JPH02309816A - Logic computing element - Google Patents

Logic computing element

Info

Publication number
JPH02309816A
JPH02309816A JP1133504A JP13350489A JPH02309816A JP H02309816 A JPH02309816 A JP H02309816A JP 1133504 A JP1133504 A JP 1133504A JP 13350489 A JP13350489 A JP 13350489A JP H02309816 A JPH02309816 A JP H02309816A
Authority
JP
Japan
Prior art keywords
input
output
positive
negative
mos
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1133504A
Other languages
Japanese (ja)
Inventor
Hachiro Yamada
山田 八郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1133504A priority Critical patent/JPH02309816A/en
Publication of JPH02309816A publication Critical patent/JPH02309816A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To attain high speed operation by making a delay time of a logical computing element equal to a signal transmission time equivalent to that of a share of MOS transistor(TR). CONSTITUTION:The element consists of an N-channel 1st MOS TR T1 switching between a 1st negative input I1 and a positive output Q, and using a 2nd positive input I2 as its gate input, a P-channel 2nd MOS TR T2 switching between a 1st power supply and the positive output Q, and using a 2nd positive input I2 as its gate input, a P-channel 3rd MOS TR T3 switching between a 2nd power supply and an output Q, and using a 2nd negative input I2 as its gate input and an N-channel 4th MOS TR T4 switching between a 2nd power supply and an output Q and using a 2nd input I2 as its gate input. Thus, positive and negative logical arithmetic operations are implemented simultaneously to output both outputs Q, and Q in the complementary relation simultaneously. Thus, it is not required to connect an inverter in cascade to an output to obtain an inverted output to decrease the delay time. Moreover, since both outputs Q, and Q in the complementary relation are obtained simultaneously, the change in both the outputs is detected at a high speed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はディジタル情報処理装置の基本構成要素である
論理演算器に関し、特にMOS)−ランジスタによる転
送ゲートを用いた差動出力の論理演算器に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a logic operation unit which is a basic component of a digital information processing device, and in particular to a logic operation unit with differential output using a transfer gate using a MOS (MOS) transistor. Regarding.

〔従来の技術〕[Conventional technology]

一般にマイクロプロセッサ等で代表されるディジタルL
SIは、NANDゲート、NORゲート。
Digital L generally represented by microprocessors, etc.
SI is NAND gate, NOR gate.

インバータ等の論理演算器を多数組合せて構成される。It is constructed by combining a large number of logical operation units such as inverters.

代表的なCMOS構造の2人力NORゲートやNORゲ
ートは、2個のP型MO8)ランジスタと2個のN型M
OS)ランジスタで構成される。また、インバータはP
型とN型のMOS)ランジスタ各1個で構成される。A
NDゲートやORゲートはNANDゲートやNORゲー
トの各出力にインバータを縦続して実現される9〔発明
が解決しようとする課題〕 以上述べた従来のCMOS構造のNANDゲー)’+ 
ANDゲート及びORゲート等の論理演算器は、入力信
号が2個のMOSトランジスタを通過して出力に到達す
るため、遅延時間が大きい。また、ANDゲートやOR
ゲートを実現する場合や反転出力を必要とする場合、イ
ンバータを縦続に接続させなければならない。すなわち
、従来の論理演算器は低速であるという欠点を有する。
A two-man power NOR gate or NOR gate with a typical CMOS structure consists of two P-type MO transistors and two N-type M transistors.
OS) consists of transistors. Also, the inverter is P
It consists of one each of type and N type MOS transistors. A
ND gates and OR gates are realized by cascading inverters to each output of the NAND gate and NOR gate9 [Problem to be solved by the invention] The conventional CMOS structure NAND gate described above
In logical operation units such as AND gates and OR gates, input signals pass through two MOS transistors to reach the output, so the delay time is long. Also, AND gates and OR
When implementing a gate or requiring an inverted output, inverters must be connected in cascade. In other words, conventional logical arithmetic units have the disadvantage of being slow.

本発明の目的は、上記の従来の欠点を除去せしめ、高速
な論理演算器を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to eliminate the above-mentioned conventional drawbacks and provide a high-speed logical arithmetic unit.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の論理演算器の構成は、第1負入力と正出力間を
開閉し、第2正入力をゲート入力とするN型の第1MO
Sトランジスタと、第1電源と前記正出力間を開閉し、
前記第2正入力をゲート入力とするP型の第2M03)
ランジスタと、第1正入力と負出力間を開閉し、第2負
入力をゲート入力とするP型の第3MOSトランジスタ
と、第2電源と前記負出力間を開閉し、前記第2負入力
をゲート入力とするN型の第4M08)ランジスタとか
らなることを特徴とする。
The configuration of the logic operator of the present invention is that an N-type first MO opens and closes between a first negative input and a positive output, and uses a second positive input as a gate input.
an S transistor, opening and closing between the first power supply and the positive output;
P-type second M03) with the second positive input as the gate input
a transistor, a third P-type MOS transistor which opens and closes between the first positive input and the negative output and whose gate input is the second negative input; and a third P-type MOS transistor which opens and closes between the second power supply and the negative output and connects the second negative input. A fourth M08) N-type transistor is used as a gate input.

〔作用〕[Effect]

このような構成を採ることにより、2つの入力信号A、
BによるQ=人−+「とぐ−= A −Cの正論理と負
論理の論理演算を同時に行ない、相補関係の両出力Q、
ローを同時に出力できる。したがって、反転出力を得る
ためにインバータを出力に縦続に接続する必要がなく、
また、遅延時間をMO81〜ランジスタ1個分に減少で
きる。さらに、相補関係の両川力Q、ζ−が同時に得ら
れるので、両川力の差を検出することにより、出力の変
化を高速に検出できる。すなわち、高速動作が可能であ
る。
By adopting such a configuration, two input signals A,
By B, Q = person - + "Togu - = Performs the positive logic and negative logic operations of A -C at the same time, and both outputs Q in a complementary relationship,
Low output can be output at the same time. Therefore, there is no need to connect an inverter in cascade to the output to obtain an inverted output.
Further, the delay time can be reduced to one MO81 to one transistor. Further, since the forces Q and ζ- of both rivers having a complementary relationship can be obtained at the same time, changes in the output can be detected at high speed by detecting the difference between the forces of the two rivers. That is, high-speed operation is possible.

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は本発明の一実施例を示す回路図である。同図に
おいて入力信号I 1. Us、 I 2.’T”2は
、各々第1正入力信号、第1負入力信号、第2正入力信
号、第2負入力信号である。また、第1負入力信号λ−
は第1正入力信号Aの反転信号であり、第2負入力信号
Wは第2正入力信号Bの反転信号である。T、とT4は
N型のMo3)ランジスタ、T2とT3はP型のMoS
トランジスタを示す′。
FIG. 1 is a circuit diagram showing an embodiment of the present invention. In the figure, input signal I1. Us, I 2. 'T'2 are a first positive input signal, a first negative input signal, a second positive input signal, and a second negative input signal, respectively. Also, the first negative input signal λ-
is an inverted signal of the first positive input signal A, and the second negative input signal W is an inverted signal of the second positive input signal B. T, and T4 are N-type Mo3) transistors, and T2 and T3 are P-type MoS.
′ indicates a transistor.

第1正入力信号11.第1負入力信号rl、第2正入力
信号工2.第2負入力信号r2として、第2図に示す4
通りの論理信号を与えると、MOSトランジスタT、〜
T4は、同図に示すように動作する。ここで、記号“X
゛′は開放状態、記号“0゛″は導通状態をそれぞれ示
す、その結果、正出力信号Qは第1正入力信号1.と第
2正入力信号■2が共に“1″である場合にのみ°“0
″となり、−力負出力信号ぐはその逆となる。すなわち
、Q−[−暑τ− ’Q−= I +  ・工2 の論理演算が可能である。
First positive input signal 11. 1st negative input signal rl, 2nd positive input signal 2. 4 as shown in FIG. 2 as the second negative input signal r2.
When a logical signal is given as follows, the MOS transistor T, ~
T4 operates as shown in the figure. Here, the symbol “X
The symbol "0" indicates an open state and the symbol "0" indicates a conductive state, respectively. As a result, the positive output signal Q is the first positive input signal 1. °“0” only when both of and the second positive input signal ■2 are “1”
'', and the negative output signal is the opposite. In other words, the logical operation of Q-[-heat τ-'Q-=I + ·Work2 is possible.

なお、第1正入力信号I、が“0′″、第2正入力信号
■2が′1°゛の場合、正出力信号Qの“1″の振幅は
スレショルド電圧骨だけ低下し、また負出力信号Q−の
′O°′の振幅はスレショルド電圧骨だけ上昇する。一
般にスレショルド電圧は0.8ボルト程度であり、実用
上問題ないが、N型のMOSトランジスタT1に並列に
P型MOSトランジスタを接続し、P型のMo3)−ラ
ンジスタT3に並列にN型のMo3)ランジスタを接続
することにより、論理値“1”の振幅低下と論理値” 
o ”の振幅上昇を完全に除去できる。
Note that when the first positive input signal I is "0'" and the second positive input signal 2 is "1°", the amplitude of "1" of the positive output signal Q decreases by the threshold voltage, and the negative The amplitude of output signal Q-'O°' increases by the threshold voltage. Generally, the threshold voltage is about 0.8 volts, which poses no practical problem, but a P-type MOS transistor is connected in parallel to the N-type MOS transistor T1, and an N-type Mo3 transistor is connected in parallel to the P-type Mo3)-transistor T3. ) By connecting a transistor, the amplitude of the logical value “1” is reduced and the logical value is
o'' amplitude increase can be completely eliminated.

この論理演算器を縦続に接続することにより、多数の入
力信号による複雑な論理演算が可能となる。
By cascading these logical operation units, complex logical operations can be performed using a large number of input signals.

第3図は本発明の他の実施例を示す構成図である。同図
では、第1図に示した本発明による論理演算器を縦続に
接続している。第3図(A)では、第1論理演算器10
の正、負出力Q、−Qを第2論理演算器の第1負入力丁
1と第1正人力11に各々接続している。第1論理演算
器1oでは、Q=A −Bとぐ=A−Bの演算を行ない
、第2論理演算器20では、○UT=A −B 、Cと
σ1T=A−B−Cの演算を行なう。
FIG. 3 is a block diagram showing another embodiment of the present invention. In the figure, the logical arithmetic units according to the present invention shown in FIG. 1 are connected in cascade. In FIG. 3(A), the first logical operator 10
The positive and negative outputs Q and -Q are connected to the first negative input 1 and the first positive input 11 of the second logical operation unit, respectively. The first logical operator 1o performs the calculation Q=A-Btogu=A-B, and the second logical operator 20 calculates ○UT=A-B, C and σ1T=A-B-C. Do this.

第3図(B)では、第1論理演算器1oの出力と第2論
理演算器20の入力との接続を第3図(A)と逆にして
いる。その結果、 0UT=A −B十σ 0UT=λ ・ B−C の演算を行なう。このように、1段目と2段目の論理演
算器の接続により、実現する論理演算を選択できる。
In FIG. 3(B), the connection between the output of the first logical operator 1o and the input of the second logical operator 20 is reversed from that in FIG. 3(A). As a result, the following calculation is performed: 0UT=A −B+σ 0UT=λ·BC. In this way, the logical operation to be realized can be selected by connecting the first and second stage logical arithmetic units.

また、第1論理演算器10と第1正入力1.と第1負入
カー「lに入力する信号、第2正入力I2と第2負入力
r2に入力する信号、及び第2論理演算器20の第1正
入力■1と第1負入カゴ−1に入力する信号、第2正入
力■2と第2負入力r2に入力する信号の選択により、
16種類の論理演算を実現できる。
Further, the first logical operation unit 10 and the first positive input 1. and the signal input to the first negative input car 1, the signal input to the second positive input I2 and the second negative input r2, and the first positive input 1 and the first negative input car of the second logical operator 20. By selecting the signal input to 1, the signal input to the second positive input 2 and the second negative input r2,
16 types of logical operations can be realized.

各論理演算器の遅延時間は、MOS)−ランジメタ1個
分の信号通過時間となり、従来の2個分の半分と高速に
なっている。
The delay time of each logical arithmetic unit is the signal passing time of one MOS)-Rangemetal, which is half the time of two conventional logic units.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、従来より高速な論
理演算器を提供できる。すなわち、従来の論理演算器を
代表する2人力NANDゲートでは入力から出力まで2
個のMOS)ランジスタを信号か通過しなけれはならな
かったが、本発明では1個のMOSトランジスタに半減
している。また、正負両土力が同時に発生しているため
、反転出力を得るために、従来の論理演算器で必要とし
たインバータが不要である。さらに、正負百出力の差動
を検出することにより、高速に出力の変化を検出できる
。すなわち、本発明は、高速動作が可能である。
As explained above, according to the present invention, it is possible to provide a logic arithmetic unit faster than the conventional one. In other words, in a two-man NAND gate that represents a conventional logical operation unit, there are two
In the past, the signal had to pass through several MOS transistors, but in the present invention, this is reduced by half to one MOS transistor. Furthermore, since both positive and negative forces are generated simultaneously, there is no need for an inverter, which is required in conventional logical arithmetic units, in order to obtain an inverted output. Furthermore, by detecting a differential between positive and negative outputs, changes in output can be detected at high speed. That is, the present invention is capable of high-speed operation.

図面の簡単な説明 第1図は本発明の一実施例の回路図、第2図はその動作
説明図、第3図は他の実施例の構成図である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a circuit diagram of one embodiment of the present invention, FIG. 2 is an explanatory diagram of its operation, and FIG. 3 is a configuration diagram of another embodiment.

1、・・・第1正入力信号、I 1・・・第1負入力信
号、I2・・・第2正入力゛信号、I−2・・・第2負
入力信号、Q・・・正出力信号、T・・・負出力信号、
T1.I4・・・N型のMOSトランジスタ、T 2 
、 T 3・・・P型のMOS)−ランジスタ、10・
・・第1論理演算器、20・・・第2論理演算器。
1,...first positive input signal, I1...first negative input signal, I2...second positive input signal, I-2...second negative input signal, Q...positive Output signal, T... negative output signal,
T1. I4...N type MOS transistor, T2
, T3...P-type MOS) - transistor, 10.
...first logical operator, 20...second logical operator.

Claims (1)

【特許請求の範囲】[Claims] 第1負入力と正出力間を開閉し、第2正入力をゲート入
力とするN型の第1MOSトランジスタと、第1電源と
前記正出力間を開閉し、前記第2正入力をゲート入力と
するP型の第2MOSトランジスタと、第1正入力と負
出力間を開閉し、第2負入力をゲート入力とするP型の
第3MOSトランジスタと、第2電源と前記負出力間を
開閉し、前記第2負入力をゲート入力とするN型の第4
MOSトランジスタとからなることを特徴とする論理演
算器。
a first N-type MOS transistor that opens and closes between a first negative input and a positive output, and has a second positive input as a gate input; and a first N-type MOS transistor that opens and closes between a first power supply and the positive output, and has a second positive input as a gate input. a P-type second MOS transistor that opens and closes between the first positive input and the negative output, a third P-type MOS transistor that uses the second negative input as a gate input, and opens and closes between the second power supply and the negative output; an N-type fourth transistor whose gate input is the second negative input;
A logic operation unit characterized by comprising a MOS transistor.
JP1133504A 1989-05-25 1989-05-25 Logic computing element Pending JPH02309816A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1133504A JPH02309816A (en) 1989-05-25 1989-05-25 Logic computing element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1133504A JPH02309816A (en) 1989-05-25 1989-05-25 Logic computing element

Publications (1)

Publication Number Publication Date
JPH02309816A true JPH02309816A (en) 1990-12-25

Family

ID=15106317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1133504A Pending JPH02309816A (en) 1989-05-25 1989-05-25 Logic computing element

Country Status (1)

Country Link
JP (1) JPH02309816A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006180197A (en) * 2004-12-22 2006-07-06 Nec Electronics Corp Logic circuit and word driver circuit

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5471973A (en) * 1977-11-18 1979-06-08 Nec Corp Logical operation circuit
JPS5662427A (en) * 1979-10-26 1981-05-28 Pioneer Electronic Corp Logic circuit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5471973A (en) * 1977-11-18 1979-06-08 Nec Corp Logical operation circuit
JPS5662427A (en) * 1979-10-26 1981-05-28 Pioneer Electronic Corp Logic circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006180197A (en) * 2004-12-22 2006-07-06 Nec Electronics Corp Logic circuit and word driver circuit
JP4562515B2 (en) * 2004-12-22 2010-10-13 ルネサスエレクトロニクス株式会社 Logic circuit and word driver circuit

Similar Documents

Publication Publication Date Title
US4710649A (en) Transmission-gate structured logic circuits
US4601007A (en) Full adder
US5923189A (en) Semiconductor integrated circuit comprised of pass-transistor circuits with different mutual connections
US5382844A (en) Logic circuit for asynchronous circuits with n-channel logic block and p-channel logic block inverse thereto
US6262593B1 (en) Semi-dynamic and dynamic threshold gates with modified pull-up structures
US4896057A (en) High-speed dynamic domino circuit implemented with gaas mesfets
US4749886A (en) Reduced parallel EXCLUSIVE or and EXCLUSIVE NOR gate
US3900742A (en) Threshold logic using complementary mos device
US6661274B1 (en) Level converter circuit
US5479112A (en) Logic gate with matched output rise and fall times and method of construction
US4518871A (en) Ga/As NOR/NAND gate circuit using enhancement mode FET's
US6225826B1 (en) Single ended domino compatible dual function generator circuits
JPH03192915A (en) Flip-flop
JPH01166128A (en) Carry look ahead circuit
JPH02309816A (en) Logic computing element
EP0224841B1 (en) Logic arithmetic circuit
US5250855A (en) Fast logic circuits
JPH01228023A (en) Full adder
KR0144416B1 (en) Full adder
EP0435389A2 (en) Differential input, differential output BiCMOS multiplexers and logic gates and an adder utilizing the same
US4621370A (en) Binary synchronous count and clear bit-slice module
KR20050023978A (en) Full Adder
JPH02180426A (en) Level shifting circuit
JPH09135163A (en) Logic circuit
KR100278992B1 (en) Full adder