JPH0640136B2 - Nuclear fuel cladding - Google Patents

Nuclear fuel cladding

Info

Publication number
JPH0640136B2
JPH0640136B2 JP60175875A JP17587585A JPH0640136B2 JP H0640136 B2 JPH0640136 B2 JP H0640136B2 JP 60175875 A JP60175875 A JP 60175875A JP 17587585 A JP17587585 A JP 17587585A JP H0640136 B2 JPH0640136 B2 JP H0640136B2
Authority
JP
Japan
Prior art keywords
zirconium
cladding tube
nuclear fuel
liner layer
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60175875A
Other languages
Japanese (ja)
Other versions
JPS6236588A (en
Inventor
博道 今橋
利雄 久保
恵造 緒方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Nuclear Fuel Development Co Ltd
Original Assignee
Nippon Nuclear Fuel Development Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Nuclear Fuel Development Co Ltd filed Critical Nippon Nuclear Fuel Development Co Ltd
Priority to JP60175875A priority Critical patent/JPH0640136B2/en
Publication of JPS6236588A publication Critical patent/JPS6236588A/en
Publication of JPH0640136B2 publication Critical patent/JPH0640136B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、核分裂原子炉の炉心に使用する核燃料要素に
係り、特に軽水冷却型原子炉の核燃料用被覆管に関する
ものである。
Description: FIELD OF THE INVENTION The present invention relates to a nuclear fuel element used in the core of a nuclear fission reactor, and more particularly to a nuclear fuel cladding tube for a light water cooled nuclear reactor.

〔発明の背景〕[Background of the Invention]

第6図は通常の核燃料要素の断面図である。図におい
て、1は被覆管、2は燃料ペレツト、3a,3bは端
栓、4はプレナム、5はスプリング、6はライナ層であ
る。被覆管1内は、ウラン酸化物からなる多数の燃料ペ
レツト2が積層収納されると共に両端開口は端栓3a,
3bで密封されている。尚、核燃料要素上部にはガス溜
め用プレナム4が設けられると共に燃料ペレツト2を安
定に支持するためのスプリング5が配設されている。
FIG. 6 is a sectional view of a conventional nuclear fuel element. In the figure, 1 is a cladding tube, 2 is a fuel pellet, 3a and 3b are end plugs, 4 is a plenum, 5 is a spring, and 6 is a liner layer. A large number of fuel pellets 2 made of uranium oxide are stacked and housed in the cladding tube 1, and both end openings have end plugs 3a,
It is sealed at 3b. A gas storage plenum 4 is provided above the nuclear fuel element, and a spring 5 for stably supporting the fuel pellet 2 is provided.

上記のように構成された核燃料要素において、被覆管1
には燃料ペレツト2から放出された放射性核分裂生成物
が冷却材中に浸入することを阻止する機能が要求され
る。しかしながら、現在までの運転経験によると高燃焼
度時において被覆管1は、腐食性核分裂生成物との化学
反応及び燃料ペレツト2の熱膨張によつて被覆管1に発
生する応力の重畳作用に基づく応力腐食割れが発生する
ことがわかつてきた。
In the nuclear fuel element configured as described above, the cladding tube 1
Is required to prevent the radioactive fission products released from the fuel pellets 2 from entering the coolant. However, according to the operation experience to date, the cladding tube 1 is based on the superposition action of the stress generated in the cladding tube 1 due to the chemical reaction with the corrosive fission products and the thermal expansion of the fuel pellet 2 at the time of high burnup. It has been discovered that stress corrosion cracking occurs.

上記のような被覆管1の応力腐食割れを防ぐために、第
6図のように被覆管1の内表面に、例えば、厚さが80
〜100μmの純ジルコニウムのライナ層6を設けたい
わゆるジルコニウムライナ被覆管が開発されている。純
ジルコニウムのライナ層6は、被覆管1と腐食性核分裂
生成物との接触を防ぐとともに、被覆管1に発生する局
所応力を緩和することにより応力腐食割れを防止するこ
とが期待されている。
In order to prevent the stress corrosion cracking of the cladding tube 1 as described above, as shown in FIG.
So-called zirconium liner cladding has been developed which is provided with a pure zirconium liner layer 6 of ˜100 μm. The pure zirconium liner layer 6 is expected to prevent contact between the cladding tube 1 and corrosive fission products and to alleviate local stress generated in the cladding tube 1 to prevent stress corrosion cracking.

しかしながら、純ジルコニウムライナ層6中には実質的
に多かれ少なかれ不純物が含有されており、不純物の種
類及びそれらの含有量によつては応力腐食割れ低減効果
がそこなわれる。このため従来は、高純度のクリスタル
バージルコニウムやスポンジジルコニウムの高純度な部
分を使用し、不純物の含有量をできるだけ低くしたジル
コニウムライナ材が使用されていた。
However, the pure zirconium liner layer 6 contains impurities substantially more or less, and the effect of reducing stress corrosion cracking is impaired depending on the types of impurities and their contents. Therefore, conventionally, a zirconium liner material has been used in which a high-purity crystal bar zirconium or a high-purity portion of sponge zirconium is used and the content of impurities is reduced as much as possible.

〔発明の目的〕[Object of the Invention]

本発明は上記の状況に鑑みなされたものであり、被覆管
の応力腐食割れの危険性を低減でき信頼性を向上できる
核燃料用被覆管を提供することを目的としたものであ
る。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a nuclear fuel cladding tube that can reduce the risk of stress corrosion cracking of the cladding tube and improve reliability.

〔発明の概要〕[Outline of Invention]

本発明の核燃料用被覆管は、内側のジルコニウムライナ
層と、外側のジルコニウム合金の被覆管とからなり、上
記ジルコニウムライナ層中の酸素濃度aと鉄濃度bとの
比、a/bが1.0より大きく、かつ、該ジルコニウム
ライナ層中に含有されている不純物がジルコニウムマト
リツクス中に固溶されているものである。
The nuclear fuel cladding tube of the present invention comprises an inner zirconium liner layer and an outer zirconium alloy cladding tube, and the ratio of oxygen concentration a to iron concentration b in the zirconium liner layer, a / b is 1. Impurities larger than 0 and contained in the zirconium liner layer are solid-dissolved in the zirconium matrix.

本発明は、ジルコニウムライナ層の不純物総量が5000p
pm以下であることが好ましく、その中に含まれる酸素
と鉄とについて、酸素濃度a(ppm)と鉄濃度b(p
pm)の比a/bの値を上記のように1.0より大きく
すると共に、ジルコニウムライナ層中に含有されている
不純物がジルコニウムマトリツクス中に固溶されている
ことにより、応力腐食割れに対する感受性の低いジルコ
ニウムライナとなるようにし応力腐食割れを防止するも
のである。
According to the present invention, the total amount of impurities in the zirconium liner layer is 5000 p.
It is preferably pm or less, and regarding oxygen and iron contained therein, oxygen concentration a (ppm) and iron concentration b (p
The value of the ratio a / b of pm) is larger than 1.0 as described above, and the impurities contained in the zirconium liner layer are solid-solved in the zirconium matrix, so that the stress corrosion cracking A zirconium liner with low sensitivity is used to prevent stress corrosion cracking.

従来は不純物のなかで酸素がジルコニウムの機械的強度
を高めることから特に酸素濃度が重要な因子と考えられ
ており、またこの反面、酸素濃度を一定値以下に抑える
技術思想は、特公昭55-33037号公報及び特開昭54-59600
号公報に開示されている。しかしながら本発明者らが最
近行なつた実験結果によると、酸素濃度よりも鉄濃度が
より重要な因子であることがわかつた。第5図は横軸に
不純物含有量をとり縦軸に応力腐食割れ感受性をとつて
示した最近行なつた実験結果によるジルコニウムの応力
腐食割れ感受性に及ぼす酸素濃度及び鉄濃度の影響を示
したものである。酸素濃度は顕著な影響を及ぼさないの
に対し、鉄濃度が増加すると応力腐食割れが生じ易くな
ることを示している。この原因は、ジルコニウムと鉄の
金属間化合物の粒子が存在するためであることがわかつ
た。
Among the impurities, oxygen is conventionally considered to be a particularly important factor because oxygen enhances the mechanical strength of zirconium. On the other hand, the technical idea of keeping the oxygen concentration below a certain value is Japanese Patent Publication No. 33037 and JP-A-54-59600
It is disclosed in the publication. However, according to the results of experiments recently conducted by the present inventors, it has been found that the iron concentration is a more important factor than the oxygen concentration. Fig. 5 shows the effect of oxygen concentration and iron concentration on the stress corrosion cracking susceptibility of zirconium according to the results of a recent experiment in which the horizontal axis represents the impurity content and the vertical axis represents the stress corrosion cracking susceptibility. Is. It shows that the oxygen concentration has no significant effect, while the stress corrosion cracking is likely to occur as the iron concentration increases. It was found that this was due to the presence of particles of an intermetallic compound of zirconium and iron.

ところで、現在製造されている核燃料要素の被覆管1の
ジルコニウムライナ層6の場合、酸素濃度a(ppm)
と鉄濃度b(ppm)との比、a/bの値がおよそ1.
0に近く、酸素濃度と鉄濃度とがほぼ同じ割合にある。
即ち、現行のジルコニウムライナ材は、酸素濃度及び鉄
濃度がそれぞれ200ppm以下という極めて高純度の
クリスタルバージルコニウム、あるいは酸素濃度及びジ
ルコニウム濃度がそれぞれ500ppmから1000ppm
のスポンジジルコニウムが考えられている。本発明は第
5図に示されている実験結果に基づいてなされたもので
あり、スポンジジルコニウム中の鉄を除去し鉄濃度を少
なくすることにより、即ち、酸素濃度a及び鉄濃度bの
比a/bの値を1.0より大きくすることにより、クリ
スタルバージルコニウムと同等の低い応力腐食割れ感受
性を有するようにするものである。そして、本発明は、
鉄含有による応力腐食割れ感受性をさらに改善するため
に、固溶化処理を施こすことである。固溶化処理は、鉄
以外にもジルコニウムと金属間化合物を形成する不純物
元素、即ち、Cr,Ni,Si,C,W,Alなどに対
しても有効である。
By the way, in the case of the zirconium liner layer 6 of the cladding tube 1 of the currently manufactured nuclear fuel element, the oxygen concentration a (ppm)
And the iron concentration b (ppm), the value of a / b is about 1.
It is close to 0, and the oxygen concentration and the iron concentration are almost in the same ratio.
In other words, the current zirconium liner materials are extremely high purity crystal bar zirconium having an oxygen concentration and an iron concentration of 200 ppm or less, respectively, or an oxygen concentration and a zirconium concentration of 500 ppm to 1000 ppm, respectively.
Sponge zirconium is considered. The present invention has been made based on the experimental results shown in FIG. 5, and by removing iron in sponge zirconium to reduce the iron concentration, that is, the ratio a of the oxygen concentration a and the iron concentration b. By making the value of / b larger than 1.0, it has the same low stress corrosion cracking susceptibility as crystal bar zirconium. And the present invention is
In order to further improve the susceptibility to stress corrosion cracking due to iron content, a solution treatment is performed. The solution treatment is effective not only for iron but also for impurity elements forming an intermetallic compound with zirconium, that is, Cr, Ni, Si, C, W, Al and the like.

また、本発明者らは、ジルコニウムマトリツクス中にジ
ルコニウムとの金属間化合物(以下第二相粒子と称す)
が多く存在する程、ジルコニウムライナの応力腐食割れ
低減効果が損なわれることを発見した。即ち、よう素
(核分裂生成物)中の応力腐食環境下で、約0.1μm
以上の第二相粒子がジルコニウムの結晶粒界、結晶粒内
を問わず不規則に分散していると、第二相粒子の析出領
域が応力集中場となり、き裂の発生及び進展を大幅に助
長することがわかつた。従つて、第二相粒子を生成する
不純物に着目し、それらをジルコニウムマトリツクス中
に強制的に固溶させておけば第二相粒子は析出量が少な
くなり、純ジルコニウム層の本来の目的である応力腐食
緩和効果が発揮されるのである。
Further, the present inventors have found that zirconium matrix contains an intermetallic compound with zirconium (hereinafter referred to as second phase particles).
It has been discovered that the more the amount of the present is present, the more the stress corrosion cracking reducing effect of the zirconium liner is impaired. That is, under a stress corrosion environment in iodine (fission product), about 0.1 μm
When the above-mentioned second phase particles are randomly dispersed regardless of the crystal grain boundaries of zirconium and the crystal grains, the precipitation region of the second phase particles becomes a stress concentration field, and the initiation and propagation of cracks are significantly increased. I knew it would help. Therefore, paying attention to the impurities that generate the second phase particles, if they are forcibly solid-dissolved in the zirconium matrix, the amount of the second phase particles will be reduced, and the original purpose of the pure zirconium layer will be achieved. A certain stress corrosion relaxation effect is exhibited.

〔発明の実施例〕Example of Invention

以下本発明の核燃料用被覆管を実施例を用い従来と同部
品は同符号を用い図面により説明する。第1図は純ジル
コニウムライナ層6を有する被覆管の製造工程を示す。
ジルコニウムライナ層6は酸素濃度a、及び鉄濃度bの
比、a/b>1なるライナ材とし、かつ、第1図の製造
工程中、以下の(A),(B),(C)の工程を加える
ものである。
The nuclear fuel cladding tube of the present invention will be described below with reference to the drawings using the same reference numerals for the same parts as those of the conventional one. FIG. 1 shows a manufacturing process of a cladding tube having a pure zirconium liner layer 6.
The zirconium liner layer 6 is a liner material having a ratio of oxygen concentration a and iron concentration b, a / b> 1, and during the manufacturing process of FIG. 1, the following (A), (B), (C) It adds a process.

(A)ジルコニウム中空ビレツト(ライナ層6)の固溶
化処理 (B)熱間押出後、素管の固溶化処理 (C)最終焼鈍後、ジルコニウムライナ被覆管の固溶化
処理 本実施例においては、上記(A),(B),(C)の工
程のすべてを適用することが最も効果的である。しか
し、工程(A),(B),(C)の何れか1つを加えて
もよい。特に、工程(C)を加えることは効果的であ
る。
(A) Solid solution treatment of zirconium hollow billet (liner layer 6) (B) After hot extrusion, solution treatment of raw tube (C) After final annealing, solution treatment of zirconium liner cladding tube In this example, It is most effective to apply all of the steps (A), (B) and (C). However, any one of steps (A), (B), and (C) may be added. In particular, it is effective to add the step (C).

第二相粒子の析出量は少なければ少ない程好ましいが、
上記したように、応力腐食割れは第二相粒子の存在する
部分を核として確率的に生ずる現象であるため、実質的
に観測できる第二相粒子のうち、約0.1μm以上のも
のの数を、本発明を適用しない従来のものの50%以下
におさえることにより、十分に改善効果が得られる。
The smaller the precipitation amount of the second phase particles, the more preferable, but
As described above, stress corrosion cracking is a phenomenon that occurs stochastically with the portion where the second phase particles are present as the nucleus, so the number of those that can be substantially observed is approximately 0.1 μm or more. By controlling the amount to 50% or less of the conventional one to which the present invention is not applied, a sufficient improvement effect can be obtained.

固溶化処理は、上記不純物元素をジルコニウム中に再固
溶させるため、800℃あるいは860℃、即ち、ジル
コニウムの変態温度(862℃)近傍よりライナとして
用いるジルコニウムに固溶化処理を施こし、均一に第二
相粒子を再固溶させる。さらには、固溶化処理による焼
入歪を除去するために、第二相粒子を再析出させない程
度の低温域で歪取り焼鈍を施こす。
In the solution treatment, since the above impurity elements are re-dissolved in zirconium, the solution treatment is performed on zirconium used as a liner from 800 ° C. or 860 ° C., that is, near the transformation temperature (862 ° C.) of zirconium, and then uniformly Re-dissolve the second phase particles. Further, in order to remove the quenching strain due to the solution treatment, strain relief annealing is performed in a low temperature range where re-precipitation of the second phase particles is not performed.

第2図は横軸に鉄濃度をとり縦軸に酸素濃度をとつて示
した、本発明者らの先願(特願昭59-46300号)に記載し
た鉄及び酸素濃度の比の異なるジルコニウムライナ管の
応力腐食試験結果である。そして、これに加えた第2図
中の試料7,8,9は、本発明を実施した試料を記載し
たものであり、試料7,8,9は、評価○(性能がすぐ
れている)であつたものが本発明を実施したことにより
評価◎(性能がきわめてすぐれている)となり、本発明
の効果が明らかである。そして、第2図の試料7,8,
9以外の◎は良好な材料のジルコニウムを使用したもの
である。尚、試験条件は次の通りである。また、試料
7,8,9の不純物分析値は第1表に示す通りである。
FIG. 2 shows zirconium having different ratios of iron and oxygen concentrations described in the prior application of the present inventors (Japanese Patent Application No. 59-46300) in which the horizontal axis represents iron concentration and the vertical axis represents oxygen concentration. It is a stress corrosion test result of a liner pipe. The samples 7, 8 and 9 in FIG. 2 added thereto are the samples in which the present invention was carried out, and the samples 7, 8 and 9 were evaluated as ○ (excellent in performance). The evaluation result of the present invention was ⊚ (excellent in performance), and the effect of the present invention is clear. Then, the samples 7, 8 of FIG.
⊚ other than 9 indicates that zirconium, which is a good material, was used. The test conditions are as follows. The impurity analysis values of Samples 7, 8 and 9 are as shown in Table 1.

試験条件 よう素濃度:0.20torr ひずみ速度:10-6〜10-3sec-1 試験温度 :350℃ 試料7,8,9は、上記した如く第1図の工程によつて
製作され、そして、最終焼鈍後に850℃、2時間、真
空中で加熱し室温まで急冷した。さらに、試料を530
℃で2時間真空中で焼鈍した。第3図に試料7のジルコ
ニウムライナ層内面の走査型電子顕微鏡写真を示す。
(イ)は上記の固溶化処理前の写真、(ロ)は固溶化処
理後の写真である。固溶化処理により第二相粒子の析出
数がきわめて少なくなつていることがわかる。
Test conditions Iodine concentration: 0.20 torr Strain rate: 10 -6 to 10 -3 sec -1 Test temperature: 350 ° C Samples 7, 8 and 9 were manufactured by the process of FIG. 1 as described above, and after the final annealing, they were heated in vacuum at 850 ° C. for 2 hours and rapidly cooled to room temperature. In addition, 530 samples
Annealed in vacuum for 2 hours at ° C. FIG. 3 shows a scanning electron micrograph of the inner surface of the zirconium liner layer of Sample 7.
(A) is a photograph before the solution treatment, and (B) is a photograph after the solution treatment. It can be seen that the number of second phase particles precipitated is extremely reduced by the solution treatment.

第4図は、純ジルコニウム内に含まれている不純物の総
量、即ち、(Fe+Cr+Ni+Si+W+Al+C)
量を横軸にとり、縦軸に応力腐食割れ感受性指標である
平均周方向破断歪をとつた両者の関係を示す説明図であ
る。第4図に示した結果は、歪集中方式による応力腐食
割れ試験を実施した結果を示したものであり、試験条件
は下記の通りである。
FIG. 4 shows the total amount of impurities contained in pure zirconium, that is, (Fe + Cr + Ni + Si + W + Al + C).
FIG. 3 is an explanatory diagram showing the relationship between the two, with the amount on the horizontal axis and the average circumferential breaking strain as a stress corrosion cracking susceptibility index on the vertical axis. The results shown in FIG. 4 show the results of the stress corrosion cracking test by the strain concentration method, and the test conditions are as follows.

試験条件 よう素濃度:1mg/cm2 歪速度 :1×10-3min-1 試験温度 :350℃ また、第2表に、用いた3種類のジルコニウムライナ管
A,B,Cのライナ層6の不純物濃度を示す。いずれも
酸素濃度と鉄濃度との比は、1.0より大きいものであ
る。そして、特性10は本発明の固溶化処理を施したも
の、特性11は固溶化処理を施さないものである。その
結果、上記不純物量の増加と共にいずれも破断歪が低下
するが、本発明のものはいずれも破断歪が高めである。
即ち、応力腐食割れ感受性が低くなることがわかる。
尚、固溶化処理は第2図の場合と同様である。
Test conditions Iodine concentration: 1 mg / cm 2 Strain rate: 1 × 10 −3 min −1 Test temperature: 350 ° C. Also, in Table 2, the three types of zirconium liner tubes A, B, and C used for the liner layer 6 were used. Shows the impurity concentration of. In both cases, the ratio of oxygen concentration to iron concentration is greater than 1.0. Further, characteristic 10 is the one which is subjected to the solution treatment of the present invention, and characteristic 11 is the one which is not subjected to the solution treatment. As a result, the breaking strain decreases as the amount of impurities increases, but the breaking strains of the present invention are high.
That is, it can be seen that the stress corrosion cracking susceptibility is lowered.
The solution treatment is the same as in the case of FIG.

このように本実施例の核燃料用被覆管は、ジルコニウム
ライナ層中の酸素濃度と鉄濃度との比が1.0より大き
く、かつ、ジルコニウムライナ層中に含有されている不
純物ジルコニウムマトリツクス中に固溶されているの
で、ジルコニウムライナ層による応力腐食割れ防止機能
が十分に発揮されて被覆管の応力腐食割れの危険性を著
しく低減でき信頼性を向上できる。
As described above, in the nuclear fuel cladding tube of the present embodiment, the ratio of the oxygen concentration to the iron concentration in the zirconium liner layer is greater than 1.0, and the impurity zirconium matrix contained in the zirconium liner layer is contained. Since it is a solid solution, the function of preventing the stress corrosion cracking by the zirconium liner layer is sufficiently exerted, the risk of the stress corrosion cracking of the cladding can be significantly reduced, and the reliability can be improved.

〔発明の効果〕〔The invention's effect〕

以上記述した如く本発明の核燃料用被覆管は、被覆管の
応力腐食割れの危険性を著しく低減でき信頼性を向上で
きる効果を有するものである。
As described above, the nuclear fuel cladding tube of the present invention has an effect of significantly reducing the risk of stress corrosion cracking of the cladding tube and improving reliability.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の核燃料用被覆管の実施例の製造工程説
明図、第2図は第1図の製造工程で製造された被覆管の
鉄、酸素濃度と応力腐食割れ感受性の関係説明図、第3
図(イ),(ロ)はそれぞれ第1図の工程の固溶化処理
前及び後のライナ層表面の走査型電子顕微鏡写真、第4
図は第1図の工程で製造されたライナ層の不純物総量と
平均周方向破断歪との関係説明図、第5図は鉄、酸素の
不純物含有量と応力腐食割れ感受性との関係説明図、第
6図は通常の核燃料要素の縦断面図である。 1…被覆管、6…ライナ層。
FIG. 1 is an explanatory view of a manufacturing process of an embodiment of a cladding tube for nuclear fuel of the present invention, and FIG. 2 is an explanatory view of a relationship between iron and oxygen concentrations and stress corrosion cracking susceptibility of a cladding tube manufactured in the manufacturing process of FIG. , Third
Figures (a) and (b) are scanning electron micrographs of the surface of the liner layer before and after the solution treatment in the step of Figure 1, respectively.
FIG. 5 is an explanatory diagram of the relationship between the total amount of impurities in the liner layer manufactured in the process of FIG. 1 and the average circumferential breaking strain, and FIG. 5 is an explanatory diagram of the relationship between the impurity contents of iron and oxygen and the stress corrosion cracking susceptibility, FIG. 6 is a vertical sectional view of a conventional nuclear fuel element. 1 ... cladding tube, 6 ... liner layer.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】内側のジルコニウムライナ管と、外側のジ
ルコニウム合金の被覆管とからなるものにおいて、上記
ジルコニウムライナ層中の酸素濃度aと鉄濃度bとの
比、a/bが1.0より大きく、かつ、該ジルコニウム
ライナ層中に含有されている不純物がジルコニウムマト
リツクス中に固溶されていることを特徴とする核燃料用
被覆管。
1. A method comprising an inner zirconium liner tube and an outer zirconium alloy cladding tube, wherein the ratio of oxygen concentration a to iron concentration b in the zirconium liner layer, a / b is 1.0 or more. A cladding tube for nuclear fuel, which is large and in which impurities contained in the zirconium liner layer are solid-solved in zirconium matrix.
【請求項2】上記不純物が、鉄、クロム、ニツケル、け
い素、炭素、タングステン及びアルミニウムなどのジル
コニウムと金属間化合物を生成する元素である特許請求
の範囲第1項記載の核燃料用被覆管。
2. The cladding tube for nuclear fuel according to claim 1, wherein the impurities are elements that form an intermetallic compound with zirconium such as iron, chromium, nickel, silicon, carbon, tungsten and aluminum.
【請求項3】上記ジルコニウムライナ層が、ジルコニウ
ムの変態温度近傍で加熱された後室温まで急冷される固
溶化処理と、該固溶化処理の後での歪とり焼鈍処理とを
受けている特許請求の範囲第1項記載の核燃料用被覆
管。
3. The zirconium liner layer is subjected to a solution treatment in which it is heated near the transformation temperature of zirconium and then rapidly cooled to room temperature, and a strain relief annealing treatment after the solution treatment. A nuclear fuel cladding tube according to claim 1.
JP60175875A 1985-08-12 1985-08-12 Nuclear fuel cladding Expired - Lifetime JPH0640136B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60175875A JPH0640136B2 (en) 1985-08-12 1985-08-12 Nuclear fuel cladding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60175875A JPH0640136B2 (en) 1985-08-12 1985-08-12 Nuclear fuel cladding

Publications (2)

Publication Number Publication Date
JPS6236588A JPS6236588A (en) 1987-02-17
JPH0640136B2 true JPH0640136B2 (en) 1994-05-25

Family

ID=16003733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60175875A Expired - Lifetime JPH0640136B2 (en) 1985-08-12 1985-08-12 Nuclear fuel cladding

Country Status (1)

Country Link
JP (1) JPH0640136B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0527739U (en) * 1991-05-22 1993-04-09 台湾群昌工業股▲ふん▼有限公司 Multifunction camera

Also Published As

Publication number Publication date
JPS6236588A (en) 1987-02-17

Similar Documents

Publication Publication Date Title
JP5933640B2 (en) Zirconium alloy resistant to shadow corrosion for parts of boiling water reactor nuclear fuel assemblies, parts made of the alloys, nuclear fuel assemblies, and uses thereof
EP0155603B1 (en) Cladding tube for nuclear fuel and nuclear fuel element having this cladding tube
JPH08239740A (en) Production of pipe for nuclear fuel aggregate,and pipe obtained thereby
US9099205B2 (en) Zirconium alloys for a nuclear fuel cladding having a superior oxidation resistance in a reactor accident condition, zirconium alloy nuclear fuel claddings prepared by using thereof and methods of preparing the same
KR101378066B1 (en) Zirconium alloys for nuclear fuel cladding, having a superior corrosion resistance by reducing the amount of alloying elements, and the preparation method of zirconium alloys nuclear fuel claddings using thereof
JP2001262260A (en) Improved zirconium-niobium-tin alloy for nuclear reactor
JPH0843568A (en) Coating withstanding nodular corrosion and manufacture of coating
JP6535752B2 (en) Manufacturing method of zirconium component for nuclear fuel applying multistage hot rolling
JPH07224373A (en) Method of improving corrosion resistance of barrier coating made of zirconium or zirconium alloy
US5076488A (en) Silicon grain refinement of zirconium
US5912935A (en) Fuel rod for light water reactor and method for manufacturing the same
JPH0640136B2 (en) Nuclear fuel cladding
US20130220495A1 (en) Zirconium alloys for a nuclear fuel cladding having a superior oxidation resistance in a severe reactor operation condition and methods of preparing a zirconium alloy nuclear cladding by using thereof
JP3122782B2 (en) Fuel cladding for nuclear reactor and method of manufacturing the same
KR20140118949A (en) Zirconium alloys for nuclear fuel cladding, having a superior oxidation resistance in a severe reactor operation conditions, and the preparation method of zirconium alloys nuclear fuel claddings using thereof
KR20130098622A (en) Zirconium alloys for nuclear fuel claddings, having a superior oxidation resistance in the high temperature pressurized water and steam, and the preparation method of zirconium alloys nuclear fuel claddings using thereof
JP2877351B2 (en) High purity zirconium material and method for producing the same
JPS60190888A (en) Coating pipe for nuclear fuel element
JPH1081929A (en) Zirconium alloy and alloy pipe and their production
KR20140120290A (en) Zirconium alloys for nuclear fuel claddings having a superior oxidation resistance in the reactor accident conditions, zirconium alloy nuclear fuel claddings prepared by using thereof and method of preparing the same
US3145098A (en) Beryllium alloys
JP2000008149A (en) Protective coase-graining annealing of zirconium alloy
JPH07166280A (en) Highly corrosion resistant zirconium alloy
JPS6318030A (en) Zirconium and zirconium alloy and its production
JPH08100231A (en) Highly corrosion resistant zirconium alloy and its production

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term