JPS6111302B2 - - Google Patents

Info

Publication number
JPS6111302B2
JPS6111302B2 JP56208059A JP20805981A JPS6111302B2 JP S6111302 B2 JPS6111302 B2 JP S6111302B2 JP 56208059 A JP56208059 A JP 56208059A JP 20805981 A JP20805981 A JP 20805981A JP S6111302 B2 JPS6111302 B2 JP S6111302B2
Authority
JP
Japan
Prior art keywords
zirconium
carbon
oxygen
metallic
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56208059A
Other languages
Japanese (ja)
Other versions
JPS58110628A (en
Inventor
Atsuo Konishi
Toshiaki Ishigaki
Yoshimaro Iino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP20805981A priority Critical patent/JPS58110628A/en
Publication of JPS58110628A publication Critical patent/JPS58110628A/en
Publication of JPS6111302B2 publication Critical patent/JPS6111302B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】 本発明は、スポンジ状金属ジルコニウムに炭素
と酸素を付加するスポンジ状金属ジルコニウムの
製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing spongy metal zirconium by adding carbon and oxygen to spongy metal zirconium.

工業的にスポンジ状金属ジルコニウムを製造す
るには、一般にクロール法といわれている方法が
用いられる。
To industrially produce spongy metal zirconium, a method generally referred to as the Kroll method is used.

このクロール法は、まず還元反応容器内に固体
または液体の金属マグネシウムを装入し、不活性
ガス雰囲気のもとで、精製した四塩化ジルコニウ
ムの蒸気を導入して、高温度のもとで次の反応式
により還元反応を行いスポンジ状金属ジルコニウ
ムを生成せしめる方法である。
In the Kroll method, solid or liquid metal magnesium is first charged into a reduction reaction vessel, purified zirconium tetrachloride vapor is introduced under an inert gas atmosphere, and then the following reaction is carried out at high temperature. In this method, a reduction reaction is carried out according to the reaction formula to produce spongy metal zirconium.

ZrCl4+2Mg=Zr+2MgCl2 このようにして製造されたジルコニウムは熱中
性子吸収断面積が小さいので、原子炉材料として
注目されてきたが、原子炉用構造材に使用する場
合には、さらに錫、鉄、クロム、ニツケル等を少
量ずつ添加したジルカロイ―2、ジルカロイ―4
と呼ばれる合金や、ニオブを添加したジルコニウ
ム―ニオブ合金として用いられる。
ZrCl 4 + 2Mg = Zr + 2MgCl 2 Zirconium produced in this way has a small thermal neutron absorption cross section, so it has attracted attention as a nuclear reactor material. Zircaloy-2, Zircaloy-4 with small amounts of chromium, nickel, etc. added.
It is used as an alloy called niobium or as a zirconium-niobium alloy containing niobium.

これらの合金も原子炉内部においては高温高圧
の水蒸気にさらされるので、これに対応するため
に耐熱耐食ならびに高強度という点でいつそうの
改善が望まれていた。
Since these alloys are also exposed to high-temperature, high-pressure steam inside a nuclear reactor, improvements in heat resistance, corrosion resistance, and high strength have always been desired.

そしてこのためには、ジルコニウム中に炭素と
酸素の含有率をたかめることにより、これらの性
質が著しく改善されることが分つた。
For this purpose, it has been found that these properties can be significantly improved by increasing the content of carbon and oxygen in zirconium.

この炭素と酸素を高く含有させる方法として、
まず炭素の含有率を高めようとして、真空溶解に
かかる前の原料準備段階でジルコニウムカーバイ
トや油つきの返り材を加えたり、酸素の含有率を
高めようとして、酸化ジルコニウムを加える方法
を行つたが、十分な高さにまで炭素および酸素含
有率を上げることはできなかつた。
As a method to increase the content of carbon and oxygen,
First, in an attempt to increase the carbon content, zirconium carbide and oil-covered return material were added in the raw material preparation stage before vacuum melting, and in an attempt to increase the oxygen content, zirconium oxide was added. , it was not possible to raise the carbon and oxygen content to a sufficiently high level.

特に酸化ジルコニウムを添加すると、この酸化
ジルコニウムの融点が2715℃と非常に高いので、
溶解中に溶けきれず、偏析をおこすという問題が
生じた。
In particular, when zirconium oxide is added, the melting point of this zirconium oxide is as high as 2715℃, so
A problem arose in that it could not be completely dissolved during melting, causing segregation.

本発明者らは、この点に鑑みて、クロール法に
〓〓〓〓
よる金属ジルコニウムの製錬過程において、金属
マグネシウム上に精製四塩化ジルコニウムととも
に炭酸ガスまたは一酸化炭素を供給し、生成金属
ジルコニウムに炭素と酸素を付加する金属ジルコ
ニウムの製造方法を開発した。
In view of this point, the present inventors have developed the crawl method.
During the smelting process of metallic zirconium, we have developed a method for producing metallic zirconium in which carbon dioxide or carbon monoxide is supplied together with purified zirconium tetrachloride onto metallic magnesium, and carbon and oxygen are added to the produced metallic zirconium.

この方法は高温度における金属ジルコニウム
が、次式の如く炭酸ガスまたは一酸化炭素と反応
し、ジルコニウムカーバイトと酸化ジルコニウム
になることを利用して、スポンジ状金属ジルコニ
ウム製造過程で炭素と酸素を増加させるものであ
る。
This method uses the fact that metallic zirconium reacts with carbon dioxide gas or carbon monoxide at high temperatures to become zirconium carbide and zirconium oxide as shown in the following formula, and increases carbon and oxygen in the process of producing sponge-like metallic zirconium. It is something that makes you

2Zr+CO2→ZrC+ZrO2 3Zr+2CO→2ZrC+ZrO2 これによりジルコニウムスポンジの中に酸素と
炭素を均一にかつ高含有率に付加させることがで
き、原子炉構造材料として、極めて有効な金属ジ
ルコニウムおよびジルコニウム合金を容易に得る
ことができるようになつた。なお、酸素及び炭素
量は高温における耐力を向上させるためにO;
1000ppm以上、C;100ppm以上の添加が行われ
る。
2Zr+CO 2 →ZrC+ZrO 2 3Zr+2CO→2ZrC+ZrO 2This allows oxygen and carbon to be added uniformly and at a high content into the zirconium sponge, making it easy to produce metallic zirconium and zirconium alloys, which are extremely effective as nuclear reactor structural materials. Now I can get it. Note that the amount of oxygen and carbon is O in order to improve the yield strength at high temperatures;
1000 ppm or more, C: 100 ppm or more is added.

次に実施例について説明する。 Next, an example will be described.

実施例 1 クロール法による還元反応過程中に四塩化ジル
コニウムの蒸気を60Kg/hr供給し、これに炭酸ガ
スを10/hrずつまぜながら反応温度800℃で供給
する。反応は発熱反応である。約1500Kgの反応生
成物を取り出して真空中約1000℃で副生成塩化マ
グネシウムを除去する。これにより得られたスポ
ンジ状金属ジルコニウムの酸素と炭素の分析結果
は次の通りであつた。
Example 1 During the reduction reaction process by the Kroll method, zirconium tetrachloride vapor was supplied at 60 kg/hr, and carbon dioxide gas was mixed with this at a rate of 10/hr at a reaction temperature of 800°C. The reaction is exothermic. Approximately 1,500 kg of reaction product is taken out and the by-product magnesium chloride is removed in vacuo at approximately 1,000°C. The oxygen and carbon analysis results of the spongy metal zirconium thus obtained were as follows.

酸 素 1450ppm 炭 素 180ppm 実施例 2 クロール法による還元反応過程中に四塩化ジル
コニウムの蒸気を60Kg/hr供給し、これに一酸化
炭素を12/hrずつまぜながら供給した。約1500
Kgの反応生成物を取り出しこれをさらに真空中約
1000℃で副生成塩化マグネシウムを除去した。
Oxygen: 1450 ppm Carbon: 180 ppm Example 2 During the reduction reaction process by Kroll method, zirconium tetrachloride vapor was supplied at 60 kg/hr, and carbon monoxide was mixed and supplied at a rate of 12/hr. Approximately 1500
Kg of reaction product is taken out and further placed in vacuum.
By-product magnesium chloride was removed at 1000°C.

得られたスポンジ状金属ジルコニウム中の酸素
と炭素の分析結果は次の通りであつた。
The analysis results of oxygen and carbon in the obtained spongy metal zirconium were as follows.

酸 素 1257ppm 炭 素 290ppm 比 較 従来のクロール法によつて得られたスポンジ状
金属ジルコニウム中の酸素と炭素の含有量はそれ
ぞれ900ppmと30ppmであるから、本発明方法に
よつて得られたスポンジ状金属ジルコニウム中の
酸素と炭素は、酸素で2倍弱、炭素で6倍〜9倍
となつて、極めて有効に含有されたことが分る。
Oxygen 1257ppm Carbon 290ppm Comparison Since the contents of oxygen and carbon in the sponge-like metallic zirconium obtained by the conventional Kroll method are 900ppm and 30ppm, respectively, the content of oxygen and carbon in the sponge-like metal zirconium obtained by the method of the present invention is It can be seen that oxygen and carbon in the metal zirconium were contained very effectively, with oxygen being slightly less than twice as much and carbon being 6 to 9 times as much.

〓〓〓〓
〓〓〓〓

Claims (1)

【特許請求の範囲】[Claims] 1 クロール法による金属ジルコニウムの製錬過
程において、金属マグネシウム上に精製四塩化ジ
ルコニウムとともに炭酸ガスまたは一酸化炭素を
供給し、生成金属ジルコニウムに炭素と酸素を付
加する金属ジルコニウムの製造方法。
1. A method for producing metallic zirconium in which carbon dioxide or carbon monoxide is supplied together with purified zirconium tetrachloride onto metallic magnesium in the process of smelting metallic zirconium by the Kroll method, and carbon and oxygen are added to the produced metallic zirconium.
JP20805981A 1981-12-24 1981-12-24 Manufacture of metallic zirconium Granted JPS58110628A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20805981A JPS58110628A (en) 1981-12-24 1981-12-24 Manufacture of metallic zirconium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20805981A JPS58110628A (en) 1981-12-24 1981-12-24 Manufacture of metallic zirconium

Publications (2)

Publication Number Publication Date
JPS58110628A JPS58110628A (en) 1983-07-01
JPS6111302B2 true JPS6111302B2 (en) 1986-04-02

Family

ID=16549953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20805981A Granted JPS58110628A (en) 1981-12-24 1981-12-24 Manufacture of metallic zirconium

Country Status (1)

Country Link
JP (1) JPS58110628A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02105702U (en) * 1989-02-09 1990-08-22
CN110802237A (en) * 2019-09-29 2020-02-18 中南大学 Preparation method of high-purity zirconium metal powder

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005068668A1 (en) * 2004-01-14 2005-07-28 Cabot Corporation CONVERSION OF Ta2O5 TO Ta METAL

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02105702U (en) * 1989-02-09 1990-08-22
CN110802237A (en) * 2019-09-29 2020-02-18 中南大学 Preparation method of high-purity zirconium metal powder

Also Published As

Publication number Publication date
JPS58110628A (en) 1983-07-01

Similar Documents

Publication Publication Date Title
US3794482A (en) Carbothermic reduction method for converting metal oxides to metal form
US3140170A (en) Magnesium reduction of titanium oxides in a hydrogen atmosphere
US3425826A (en) Purification of vanadium and columbium (niobium)
US3154379A (en) Plutonium separation from uranium and lanthanides by precipitation from molten chloride solutions
JPS6111302B2 (en)
US2569225A (en) Method of forming uranium monocarbide
JPS58110627A (en) Spongy metallic zirconium
US2698221A (en) Preparing titanium compounds
JP2877351B2 (en) High purity zirconium material and method for producing the same
US3485594A (en) Molten iron method of recovering nuclear material from composite bodies
Koehler Heats of formation of three sodium vanadates
JP2593450B2 (en) Manufacturing method of crystal bar zirconium
JP2642372B2 (en) Method for producing high-purity zirconium
Chellew et al. The melt refining of irradiated uranium: application to EBR-II fast reactor fuel. X. The behavior of zirconium
NO136468B (en)
Saratchandran et al. The present status and the projected programme of zirconium development in India
VI I--General Science and Engineering--I
Kalish The Development of Uranium Carbide as a Nuclear Fuel: First Annual Report: May 1, 1959 to April 30, 1960
US2917393A (en) Production of metal compositions
Poppleton et al. A Process for the Preparation of Thorium by Sodium Reduction of Thorium Tetrachloride
Good et al. Metallic Reduction of Thorium Tetrachloride
Harder et al. The reduction and sintering of hyperstoichiometric carbides in hydrogen
Zhorin et al. The action of high pressure and shear strains on powdered amorphous metals
JPH07113134B2 (en) Zirconium based alloy
Elger Bimetallic Reduction of Hafnium Tetrachloride