JPH02308926A - Cooling structure for trail cylinder of gas turbine combustor - Google Patents

Cooling structure for trail cylinder of gas turbine combustor

Info

Publication number
JPH02308926A
JPH02308926A JP12883589A JP12883589A JPH02308926A JP H02308926 A JPH02308926 A JP H02308926A JP 12883589 A JP12883589 A JP 12883589A JP 12883589 A JP12883589 A JP 12883589A JP H02308926 A JPH02308926 A JP H02308926A
Authority
JP
Japan
Prior art keywords
transition piece
air
cover plate
tail cylinder
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12883589A
Other languages
Japanese (ja)
Inventor
Satoshi Tsukahara
聰 塚原
Noriyuki Hayashi
則行 林
Yoji Ishibashi
石橋 洋二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP12883589A priority Critical patent/JPH02308926A/en
Publication of JPH02308926A publication Critical patent/JPH02308926A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a cooling structure which enhances its cooling function while restricting thermal stress by dividing a space between a cover covering a part of a tail cylinder and the latter into several small spaces with the use of partition plates. CONSTITUTION:An impinging type cooling cover plate 13 is fixed to at least a part of a tail cylinder on the turbine stator vane 6 side, and is formed therein with several small holes 18, defining an air passage 11 between the cover plate 13 and the tail cylinder 4. An air hole 12 is formed in the tail cylinder 4 at a position where the tail cylinder 4 makes contact with the air passage 11. In this arrangement, there are provided partition plates 14 so as to divide the air passage 11 into several spaces. With this arrangement, heat can be smoothly transmitted to the cover plate 13 from the tail cylinder 4 by way of the partition plates 14. Thereby the cooling function of the tail cylinder 4 can be enhanced being caused by an increase in heat transmission of the outer periphery of the cover plate 13 through a guide wall 6. Further, the temperature of the tail cylinder 4 approaches the temperature of the tail cylinder 4 due to the provision of the partition plates 14, thereby it is possible to reduce thermal stress caused by a difference in temperature.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はガスタービン燃焼器尾筒に係り、特に、燃焼器
出口ガス温度の高い高温ガスタービン燃焼器の尾筒に好
適な冷却構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a gas turbine combustor transition piece, and particularly to a cooling structure suitable for a transition piece of a high-temperature gas turbine combustor where the combustor exit gas temperature is high.

〔従来の技術〕[Conventional technology]

ガスタービン燃焼器は圧縮機で加圧した空気と、別系統
で加圧した燃料とを内筒に導き、燃焼させて高温ガスを
発生し、尾筒を介してタービンに導く部品である。ター
ビンに導く燃焼ガス湿度が高くなると尾筒壁面が耐熱温
度を超えるので、特別な冷却が必要となる。尾筒のガス
通路面積は、第5図に示すように、内筒側で大きく、タ
ービン側で小さくなっているので、燃焼ガスから尾筒壁
面への熱伝達率は、第6図に示すように、内筒側で小さ
く、タービン側で太きい。従って、尾筒壁面温度が一様
になるように冷却するためにはタービン側の冷却を内筒
側の冷却よりも強化する必要があり、従来から考慮され
ている。その例として、第4図に特開昭62−1111
.32号の構造を示す。内筒に近い部分は案内壁5を設
けることにより、内筒に導く空気の流速を高め、強制的
に対流冷却を行っている。タービン側は、より高い熱伝
達率が得られる衝突冷却を用いており、尾筒4の外周に
一定間隔の空間を形成するようにカバー板13を固着し
ている。カバー板13には多数の空気孔8を設けており
、空気孔8から流入した空気は尾筒4に衝突して冷却し
、空気孔12を通って尾筒ガス通路内へと排出さ九る。
A gas turbine combustor is a component that guides air pressurized by a compressor and fuel pressurized by a separate system into an inner cylinder, burns it to generate high-temperature gas, and guides it to a turbine via a transition piece. When the humidity of the combustion gas led to the turbine increases, the temperature of the transition tube wall surface exceeds its allowable limit, so special cooling is required. As shown in Figure 5, the gas passage area of the transition piece is larger on the inner cylinder side and smaller on the turbine side, so the heat transfer coefficient from the combustion gas to the wall of the transition piece is as shown in Figure 6. It is smaller on the inner cylinder side and thicker on the turbine side. Therefore, in order to cool the transition tube so that the wall surface temperature is uniform, it is necessary to strengthen the cooling on the turbine side more than the cooling on the inner tube side, which has been considered in the past. As an example, Fig. 4 shows JP-A-62-1111.
.. The structure of No. 32 is shown. By providing a guide wall 5 in a portion close to the inner cylinder, the flow velocity of air guided to the inner cylinder is increased to perform forced convection cooling. On the turbine side, impingement cooling is used to obtain a higher heat transfer coefficient, and a cover plate 13 is fixed to the outer periphery of the transition piece 4 so as to form a space at a constant interval. The cover plate 13 is provided with a large number of air holes 8, and the air flowing in from the air holes 8 collides with the transition piece 4, cools it, and is discharged through the air hole 12 into the transition piece gas passage. .

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は尾筒4からカバー板13への熱の移動が
放射伝熱とカバー板周辺部の接合部の熱伝導のみであり
、熱量としては少なく、カバー板13の空気孔8を通過
する空気による対流熱伝達によってカバー板13が十分
冷却されるので、尾筒4とカバー板13との温度差が大
きく、熱膨張差によって生じる熱応力により、起動・停
止を繰返した場合にはカバー板]3が変形、破損し、ン
〈)却性能の低下、尾筒寿命短縮の可能性をもつ点につ
いての考慮が不十分であった。また、尾筒4の内筒側に
案内壁5を設けたことにより、カバー板13の周囲空気
流速が増し、カバー板13を一層冷却することになり、
カバ・−板13の熱応力が増大する方向にある点につい
て、−]−分、考慮されていなかった。
In the above conventional technology, the heat transfer from the transition piece 4 to the cover plate 13 is only by radiation heat transfer and heat conduction at the joints around the cover plate, and the amount of heat is small and passes through the air hole 8 of the cover plate 13. Since the cover plate 13 is sufficiently cooled by convective heat transfer by air, there is a large temperature difference between the transition piece 4 and the cover plate 13, and the thermal stress caused by the difference in thermal expansion causes the cover plate to cool down repeatedly when starting and stopping. ] There was insufficient consideration given to the possibility of deformation and damage to the engine, resulting in a decrease in cooling performance and a shortened transition tube life. Furthermore, by providing the guide wall 5 on the inner cylinder side of the transition piece 4, the air flow velocity around the cover plate 13 increases, and the cover plate 13 is further cooled.
The fact that the thermal stress of the cover plate 13 is increasing has not been taken into consideration.

本発明の目的は冷却性能を高めつつ、熱応力が発生しに
くい冷却構造を提供することにある。
An object of the present invention is to provide a cooling structure in which thermal stress is less likely to occur while improving cooling performance.

〔課題を解決するための手段〕[Means to solve the problem]

」二記目的を達成するために、尾筒内部の熱伝達率が大
きなタービン側には尾筒からある距離を隔てて尾筒の一
部を覆う衝突冷却のカバー板を設置し、カバー板には多
数の小孔群を設(つる。また、カバー板と尾筒との空間
は仕切壁で多数に分割し、仕切壁はカバー板、及び、尾
筒に固着する。さらに、カバー板と尾筒との空間に接す
る尾筒には尾筒内部のガス通路と連通ずる一個又は複数
の小孔を設ける。
In order to achieve the second objective, an impingement cooling cover plate that covers a part of the transition piece is installed at a certain distance from the transition piece on the turbine side, where the heat transfer coefficient inside the transition piece is large, and the cover plate is In addition, the space between the cover plate and the tail piece is divided into many parts by a partition wall, and the partition wall is fixed to the cover plate and the tail piece. The transition piece that is in contact with the space with the cylinder is provided with one or more small holes that communicate with the gas passage inside the transition piece.

さらに、尾筒内部の熱伝達率が小さな内筒側には尾筒外
周に環状通路を形成する案内壁を設け、内筒に供給する
空気の通路を形成する。
Further, a guide wall that forms an annular passage is provided on the outer periphery of the transition piece on the side of the inner cylinder where the heat transfer coefficient is small inside the transition piece, thereby forming a passage for air to be supplied to the inner cylinder.

〔作用〕[Effect]

尾筒のタービン側に設けた衝突冷却部は、カバー板の内
外圧力差により、小孔群から空気が流入し、尾筒に衝突
することによって尾筒を冷却する。
In the impingement cooling section provided on the turbine side of the transition piece, air flows in from the small hole group due to the pressure difference between the inside and outside of the cover plate and cools the transition piece by colliding with the transition piece.

尾筒とカバー板とを連接する仕切壁は尾筒からカバー板
へ熱伝導によって熱を伝えるので、カバー板の温度は尾
筒温度に近づき、カバー板ど尾筒の温度差による熱膨張
差によって生じる熱応力が小さくなる。カバー板温度が
」二昇したことにより、カバー板の外周を流れる空気と
の温度差が大きくなり、カバー板の外周の対流熱伝達が
加算されて冷却効果が高まる。
The partition wall that connects the transition piece and the cover plate transfers heat from the transition piece to the cover plate by thermal conduction, so the temperature of the cover plate approaches the temperature of the transition piece, and due to the difference in thermal expansion due to the temperature difference between the cover plate and the transition piece. Thermal stress generated is reduced. As the temperature of the cover plate increases by 2, the temperature difference with the air flowing around the outer periphery of the cover plate becomes large, and convective heat transfer around the outer periphery of the cover plate is added to increase the cooling effect.

尾筒の内筒側に設けた案内壁は環状通路面積を選択する
ことにより空気の流速、冷却性能を選択できるので、案
内壁に覆われた尾筒の壁面温度を選択することができる
。案内壁を設けたことによリ、尾筒のタービン側の外周
空気流速も大きくなっており、内部に仕切壁をもつ衝突
冷却構造部は冷却性能が向」ニするので、少ない衝突冷
却空気で従来並みの冷却が可能となる。
By selecting the annular passage area of the guide wall provided on the inner cylinder side of the transition piece, the air flow velocity and cooling performance can be selected, so the temperature of the wall surface of the transition piece covered by the guide wall can be selected. By providing a guide wall, the outer circumferential air flow velocity on the turbine side of the transition piece is increased, and the cooling performance of the impingement cooling structure with an internal partition wall is improved, so less impingement cooling air is required. Cooling at the same level as before is possible.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図1.コより説明する。 An embodiment of the present invention will be described below with reference to FIG. Let me explain.

図示しない圧縮機10とタービン静翼6との中間に位置
する燃焼器は燃焼ガスを生成する内油2、生成した燃焼
ガスをタービン静翼6に導く尾筒4、燃料を内筒2に供
給する図示しない燃料ノズル1を主要な構成要素として
いる。内筒2の外筒には空気流速を大きくして冷却性能
を高めろための案内筒3を設けており、尾筒4の内筒側
にも同様の案内壁5を設けている。尾筒4のタービン翼
側の少なくとも、一部には衝突冷却用のカバー板13を
固着しており、カバー板13には多数の小孔8を設けて
いる。カバー板13と尾筒4との間には空気通路11を
設け、空気通路コ1に接する尾筒4には空気通路」−1
から尾筒内部ガス通路へ通じる空気孔12を設けている
。衝突冷却部の断面の一例を第2図に示した。尾筒4と
カバー板13の間に仕切壁14を設けることにより、空
気通路11を分割し、空気通路11の一本毎に衝突冷却
用の空気孔8を一列設けている。空気通路11の流れ方
向には空気孔8を多数設けている。
A combustor located between a compressor 10 (not shown) and a turbine stator blade 6 has an internal oil 2 that generates combustion gas, a transition pipe 4 that guides the generated combustion gas to the turbine stator blade 6, and a transition pipe 4 that supplies fuel to the inner cylinder 2. The main component is a fuel nozzle 1 (not shown). A guide tube 3 is provided on the outer tube of the inner tube 2 to increase the air flow velocity to improve cooling performance, and a similar guide wall 5 is provided on the inner tube side of the transition tube 4. A cover plate 13 for collision cooling is fixed to at least a part of the turbine blade side of the transition piece 4, and the cover plate 13 is provided with a large number of small holes 8. An air passage 11 is provided between the cover plate 13 and the transition piece 4, and an air passage 11 is provided in the transition piece 4 that is in contact with the air passage 1.
An air hole 12 is provided which communicates with the gas passage inside the transition piece. An example of the cross section of the impingement cooling section is shown in FIG. By providing a partition wall 14 between the transition piece 4 and the cover plate 13, the air passage 11 is divided, and a row of air holes 8 for collision cooling is provided for each air passage 11. A large number of air holes 8 are provided in the flow direction of the air passage 11.

本発明の構造では衝突冷却のカバー板13に設けた多数
の空気孔8から内外圧力差によって流入した空気が尾筒
4に衝突して尾筒4を冷却し、衝突した空気は空気通路
11の内部をタービン静翼6側に向って流れ、尾筒4に
設けた空気孔12を通ってガス通路内部へ排出される。
In the structure of the present invention, the air that flows in from the many air holes 8 provided in the cover plate 13 for collision cooling due to the pressure difference between the inside and outside collides with the transition piece 4 to cool the transition piece 4, and the collided air flows through the air passage 11. The gas flows inside toward the turbine stationary blade 6 side, passes through the air hole 12 provided in the transition piece 4, and is discharged into the gas passage.

衝突冷却による熱伝達率は空気孔8の直径とピッチとの
比率を変化することによって調節可能であり、加熱側に
分布がある場所を一様な温度にすることができる。
The heat transfer coefficient due to impingement cooling can be adjusted by changing the ratio between the diameter and pitch of the air holes 8, and it is possible to maintain a uniform temperature at a location where there is a distribution on the heating side.

また、空気通路1土の内部を流れる空気流量は空気孔8
が多数個配列されているので、下流に行くほど多くなり
、空気流速が増すので、空気通路コ−1を形成する仕切
壁14.カバー板13との熱交換量が増し、尾筒4がよ
り一層冷却される。また、カバー板1.8の空気孔8を
通過する際に、カバー板13は空気によって冷却される
。更に、カバー板13の外周は内筒2に向って空気が流
れるので、この空気流によってカバー板13は冷却され
る。
Also, the air flow rate flowing inside the air passage 1 soil is the air hole 8.
Since a large number of partition walls 14. The amount of heat exchanged with the cover plate 13 increases, and the transition piece 4 is further cooled. Moreover, the cover plate 13 is cooled by the air when passing through the air hole 8 of the cover plate 1.8. Further, since air flows around the outer circumference of the cover plate 13 toward the inner cylinder 2, the cover plate 13 is cooled by this air flow.

一方、尾筒4の内筒2側に案内壁5を設けたことにより
、尾筒外周の環状通路を通って内筒2へ供給される空気
の流速を大きくすることができるので、案内壁5で覆わ
れた尾筒4の内筒側は冷却が強化される。また、案内壁
5を設けたことにより、案内壁5に覆われていない尾筒
4の周囲空気流れにも影響があられれ、尾筒4の近傍の
空気流速が増す傾向にあるので熱伝達率が増加する。
On the other hand, by providing the guide wall 5 on the inner tube 2 side of the transition tube 4, the flow velocity of air supplied to the inner tube 2 through the annular passage on the outer periphery of the transition tube can be increased. Cooling is strengthened on the inner cylinder side of the transition cylinder 4, which is covered with. Furthermore, by providing the guide wall 5, the air flow around the transition piece 4 that is not covered by the guide wall 5 is also affected, and the air flow velocity near the transition piece 4 tends to increase, so the heat transfer coefficient increases.

本発明では、尾筒4のタービン静翼6側に尾筒4からカ
バー板13へ熱が伝わりやすい仕り壁14を設けている
ので、案内壁5を設けたことによるカバー板13の外周
の熱伝達率の増加が、尾筒4の冷却性能を向上すること
になる。また、尾筒4からカバー板13へ熱を伝える仕
切壁]4を設けたことにより、カバー板コ−3の温度が
尾筒4の温度に近づき、熱膨張差による熱応力が低減す
るので、カバー板13の変形、破損に起因する尾筒4の
変形、破損の可能性が低下する。
In the present invention, since the partition wall 14 is provided on the turbine stationary blade 6 side of the transition piece 4 so that heat is easily transferred from the transition piece 4 to the cover plate 13, the heat on the outer periphery of the cover plate 13 due to the provision of the guide wall 5 is An increase in the transmission rate improves the cooling performance of the transition piece 4. Furthermore, by providing the partition wall 4 that transmits heat from the transition piece 4 to the cover plate 13, the temperature of the cover plate 3 approaches the temperature of the transition piece 4, reducing thermal stress due to the difference in thermal expansion. The possibility of deformation or damage to the transition piece 4 due to deformation or damage to the cover plate 13 is reduced.

衝突冷却部の製造方法としては、第2図に示した、尾筒
4に空気通路]−1を加工し、その上にカバー板13を
固着する方法、第3図に示した空気通路11を加工した
カバー板]−3を尾筒4に固着する方法があり、その他
に尾筒4とカバー板13との間に板状の仕切壁14をは
さみこんで固着する方法がある。
The impingement cooling unit can be manufactured by forming an air passage 1-1 in the transition piece 4 and fixing the cover plate 13 thereon, as shown in FIG. There is a method of fixing the processed cover plate]-3 to the transition piece 4, and there is also a method of inserting a plate-shaped partition wall 14 between the transition piece 4 and the cover plate 13 and fixing them.

なお、第2図の空気通路]1の一本に対し、空気孔8を
二列以」二設けることは可能であるが、カバー板コ3と
尾筒4との温度差が大きくなり、空気孔8が一列の場合
と比較して衝突冷却部の信頼性が低下する傾向にある。
Although it is possible to provide two or more rows of air holes 8 for one air passage 1 in Fig. 2, the temperature difference between the cover plate 3 and the transition piece 4 will become large, and the air The reliability of the impingement cooling unit tends to be lower than when the holes 8 are arranged in one row.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、衝突冷却部の熱応力を低減することが
でき、尾筒壁面温度を低くすることができるので、尾筒
の信頼性を高め、寿命がのびる。
According to the present invention, it is possible to reduce the thermal stress of the impingement cooling section and lower the temperature of the wall surface of the transition piece, thereby increasing the reliability of the transition piece and extending its life.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の尾筒部の断面図、第2図は
第1図のn−n線断面図、第3図は第1図の■−■線断
面図の他の実施例、第4図は従来例の尾筒部の断面図、
第5図は尾筒ガス通路面積の流れ方向分布図、第6図は
尾筒ガス側熱伝達率の流れ方向分布図である。 2・内筒、4・・尾筒、5・案内壁、8・空気孔、11
・・空気通路、12・空気孔、13 カバー板、14−
・・・仕切壁。
FIG. 1 is a cross-sectional view of the transition piece of an embodiment of the present invention, FIG. 2 is a cross-sectional view taken along the line n--n in FIG. 1, and FIG. Example, FIG. 4 is a sectional view of the tail tube part of the conventional example,
FIG. 5 is a flow direction distribution diagram of the transition pipe gas passage area, and FIG. 6 is a flow direction distribution diagram of the transition pipe gas side heat transfer coefficient. 2. Inner tube, 4. Tail tube, 5. Guide wall, 8. Air hole, 11
・Air passage, 12・Air hole, 13 Cover plate, 14-
...partition wall.

Claims (1)

【特許請求の範囲】 1、圧縮機で加圧した空気と、別系統で加圧した燃料と
を燃焼器の内筒に導き、前記燃焼器の内筒で燃焼を進行
させ、ここで生成した燃焼ガスを尾筒を介してタービン
に導いて出力を得るガスタービンにおいて、 前記尾筒のタービンに近い部分の少なくとも一部分の壁
面内部に複数の空気通路を形成して、前記外筒の外周か
らの空気によつて衝突冷却する空気孔群と、前記空気通
路と前記尾筒内部とをつなぐ空気孔群とを設け、前記尾
筒の前記内筒に近い部分には前記尾筒の外周壁からある
間隔をもつて環状通路を形成する案内壁を設け、前記環
状通路に前記内筒へ供給する空気の全量、又は、一部を
流す構造としたことを特徴とするガスタービン燃焼器尾
筒冷却構造。 2、請求項1に記載のガスタービン燃焼器尾筒の冷却構
造において、 前記尾筒壁面の内部の空気通路一本に対し、一列の衝突
冷却空気孔群を設けたことを特徴とするガスタービン燃
焼器尾筒の冷却構造。
[Claims] 1. Air pressurized by a compressor and fuel pressurized by a separate system are introduced into the inner cylinder of the combustor, and combustion proceeds in the inner cylinder of the combustor. In a gas turbine that derives output by guiding combustion gas to a turbine through a transition piece, a plurality of air passages are formed inside a wall surface of at least a portion of the transition piece near the turbine, so that air from the outer periphery of the outer cylinder is A group of air holes for collision cooling by air and a group of air holes connecting the air passage and the inside of the transition piece are provided, and a portion of the transition piece near the inner cylinder is provided with a hole from an outer peripheral wall of the transition piece. A gas turbine combustor tail pipe cooling structure characterized in that a guide wall is provided at intervals to form an annular passage, and the entire amount or a part of the air supplied to the inner cylinder flows through the annular passage. . 2. The gas turbine combustor transition piece cooling structure according to claim 1, wherein a row of impingement cooling air holes is provided for one air passage inside the transition piece wall surface. Cooling structure of combustor transition piece.
JP12883589A 1989-05-24 1989-05-24 Cooling structure for trail cylinder of gas turbine combustor Pending JPH02308926A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12883589A JPH02308926A (en) 1989-05-24 1989-05-24 Cooling structure for trail cylinder of gas turbine combustor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12883589A JPH02308926A (en) 1989-05-24 1989-05-24 Cooling structure for trail cylinder of gas turbine combustor

Publications (1)

Publication Number Publication Date
JPH02308926A true JPH02308926A (en) 1990-12-21

Family

ID=14994580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12883589A Pending JPH02308926A (en) 1989-05-24 1989-05-24 Cooling structure for trail cylinder of gas turbine combustor

Country Status (1)

Country Link
JP (1) JPH02308926A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5596870A (en) * 1994-09-09 1997-01-28 United Technologies Corporation Gas turbine exhaust liner with milled air chambers
US6769257B2 (en) 2001-02-16 2004-08-03 Mitsubishi Heavy Industries, Ltd. Transition piece outlet structure enabling to reduce the temperature, and a transition piece, a combustor and a gas turbine providing the above output structure
JP2011226463A (en) * 2010-04-22 2011-11-10 General Electric Co <Ge> Hot gas path component cooling system
JP2017166479A (en) * 2016-03-15 2017-09-21 ゼネラル・エレクトリック・カンパニイ Gas turbine flow sleeve mounting
CN110268196A (en) * 2017-03-27 2019-09-20 株式会社Ihi Burner and gas turbine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5596870A (en) * 1994-09-09 1997-01-28 United Technologies Corporation Gas turbine exhaust liner with milled air chambers
US6769257B2 (en) 2001-02-16 2004-08-03 Mitsubishi Heavy Industries, Ltd. Transition piece outlet structure enabling to reduce the temperature, and a transition piece, a combustor and a gas turbine providing the above output structure
JP2011226463A (en) * 2010-04-22 2011-11-10 General Electric Co <Ge> Hot gas path component cooling system
JP2017166479A (en) * 2016-03-15 2017-09-21 ゼネラル・エレクトリック・カンパニイ Gas turbine flow sleeve mounting
CN110268196A (en) * 2017-03-27 2019-09-20 株式会社Ihi Burner and gas turbine
CN110268196B (en) * 2017-03-27 2020-11-27 株式会社Ihi Combustion apparatus and gas turbine
US11231176B2 (en) 2017-03-27 2022-01-25 Ihi Corporation Combustion device and gas turbine

Similar Documents

Publication Publication Date Title
JP4575532B2 (en) Hot wall with impingement baffle with dimples
EP0284819B1 (en) Gas turbine combustor transition duct forced convection cooling
CA2503333C (en) Effusion cooled transition duct with shaped cooling holes
US7517189B2 (en) Cooling circuit for gas turbine fixed ring
EP2148139B1 (en) Flow sleeve impingement cooling using a plenum ring
US8667682B2 (en) Method of fabricating a nearwall nozzle impingement cooled component for an internal combustion engine
US7493767B2 (en) Method and apparatus for cooling combustor liner and transition piece of a gas turbine
US10386072B2 (en) Internally cooled dilution hole bosses for gas turbine engine combustors
MXPA02007988A (en) Preferential multihole combustor liner.
JPH1068523A (en) Liner for collision/release cooling combustion device
US11655761B2 (en) Optimized heat exchange system for a turbomachine
JPH0524337B2 (en)
EP0178820A1 (en) Impingement cooled gas turbine combustor with internal film cooling
EP2140113B1 (en) Platform cooling of a turbine vane
US7011492B2 (en) Turbine vane cooled by a reduced cooling air leak
EP3067622B1 (en) Combustion chamber with double wall and method of cooling the combustion chamber
JPH02308926A (en) Cooling structure for trail cylinder of gas turbine combustor
US6846156B2 (en) Gas turbine
JPS63143422A (en) Gas turbine combustor
US20110262265A1 (en) Installation having a thermal transfer arrangement
JPS62131927A (en) Cooling construction of gas turbine combustor tail pipe
JPS62111132A (en) Tail cylinder cooling construction for gas turbine
JPH02154919A (en) Heat shielding pressure partition wall
JPS63309733A (en) Gas turbine combustor
JPH01234716A (en) Gas turbine burner