production of high-purity zirconium or hafnium metal and powder for target and film applications
EP2413125A1 (en) * 2009-03-23 2012-02-01 JX Nippon Mining & Metals Corporation Zirconium crucible
EP2413125A4 (en) * 2009-03-23 2013-04-10 Jx Nippon Mining & Metals Corp Zirconium crucible

Also Published As

Publication number Publication date
JP2877351B2 (en) 1999-03-31

Similar Documents

Publication Publication Date Title
Kotsar et al. High-purity titanium, zirconium, and hafnium in nuclear power
CN112195369A (en) Corrosion-resistant high-strength neutron shielding alloy material and preparation method thereof
CN111097920B (en) Method for producing magnesium-lithium alloy by gaseous co-condensation method
US4082834A (en) Process for gettering moisture and reactive gases
US4200460A (en) Alloys for gettering moisture and reactive gases
JPH01145599A (en) Manufacture of orthogonal support grid for fuel assembly of nuclear reactor
NO122041B (en)
JPH02310331A (en) High purity zirconium material and its manufacture
Ding et al. A study of the interphase structure at the oxide-metal interface in the corrosion of zirconium-based alloys
JP2642372B2 (en) Method for producing high-purity zirconium
JP2593450B2 (en) Manufacturing method of crystal bar zirconium
JPS61143530A (en) Manufacture of high purity zirconium
CN111676389A (en) Zirconium alloy cladding material for small water-cooled nuclear reactor and preparation method thereof
JPS61207989A (en) Water cooling type reactor fuel coated material
JPS6214085A (en) Manufacture of composite type nuclear fuel coated tube
JP3076067B2 (en) Metal beryllium pebbles for fusion reactors
JPS62136537A (en) Vapor deposition vessel for producing crystal bar zirconium
JPH02225631A (en) Manufacture of high purity zirconium
KR20240015064A (en) Uranium-based alloys (variants)
JPS6043483A (en) Wear resistant zirconium alloy and its production
JP3882110B2 (en) Neutron multiplier for fusion reactor
JPS6111302B2 (en)
Pylypenko et al. MAGNESIUM-THERMAL METHOD OF SPONGE ZIRCONIUM OBTAINING
CN103421986A (en) Zircaloy material and preparation method thereof
JPH0640136B2 (en) Nuclear fuel cladding

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080122

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090122

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100122

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100122

Year of fee payment: 11