JPH01234716A - Gas turbine burner - Google Patents

Gas turbine burner

Info

Publication number
JPH01234716A
JPH01234716A JP5831288A JP5831288A JPH01234716A JP H01234716 A JPH01234716 A JP H01234716A JP 5831288 A JP5831288 A JP 5831288A JP 5831288 A JP5831288 A JP 5831288A JP H01234716 A JPH01234716 A JP H01234716A
Authority
JP
Japan
Prior art keywords
tail pipe
air
guide wall
transition piece
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5831288A
Other languages
Japanese (ja)
Inventor
Satoshi Tsukahara
聰 塚原
Noriyuki Hayashi
則行 林
Shunichi Anzai
安斉 俊一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5831288A priority Critical patent/JPH01234716A/en
Publication of JPH01234716A publication Critical patent/JPH01234716A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pre-Mixing And Non-Premixing Gas Burner (AREA)

Abstract

PURPOSE:To maintain the temperature of a tail pipe shell surface less than specified, by installing a guide wall which partially covers said tail pipe and an air passage to the rest of the tail pipe within the tail pipe shell surface. CONSTITUTION:A tail pipe guide inner wall 2, which forms a ring-shaped passage 4 to supply air to a liner, is installed around the outside of a tail pipe 1. Air velocity is controlled so that the wall surface of the tail pipe may be kept at a temperature less than specified. The air velocity can be selected by adjusting the clearance between the tail pipe and the tail pipe guide wall so as to enhance cooling performance. An air passage inlet 6 is installed to the parts which are not covered with the tail pipe guide wall 2. While an air passage 5 provided with an air passage outlet 7 is installed to the parts covered with the tail pipe guide wall 2 within the wall surface of the tail pipe 1. The ring-shaped passage 4 formed by the tail pipe 1 and the tail pipe guide wall 2 is provided with a projecting section 8 so as to narrow the passage. This construction makes it possible to accelerate the cooling of the tail pipe, since cooled air is flowing inside the air passage within the tail pipe wall surface.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はガスタービン燃焼器尾筒に係り、特に、燃焼器
出口ガス温度の高い高温ガスタービン燃焼器尾筒の冷却
構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a gas turbine combustor transition piece, and more particularly to a cooling structure for a high-temperature gas turbine combustor transition piece where the combustor exit gas temperature is high.

〔従来の技術〕[Conventional technology]

ガスタービン燃焼器は第2図に示すように、圧縮機13
で加圧した空気と、別系統で加圧した燃料とをライナ1
o内に導き、燃焼させて高温ガスを発生させ1尾筒1を
介してタービン静翼11に導く。ライナ10と尾筒1の
内側を流れる燃焼ガスの温度はライナ、尾筒を構成する
金属材料の溶融温度と同等、又は、より高いため、ライ
ナおよび尾筒の周囲に空気を流し、条件によっては内面
にも空気を流して冷却している。
As shown in FIG. 2, the gas turbine combustor includes a compressor 13.
Air pressurized in the liner 1 and fuel pressurized in a separate system are
1, the gas is combusted to generate high-temperature gas, and the gas is guided to the turbine stationary blade 11 via the transition pipe 1. The temperature of the combustion gas flowing inside the liner 10 and transition piece 1 is equal to or higher than the melting temperature of the metal materials that make up the liner and transition piece. Air is also allowed to flow inside for cooling.

図中9は燃料ノズル、12は圧縮機デイフユーザ、尾筒
1は第3図に示すように、ライナ10に近い尾筒入口で
ガス通路面積が最も大きく、タービン静翼11に近くな
るほどガス通路面積が小さくなっている0尾筒壁面への
入熱を支配する対流伝熱の熱伝達率αはガス流速Uに対
し、ααU0・6 の関係があり、尾筒の内壁熱伝達率分布は第4図のよう
になる。従って、尾筒外周の冷却空気の熱伝達率を一定
とすると、尾筒の壁面温度はタービン静′R11に近い
部分で最も高くなる。尾筒壁面温度を下げるため実開昭
61−34364号公報では、第2図に示すように、尾
筒1の外周に案内壁2を設け、さらに、尾筒の外周壁に
冷却用フィン14を設けている。
In the figure, 9 is the fuel nozzle, 12 is the compressor diffuser, and the transition piece 1 is, as shown in Figure 3, the gas passage area is the largest at the entrance of the transition piece near the liner 10, and the closer it is to the turbine stationary blade 11, the more the gas passage area is 0 The heat transfer coefficient α of convective heat transfer that governs the heat input to the transition tube wall surface has a relationship with the gas flow velocity U of ααU0・6, and the transition tube inner wall heat transfer coefficient distribution is the fourth It will look like the figure. Therefore, if the heat transfer coefficient of the cooling air around the outer periphery of the transition tube is constant, the wall surface temperature of the transition tube will be highest at the portion near the turbine station R11. In order to lower the temperature of the transition tube wall surface, Japanese Utility Model Application No. 61-34364 provides a guide wall 2 on the outer periphery of the transition tube 1, as shown in FIG. 2, and furthermore, cooling fins 14 are provided on the outer peripheral wall of the transition tube. It is set up.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

このような冷却構造を第2図の逆流多缶燃焼器、に用い
ると、隣接する尾筒の間隔が狭いために、尾筒案内壁2
は尾筒1のライナ10に近い部分のみを覆うようになり
、タービン静翼11に近い部分は尾筒周囲の空気流れを
制約しにくい、この部分は、第4図で説明したように1
M面温度が高くなりやすい部分であり、実開昭61−3
4364号公報では冷却用フィン14を設けて冷却効果
を高めようとしている。しかし、フィンを設けたことに
よって壁面近傍の流体抵抗が増し、フィン外周には十分
な空気通路があり、尾筒案内壁2へ流入する空気はフィ
ンの間を流れに<<、フィンの外周を流れやすくなり、
冷却性能は単なる表面積増加による計算値よりも悪く、
フィン表面積を増加しても壁面温度は一定値以下にはな
らない。
When such a cooling structure is used in the reverse flow multi-can combustor shown in FIG.
covers only the part of the transition piece 1 near the liner 10, and the part near the turbine stationary blade 11 is less likely to restrict the airflow around the transition piece.
This is the part where the M surface temperature tends to be high, and it is
In Japanese Patent No. 4364, cooling fins 14 are provided to enhance the cooling effect. However, the provision of the fins increases the fluid resistance near the wall surface, and there is a sufficient air passage around the fin's outer periphery, and the air flowing into the transition guide wall 2 flows between the fins. It flows easier,
The cooling performance is worse than the calculated value due to a simple increase in surface area.
Even if the fin surface area is increased, the wall surface temperature will not fall below a certain value.

本発明の目的は尾筒壁面温度を必要な温度以下に保つこ
とにある。
An object of the present invention is to maintain the transition pipe wall surface temperature below a necessary temperature.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は尾筒の外周壁から所定の間隔をもって尾筒の
一部を覆う案内壁を設け、尾筒の残り部分には案内壁に
覆われない部分から案内壁に覆われた部分へ通じる空気
通路を必要に応じて尾筒壁面内に設けることにより達成
される。
The above purpose is to provide a guide wall that covers a part of the transition piece at a predetermined distance from the outer peripheral wall of the transition piece, and in the remaining part of the transition piece, air is allowed to flow from the part not covered by the guide wall to the part covered by the guide wall. This is achieved by providing a passage in the wall of the transition piece as required.

〔作用〕[Effect]

尾筒と尾筒案内壁との間を流れるライナ供給空気は1尾
筒と尾筒案内壁との隙間を調節することにより、空気流
速を選択し、冷却性能を高めることができる。また、尾
筒壁面内に空気通路を設け。
The liner supply air that flows between the transition piece and the transition piece guide wall can be adjusted by adjusting the gap between the transition piece and the transition piece guide wall to select the air flow velocity and improve the cooling performance. Additionally, an air passage is provided within the wall of the tail tube.

この空気通路の入口を尾筒案内壁に覆われない位置に設
け、尾筒案内壁に覆われた位置で、尾筒壁面側に主流空
気通路が急拡大した部分に、尾筒型面内空気通路出口を
設けることにより、尾筒型面内空気通路を冷却空気が流
れ、尾筒の冷却を促進することができる。
The entrance of this air passage is provided in a position that is not covered by the transition tube guide wall, and at the position covered by the transition tube guide wall, the transition tube type in-plane air is By providing the passage outlet, cooling air flows through the transition tube-shaped in-plane air passage, and cooling of the transition tube can be promoted.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図により説明する。逆流
多缶燃焼器の尾筒1の外周にライナ10へ供給する空気
を流すための環状通路4を形成する尾筒案内壁2を設け
1尾筒壁面を必要な温度以下に保つように空気流速、す
なわち、空気通路面積を調節する。ここで、尾筒と隣接
尾筒との隙間はライナ10側からタービン静翼11側へ
と順次狭くなっており、尾筒1を全面的に覆う尾筒案内
壁2を設けることは構造上、困難を伴うため、途中まで
となっている0尾筒案内壁2を途中までにすると、尾筒
の冷却効果を調節可能な範囲は尾筒案内壁2に覆われた
部分とその近傍となり、他の部分、特に、タービン外周
側に相当する部分については尾筒周囲の空気流速が小さ
く、尾筒内側の燃焼ガス流速が大きいため1尾筒壁面温
度が高くなる。そこで、尾筒案内壁2に覆われない部分
に空気通路人口6を設け、尾筒案内壁2に覆われた部分
に空気通路出ロアをもつ空気通路5を尾筒1の壁面内に
設け、空気通路出口6の上流側には尾筒1と尾筒案内壁
2とで形成する環状通路4を、−旦、狭くするための突
起部8を設ける。尾筒壁面内に設けた空気通路5を空気
が流れるには、入口6と出ロアの間で圧力差が必要であ
るが、出ロアが尾筒案内壁2で覆われた位置にあり、こ
の表面をライナ10に供給される空気が高速で、多量に
流れるため、尾筒表面の外圧が低くなり、空気通路5の
内部を入口6から出ロアへと空気が流れる。尾筒1に突
起部8を設けると、この効果が促進される。空気通路5
を空気が流れる場合の熱伝達率αゎは、空気流速Uに対
して、 ahex: U” の関係があり、尾筒外周を流れる空気の熱伝達率α。に
対し、単位尾筒外表面積当りの空気通路表面積をaとす
ると、空気通路を設けたことによる冷却性能は、 1 +a□ α 0 であられされ、空気通路5の数、断面積によって冷却性
能を選択することができる。
An embodiment of the present invention will be described below with reference to FIG. A transition tube guide wall 2 forming an annular passage 4 for flowing air to be supplied to the liner 10 is provided around the outer periphery of the transition tube 1 of the reverse flow multi-can combustor. , that is, adjust the air passage area. Here, the gap between the transition tube and the adjacent transition tube gradually narrows from the liner 10 side to the turbine stationary blade 11 side, and providing the transition tube guide wall 2 that completely covers the transition tube 1 is structurally necessary. Because it would be difficult, if the transition tube guide wall 2 is moved halfway, the range in which the cooling effect of the transition tube can be adjusted is the part covered by the transition tube guide wall 2 and its vicinity, and other Particularly in the part corresponding to the outer circumferential side of the turbine, the air flow velocity around the transition piece is low and the combustion gas flow velocity inside the transition piece is high, so the temperature of the wall surface of the transition piece becomes high. Therefore, an air passage 6 is provided in a portion not covered by the transition piece guide wall 2, and an air passage 5 having an air passage outlet lower is provided within the wall surface of the transition piece 1 in a portion covered by the transition piece guide wall 2. A protrusion 8 is provided on the upstream side of the air passage outlet 6 to narrow the annular passage 4 formed by the transition piece 1 and the transition piece guide wall 2. In order for air to flow through the air passage 5 provided in the transition tube wall surface, a pressure difference is required between the inlet 6 and the outlet lower, but since the output lower is in a position covered by the transition tube guide wall 2, this Since the air supplied to the liner 10 flows at high speed and in large quantities on the surface, the external pressure on the transition piece surface is low, and the air flows inside the air passage 5 from the inlet 6 to the outlet lower. Providing the protrusion 8 on the transition piece 1 promotes this effect. air passage 5
When air flows through the air, the heat transfer coefficient αゎ has the following relation to the air flow velocity U: ahex: U''. When the surface area of the air passages is a, the cooling performance due to the provision of the air passages is expressed as 1 + a□ α 0 , and the cooling performance can be selected depending on the number and cross-sectional area of the air passages 5.

第6図に本発明の変形例を示す0尾筒壁面内の空気通路
5を設ける部分の尾筒壁面厚さを全体に厚くして、空気
通路比ロアがら急に板厚を減少し、尾筒壁面とほぼ平行
に空気通路5からの空気を流す。第7図に他の変形例を
示す。この例は、第1図の突起部8が無い場合であり、
尾筒1と尾筒案内壁2とで形成される環状通路面積を急
激に変化させていない。第5図は空気通路5をもっ尾筒
1の断面図であり、尾筒1とカバー板3とが完全に接合
された状態を示している。なお、空気通路5は尾筒1に
設けることもできる。
FIG. 6 shows a modification of the present invention. The wall thickness of the transition tube wall at the portion where the air passage 5 is provided in the wall surface of the transition tube is increased as a whole, and the plate thickness is suddenly decreased from the lower air passage ratio. Air from the air passage 5 is made to flow approximately parallel to the cylinder wall surface. FIG. 7 shows another modification. This example is a case where there is no protrusion 8 shown in FIG.
The area of the annular passage formed by the transition piece 1 and the transition piece guide wall 2 is not changed suddenly. FIG. 5 is a cross-sectional view of the transition piece 1 having the air passage 5, showing a state in which the transition piece 1 and the cover plate 3 are completely joined. Note that the air passage 5 can also be provided in the transition piece 1.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、尾筒冷却後の空気を全量、ライナへ供
給できるので、燃焼器全体性能への影響をほとんど無く
して尾筒を冷却することができる。
According to the present invention, since the entire amount of air after cooling the transition piece can be supplied to the liner, the transition piece can be cooled with almost no effect on the overall performance of the combustor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の尾筒の部分縦断面図、第2
図は従来例の燃焼器部全体縦断面図、第3図は尾筒内側
ガス通路面積変化を表わす尾筒断面積分布図、第4図は
尾筒内側を流れる燃焼ガスの熱伝達率を表わす尾筒内壁
熱伝達率分布図、第5図は第1図の■−■矢視断面図、
第6図は本発明の第二の実施例の尾筒部縦断面図、第7
図は本発明の第三の実施例の尾筒部縦断面図である。 1・・・尾筒、2・・・尾筒案内壁、3・・・カバー板
、4・・・環状通路、5・・・空気通路、6・・・空気
通路入口、7・・・空気通路出口、8・・・突起部、9
・・・燃料ノズル。 第1図 第2図 第3図 尾筒入口か5の了巨難  (−) 第4図 左【筒入0カ・3のア巨維  (−) 第5図 第6図
Fig. 1 is a partial longitudinal cross-sectional view of a transition piece according to an embodiment of the present invention;
The figure is a vertical cross-sectional view of the entire combustor section of a conventional example, Figure 3 is a transition tube cross-sectional area distribution diagram showing changes in the area of the gas passage inside the transition tube, and Figure 4 is a diagram showing the heat transfer coefficient of combustion gas flowing inside the transition tube. The transition pipe inner wall heat transfer coefficient distribution diagram, Figure 5 is a cross-sectional view taken along the ■-■ arrow in Figure 1,
FIG. 6 is a vertical sectional view of the tail tube part of the second embodiment of the present invention, and FIG.
The figure is a longitudinal cross-sectional view of the tail tube portion of a third embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Transition tube, 2... Transition tube guide wall, 3... Cover plate, 4... Annular passage, 5... Air passage, 6... Air passage entrance, 7... Air Passage exit, 8...Protrusion, 9
...Fuel nozzle. Fig. 1 Fig. 2 Fig. 3 A big problem with the entrance of the tail tube or 5 (-) Fig. 4 left

Claims (1)

【特許請求の範囲】 1、圧縮機で加圧した空気と、別系統で加圧した燃料と
を燃焼器ライナに導き、前記燃焼器ライナ内で燃焼を進
行させ、ここで生成した燃焼ガスを尾筒を介してタービ
ンに導いて出力を得るガスタービンにおいて、 前記尾筒の外周壁から所定の間隔をもつて前記尾筒の一
部をとり囲む案内壁を設け、前記案内壁と前記尾筒とで
形成する通路に前記燃焼器ライナへ供給する空気の全量
、又は、一部を流し、前記尾筒の前記案内壁に囲まれて
いない部分に入口をもち、前記尾筒の前記案内壁に囲ま
れた部分の前記案内壁側に出口をもつ複数の空気通路を
前記尾筒の壁面内部に設けたことを特徴とするガスター
ビン燃焼器。
[Claims] 1. Air pressurized by a compressor and fuel pressurized by a separate system are guided to a combustor liner, combustion is allowed to proceed within the combustor liner, and the combustion gas generated here is In a gas turbine that obtains output by being guided to a turbine via a transition piece, a guide wall is provided surrounding a part of the transition piece at a predetermined distance from an outer peripheral wall of the transition piece, and the guide wall and the transition piece are connected to each other. All or part of the air supplied to the combustor liner flows through a passage formed by a passageway having an inlet in a portion of the transition piece not surrounded by the guide wall, and having an inlet in a portion of the transition piece that is not surrounded by the guide wall. A gas turbine combustor characterized in that a plurality of air passages each having an outlet on the guide wall side of the enclosed portion are provided inside the wall surface of the transition piece.
JP5831288A 1988-03-14 1988-03-14 Gas turbine burner Pending JPH01234716A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5831288A JPH01234716A (en) 1988-03-14 1988-03-14 Gas turbine burner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5831288A JPH01234716A (en) 1988-03-14 1988-03-14 Gas turbine burner

Publications (1)

Publication Number Publication Date
JPH01234716A true JPH01234716A (en) 1989-09-20

Family

ID=13080731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5831288A Pending JPH01234716A (en) 1988-03-14 1988-03-14 Gas turbine burner

Country Status (1)

Country Link
JP (1) JPH01234716A (en)

Similar Documents

Publication Publication Date Title
KR950003747B1 (en) Gas turbine
US4485630A (en) Combustor liner
US3572031A (en) Variable area cooling passages for gas turbine burners
US4805397A (en) Combustion chamber structure for a turbojet engine
US7493767B2 (en) Method and apparatus for cooling combustor liner and transition piece of a gas turbine
US8959886B2 (en) Mesh cooled conduit for conveying combustion gases
MXPA05004420A (en) Effusion cooled transition duct with shaped cooling holes.
EP2909448B1 (en) Ducting arrangement for cooling a gas turbine structure
CA2939125C (en) Internally cooled dilution hole bosses for gas turbine engine combustors
JPH1082527A (en) Gas turbine combustor
JPH031582B2 (en)
CA2579881A1 (en) Combustor exit duct cooling
JPH0752014B2 (en) Gas turbine combustor
JP2002317650A (en) Gas turbine combustor
JP2013108751A (en) Combustor liner and gas turbine engine assembly
JPH0229936B2 (en)
EP2375160A2 (en) Angled seal cooling system
JPS6335897B2 (en)
CA2381395C (en) Gas turbine combustor, particularly for an aircraft engine
US6976361B1 (en) Ventilation channels in an afterburner chamber confluence sheet
JPS63143422A (en) Gas turbine combustor
JPH01234716A (en) Gas turbine burner
JP2002327602A (en) Method of selectively arranging turbine nozzle and shroud, and gas turbine
US3362470A (en) Boundary wall structures for hot fluid streams
JPS62131927A (en) Cooling construction of gas turbine combustor tail pipe