JPS6111302B2 - - Google Patents
Info
- Publication number
- JPS6111302B2 JPS6111302B2 JP56208059A JP20805981A JPS6111302B2 JP S6111302 B2 JPS6111302 B2 JP S6111302B2 JP 56208059 A JP56208059 A JP 56208059A JP 20805981 A JP20805981 A JP 20805981A JP S6111302 B2 JPS6111302 B2 JP S6111302B2
- Authority
- JP
- Japan
- Prior art keywords
- zirconium
- carbon
- oxygen
- metallic
- added
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 21
- 229910052726 zirconium Inorganic materials 0.000 claims description 21
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 18
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 18
- 229910052799 carbon Inorganic materials 0.000 claims description 18
- 229910052760 oxygen Inorganic materials 0.000 claims description 18
- 239000001301 oxygen Substances 0.000 claims description 18
- 238000000034 method Methods 0.000 claims description 17
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 8
- DUNKXUFBGCUVQW-UHFFFAOYSA-J zirconium tetrachloride Chemical compound Cl[Zr](Cl)(Cl)Cl DUNKXUFBGCUVQW-UHFFFAOYSA-J 0.000 claims description 5
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 4
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 4
- 239000001569 carbon dioxide Substances 0.000 claims description 4
- 229910002091 carbon monoxide Inorganic materials 0.000 claims description 4
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 3
- 229910052749 magnesium Inorganic materials 0.000 claims description 3
- 239000011777 magnesium Substances 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 claims description 3
- 238000003723 Smelting Methods 0.000 claims description 2
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 4
- 238000006722 reduction reaction Methods 0.000 description 4
- 229910001928 zirconium oxide Inorganic materials 0.000 description 4
- 229910026551 ZrC Inorganic materials 0.000 description 3
- OTCHGXYCWNXDOA-UHFFFAOYSA-N [C].[Zr] Chemical compound [C].[Zr] OTCHGXYCWNXDOA-UHFFFAOYSA-N 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 229910001629 magnesium chloride Inorganic materials 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 239000010955 niobium Substances 0.000 description 2
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229910001257 Nb alloy Inorganic materials 0.000 description 1
- 229910001093 Zr alloy Inorganic materials 0.000 description 1
- 229910007926 ZrCl Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 229910001338 liquidmetal Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- GFUGMBIZUXZOAF-UHFFFAOYSA-N niobium zirconium Chemical compound [Zr].[Nb] GFUGMBIZUXZOAF-UHFFFAOYSA-N 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Landscapes
- Manufacture And Refinement Of Metals (AREA)
Description
【発明の詳細な説明】
本発明は、スポンジ状金属ジルコニウムに炭素
と酸素を付加するスポンジ状金属ジルコニウムの
製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing spongy metal zirconium by adding carbon and oxygen to spongy metal zirconium.
工業的にスポンジ状金属ジルコニウムを製造す
るには、一般にクロール法といわれている方法が
用いられる。 To industrially produce spongy metal zirconium, a method generally referred to as the Kroll method is used.
このクロール法は、まず還元反応容器内に固体
または液体の金属マグネシウムを装入し、不活性
ガス雰囲気のもとで、精製した四塩化ジルコニウ
ムの蒸気を導入して、高温度のもとで次の反応式
により還元反応を行いスポンジ状金属ジルコニウ
ムを生成せしめる方法である。 In the Kroll method, solid or liquid metal magnesium is first charged into a reduction reaction vessel, purified zirconium tetrachloride vapor is introduced under an inert gas atmosphere, and then the following reaction is carried out at high temperature. In this method, a reduction reaction is carried out according to the reaction formula to produce spongy metal zirconium.
ZrCl4+2Mg=Zr+2MgCl2
このようにして製造されたジルコニウムは熱中
性子吸収断面積が小さいので、原子炉材料として
注目されてきたが、原子炉用構造材に使用する場
合には、さらに錫、鉄、クロム、ニツケル等を少
量ずつ添加したジルカロイ―2、ジルカロイ―4
と呼ばれる合金や、ニオブを添加したジルコニウ
ム―ニオブ合金として用いられる。 ZrCl 4 + 2Mg = Zr + 2MgCl 2 Zirconium produced in this way has a small thermal neutron absorption cross section, so it has attracted attention as a nuclear reactor material. Zircaloy-2, Zircaloy-4 with small amounts of chromium, nickel, etc. added.
It is used as an alloy called niobium or as a zirconium-niobium alloy containing niobium.
これらの合金も原子炉内部においては高温高圧
の水蒸気にさらされるので、これに対応するため
に耐熱耐食ならびに高強度という点でいつそうの
改善が望まれていた。 Since these alloys are also exposed to high-temperature, high-pressure steam inside a nuclear reactor, improvements in heat resistance, corrosion resistance, and high strength have always been desired.
そしてこのためには、ジルコニウム中に炭素と
酸素の含有率をたかめることにより、これらの性
質が著しく改善されることが分つた。 For this purpose, it has been found that these properties can be significantly improved by increasing the content of carbon and oxygen in zirconium.
この炭素と酸素を高く含有させる方法として、
まず炭素の含有率を高めようとして、真空溶解に
かかる前の原料準備段階でジルコニウムカーバイ
トや油つきの返り材を加えたり、酸素の含有率を
高めようとして、酸化ジルコニウムを加える方法
を行つたが、十分な高さにまで炭素および酸素含
有率を上げることはできなかつた。 As a method to increase the content of carbon and oxygen,
First, in an attempt to increase the carbon content, zirconium carbide and oil-covered return material were added in the raw material preparation stage before vacuum melting, and in an attempt to increase the oxygen content, zirconium oxide was added. , it was not possible to raise the carbon and oxygen content to a sufficiently high level.
特に酸化ジルコニウムを添加すると、この酸化
ジルコニウムの融点が2715℃と非常に高いので、
溶解中に溶けきれず、偏析をおこすという問題が
生じた。 In particular, when zirconium oxide is added, the melting point of this zirconium oxide is as high as 2715℃, so
A problem arose in that it could not be completely dissolved during melting, causing segregation.
本発明者らは、この点に鑑みて、クロール法に
〓〓〓〓
よる金属ジルコニウムの製錬過程において、金属
マグネシウム上に精製四塩化ジルコニウムととも
に炭酸ガスまたは一酸化炭素を供給し、生成金属
ジルコニウムに炭素と酸素を付加する金属ジルコ
ニウムの製造方法を開発した。 In view of this point, the present inventors have developed the crawl method.
During the smelting process of metallic zirconium, we have developed a method for producing metallic zirconium in which carbon dioxide or carbon monoxide is supplied together with purified zirconium tetrachloride onto metallic magnesium, and carbon and oxygen are added to the produced metallic zirconium.
この方法は高温度における金属ジルコニウム
が、次式の如く炭酸ガスまたは一酸化炭素と反応
し、ジルコニウムカーバイトと酸化ジルコニウム
になることを利用して、スポンジ状金属ジルコニ
ウム製造過程で炭素と酸素を増加させるものであ
る。 This method uses the fact that metallic zirconium reacts with carbon dioxide gas or carbon monoxide at high temperatures to become zirconium carbide and zirconium oxide as shown in the following formula, and increases carbon and oxygen in the process of producing sponge-like metallic zirconium. It is something that makes you
2Zr+CO2→ZrC+ZrO2
3Zr+2CO→2ZrC+ZrO2
これによりジルコニウムスポンジの中に酸素と
炭素を均一にかつ高含有率に付加させることがで
き、原子炉構造材料として、極めて有効な金属ジ
ルコニウムおよびジルコニウム合金を容易に得る
ことができるようになつた。なお、酸素及び炭素
量は高温における耐力を向上させるためにO;
1000ppm以上、C;100ppm以上の添加が行われ
る。2Zr+CO 2 →ZrC+ZrO 2 3Zr+2CO→2ZrC+ZrO 2This allows oxygen and carbon to be added uniformly and at a high content into the zirconium sponge, making it easy to produce metallic zirconium and zirconium alloys, which are extremely effective as nuclear reactor structural materials. Now I can get it. Note that the amount of oxygen and carbon is O in order to improve the yield strength at high temperatures;
1000 ppm or more, C: 100 ppm or more is added.
次に実施例について説明する。 Next, an example will be described.
実施例 1
クロール法による還元反応過程中に四塩化ジル
コニウムの蒸気を60Kg/hr供給し、これに炭酸ガ
スを10/hrずつまぜながら反応温度800℃で供給
する。反応は発熱反応である。約1500Kgの反応生
成物を取り出して真空中約1000℃で副生成塩化マ
グネシウムを除去する。これにより得られたスポ
ンジ状金属ジルコニウムの酸素と炭素の分析結果
は次の通りであつた。Example 1 During the reduction reaction process by the Kroll method, zirconium tetrachloride vapor was supplied at 60 kg/hr, and carbon dioxide gas was mixed with this at a rate of 10/hr at a reaction temperature of 800°C. The reaction is exothermic. Approximately 1,500 kg of reaction product is taken out and the by-product magnesium chloride is removed in vacuo at approximately 1,000°C. The oxygen and carbon analysis results of the spongy metal zirconium thus obtained were as follows.
酸 素 1450ppm
炭 素 180ppm
実施例 2
クロール法による還元反応過程中に四塩化ジル
コニウムの蒸気を60Kg/hr供給し、これに一酸化
炭素を12/hrずつまぜながら供給した。約1500
Kgの反応生成物を取り出しこれをさらに真空中約
1000℃で副生成塩化マグネシウムを除去した。Oxygen: 1450 ppm Carbon: 180 ppm Example 2 During the reduction reaction process by Kroll method, zirconium tetrachloride vapor was supplied at 60 kg/hr, and carbon monoxide was mixed and supplied at a rate of 12/hr. Approximately 1500
Kg of reaction product is taken out and further placed in vacuum.
By-product magnesium chloride was removed at 1000°C.
得られたスポンジ状金属ジルコニウム中の酸素
と炭素の分析結果は次の通りであつた。 The analysis results of oxygen and carbon in the obtained spongy metal zirconium were as follows.
酸 素 1257ppm
炭 素 290ppm
比 較
従来のクロール法によつて得られたスポンジ状
金属ジルコニウム中の酸素と炭素の含有量はそれ
ぞれ900ppmと30ppmであるから、本発明方法に
よつて得られたスポンジ状金属ジルコニウム中の
酸素と炭素は、酸素で2倍弱、炭素で6倍〜9倍
となつて、極めて有効に含有されたことが分る。Oxygen 1257ppm Carbon 290ppm Comparison Since the contents of oxygen and carbon in the sponge-like metallic zirconium obtained by the conventional Kroll method are 900ppm and 30ppm, respectively, the content of oxygen and carbon in the sponge-like metal zirconium obtained by the method of the present invention is It can be seen that oxygen and carbon in the metal zirconium were contained very effectively, with oxygen being slightly less than twice as much and carbon being 6 to 9 times as much.
〓〓〓〓
〓〓〓〓
Claims (1)
程において、金属マグネシウム上に精製四塩化ジ
ルコニウムとともに炭酸ガスまたは一酸化炭素を
供給し、生成金属ジルコニウムに炭素と酸素を付
加する金属ジルコニウムの製造方法。1. A method for producing metallic zirconium in which carbon dioxide or carbon monoxide is supplied together with purified zirconium tetrachloride onto metallic magnesium in the process of smelting metallic zirconium by the Kroll method, and carbon and oxygen are added to the produced metallic zirconium.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20805981A JPS58110628A (en) | 1981-12-24 | 1981-12-24 | Manufacture of metallic zirconium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20805981A JPS58110628A (en) | 1981-12-24 | 1981-12-24 | Manufacture of metallic zirconium |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58110628A JPS58110628A (en) | 1983-07-01 |
JPS6111302B2 true JPS6111302B2 (en) | 1986-04-02 |
Family
ID=16549953
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20805981A Granted JPS58110628A (en) | 1981-12-24 | 1981-12-24 | Manufacture of metallic zirconium |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58110628A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02105702U (en) * | 1989-02-09 | 1990-08-22 | ||
CN110802237A (en) * | 2019-09-29 | 2020-02-18 | 中南大学 | Preparation method of high-purity zirconium metal powder |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005068668A1 (en) * | 2004-01-14 | 2005-07-28 | Cabot Corporation | CONVERSION OF Ta2O5 TO Ta METAL |
-
1981
- 1981-12-24 JP JP20805981A patent/JPS58110628A/en active Granted
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02105702U (en) * | 1989-02-09 | 1990-08-22 | ||
CN110802237A (en) * | 2019-09-29 | 2020-02-18 | 中南大学 | Preparation method of high-purity zirconium metal powder |
Also Published As
Publication number | Publication date |
---|---|
JPS58110628A (en) | 1983-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3794482A (en) | Carbothermic reduction method for converting metal oxides to metal form | |
US3140170A (en) | Magnesium reduction of titanium oxides in a hydrogen atmosphere | |
US3425826A (en) | Purification of vanadium and columbium (niobium) | |
US3154379A (en) | Plutonium separation from uranium and lanthanides by precipitation from molten chloride solutions | |
JPS6111302B2 (en) | ||
US2569225A (en) | Method of forming uranium monocarbide | |
JPS58110627A (en) | Spongy metallic zirconium | |
US2698221A (en) | Preparing titanium compounds | |
JP2877351B2 (en) | High purity zirconium material and method for producing the same | |
US3485594A (en) | Molten iron method of recovering nuclear material from composite bodies | |
Koehler | Heats of formation of three sodium vanadates | |
JP2593450B2 (en) | Manufacturing method of crystal bar zirconium | |
JP2642372B2 (en) | Method for producing high-purity zirconium | |
Chellew et al. | The melt refining of irradiated uranium: application to EBR-II fast reactor fuel. X. The behavior of zirconium | |
NO136468B (en) | ||
Saratchandran et al. | The present status and the projected programme of zirconium development in India | |
VI | I--General Science and Engineering--I | |
Kalish | The Development of Uranium Carbide as a Nuclear Fuel: First Annual Report: May 1, 1959 to April 30, 1960 | |
US2917393A (en) | Production of metal compositions | |
Poppleton et al. | A Process for the Preparation of Thorium by Sodium Reduction of Thorium Tetrachloride | |
Good et al. | Metallic Reduction of Thorium Tetrachloride | |
Harder et al. | The reduction and sintering of hyperstoichiometric carbides in hydrogen | |
Zhorin et al. | The action of high pressure and shear strains on powdered amorphous metals | |
JPH07113134B2 (en) | Zirconium based alloy | |
Elger | Bimetallic Reduction of Hafnium Tetrachloride |