JPH02154919A - Heat shielding pressure partition wall - Google Patents

Heat shielding pressure partition wall

Info

Publication number
JPH02154919A
JPH02154919A JP30785288A JP30785288A JPH02154919A JP H02154919 A JPH02154919 A JP H02154919A JP 30785288 A JP30785288 A JP 30785288A JP 30785288 A JP30785288 A JP 30785288A JP H02154919 A JPH02154919 A JP H02154919A
Authority
JP
Japan
Prior art keywords
cooling
cooling air
shell
pieces
combustion chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30785288A
Other languages
Japanese (ja)
Inventor
Seiichi Kirikami
桐上 清一
Hajime Toritani
初 鳥谷
Isao Sato
勲 佐藤
Nobuo Shimizu
暢夫 清水
Osamu Arai
修 荒井
Haruo Urushiya
漆谷 春雄
Michio Kuroda
黒田 倫夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP30785288A priority Critical patent/JPH02154919A/en
Publication of JPH02154919A publication Critical patent/JPH02154919A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce a temperature difference in a liner shell by introducing cooling air into intermediate chambers through cooling holes provided in an outer shell to carry out the convective cooling of honeycomb-like fins in an inner shell, discharging the cooling air in the intermediate chambers into a combustion chamber through holes provided at the backward flow ends of the inner shell, and forming a cooling air layer on the combustion chamber side of the inner shell to prevent the inner shell from being heated. CONSTITUTION:Cooling air in a cooling air chamber 3 passes through cooling holes 5 to impinge against pieces 6 and enters intermediate chambers 7. The outer circumferential surfaces of the pieces 6 are cooled by the impingement and convective cooling of the cooling air. The discharge of the cooling air from the intermediate chambers 7 into a combustion chamber 4 is carried out through discharge channels 8 provided at the circumferential ends of the pieces 6, thereby cooling the inner side surfaces of the pieces 6 and the inner side surfaces of the pieces 6 on the backward flow side. The temperature of the pieces 6 becomes high because they are directly subjected to the flame in the combustion chamber and, as a result, a thermal stress is generated by a temperature difference between the pieces 6 and an outer shell 1. Accordingly, in order to reduce the thermal stress, it is required to divide the thermal stress into the axial and peripheral directions. Therefore, the discharge channels 8 are provided linearly in the peripheral direction and in the axial direction.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はガスタービン用燃焼器に係り、特に、ライナ及
びトランジションピースのメタル温度低減熱応力低減に
好適な燃焼器の構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a combustor for a gas turbine, and particularly to a combustor structure suitable for reducing metal temperature and thermal stress of liners and transition pieces.

〔従来の技術〕[Conventional technology]

ガスタービンの高出力高効率化のため、その作動温度を
高くすることができる。しかし、この場合、燃焼室が極
度の高温にさらされるため、燃焼器部材の改良や、冷却
法の改善が必要である。特に、冷却構造を改善すれば、
高価な耐熱合金を使用することなく高温化が達成できる
In order to increase the output and efficiency of a gas turbine, its operating temperature can be increased. However, in this case, since the combustion chamber is exposed to extremely high temperatures, it is necessary to improve the combustor components and the cooling method. In particular, if the cooling structure is improved,
High temperatures can be achieved without using expensive heat-resistant alloys.

燃焼器の冷却には、圧縮機の吐出空気を用いた対流冷却
や、燃焼宝器と高温燃焼ガスの間に冷却空気の薄い膜を
形成するフィルム冷却がある。−船釣には、圧縮機吐出
空気を燃焼室内に導入し、燃焼器殻の内側面に保護膜を
形成する方法が多く採用される。燃焼器殻の全体を冷却
するために、殻には、軸方向に隔たる複数の穴を形成し
、又、殻は、一般に1円筒状であり、その周方向にも複
数の穴を設けである。冷却空気の使用量が増すと燃焼器
の性能に好ましくない影響を与えるので、最少に維持す
ることが好ましい。特に、低NOx形の燃焼器では、燃
焼空気が多く必要とされる。
Combustor cooling includes convection cooling using compressor discharge air and film cooling that forms a thin film of cooling air between the combustion chamber and the high-temperature combustion gas. - In boat fishing, a method is often adopted in which compressor discharge air is introduced into a combustion chamber and a protective film is formed on the inner surface of the combustor shell. In order to cool the entire combustor shell, the shell is formed with a plurality of holes spaced apart in the axial direction, and the shell is generally cylindrical in shape, and a plurality of holes are also formed in the circumferential direction of the shell. be. Increased cooling air usage has an undesirable effect on combustor performance and is preferably kept to a minimum. In particular, a low NOx type combustor requires a large amount of combustion air.

燃焼器の内側面に冷却空気膜を形成するには、殻に入る
空気の方向を内側面に密着させて、燃焼室の高温ガスを
吸込んだり1巻き込んだりすることのない境界層を形成
する必要がある。この冷却流体の流れの方向を適切にす
るには、軸方向に伸びる張出しリップを使用して、リッ
プと燃焼器の内面とで流体の流れを適切に方向づけるみ
ぞ穴を形成するのが一般的である。
In order to form a cooling air film on the inner surface of the combustor, it is necessary to align the direction of air entering the shell with the inner surface to form a boundary layer that does not suck in or entrain the high-temperature gases in the combustion chamber. There is. To properly direct this cooling fluid flow, it is common to use an axially extending overhanging lip to form slots that properly direct the fluid flow between the lip and the inner surface of the combustor. be.

第2図は、特開昭51−141912号公報にある従来
形の張出しリップを持つライナの断面図を示す。
FIG. 2 shows a sectional view of a conventional liner with an overhanging lip as disclosed in Japanese Patent Application Laid-Open No. 51-141912.

ライナの殻1は、はぼ、円筒状でその内面に張出しリッ
プ2を設け、そのリップはライナ1の山形部に取りつけ
られている。張出しリップ2の後流側の殻には冷却空気
室3から燃焼室4へ冷却空気を導入する冷却空気孔5が
設けられており、冷却空気は冷却孔5よりリップ2に当
り、ライナ殻1の内表面にそって冷却層を作るように構
成されている。しかし、張出しリップを持つライナを従
来以上に高温化すると、次の問題点が発生する。その第
一は、ライナ殻のリップ間で第3図に示すような殻壁に
温度差が生じ、図示の状態では冷却孔のまわりに引張の
熱応力が作用する。第二は、リップ間の殻が、直接、火
炎にさらされるため、冷却空気の境界層がはくすし、ふ
く射熱も加わって、殻温度を極度に高いものにして、燃
焼器の寿命を短くする要因となっている。特に、ガスタ
ービンを高温化すれば、殻の温度が上昇するため寿命は
、更に、短くなる。
The liner shell 1 has a hollow, cylindrical shape and has an overhanging lip 2 on its inner surface, and the lip is attached to the chevron-shaped part of the liner 1. A cooling air hole 5 for introducing cooling air from the cooling air chamber 3 to the combustion chamber 4 is provided in the shell on the downstream side of the overhanging lip 2. The cooling air hits the lip 2 from the cooling hole 5, and the liner shell 1 is configured to create a cooling layer along the inner surface of the However, when a liner with an overhanging lip is heated to a higher temperature than before, the following problem occurs. The first is that a temperature difference occurs in the shell wall between the lips of the liner shell as shown in FIG. 3, and in the state shown, tensile thermal stress acts around the cooling holes. Second, the shell between the lips is directly exposed to the flame, which creates a boundary layer of cooling air and adds radiant heat, making the shell temperature extremely high and shortening the life of the combustor. This is a contributing factor. In particular, if the temperature of the gas turbine is raised, the life of the gas turbine will be further shortened because the temperature of the shell will rise.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術では、ライナ殻の内側に冷却空気層を形成
させようとしているが、燃焼室内の火炎の乱流により、
その流れが乱されることを防止する考慮がされておらず
、また、熱輻射の防止対策もないので、強度部材である
ライナ殻に温度差が生じ、熱応力を発生し、極部加熱さ
れて殻が高温になる問題があった。
The above conventional technology attempts to form a cooling air layer inside the liner shell, but due to the turbulent flow of flame inside the combustion chamber,
Since no consideration has been taken to prevent the flow from being disturbed, and no measures are taken to prevent heat radiation, a temperature difference occurs in the liner shell, which is a strength member, generating thermal stress and causing extreme heating. There was a problem with the shell becoming hot.

本発明の目的は、ライナ殻の内側面、更に、内殻をとり
つけ、燃焼輻射熱が直接ライナ殻に当らないようにし、
ライナ殻の温度差を少なくすると共にその温度を下げた
燃焼器を提供することにある。
The purpose of the present invention is to attach the inner surface of the liner shell and the inner shell so that combustion radiant heat does not directly hit the liner shell,
It is an object of the present invention to provide a combustor that reduces the temperature difference between liner shells and lowers the temperature.

本発明の他の目的は殻温度を下げて長期間の使用に耐え
る燃焼器を提供し、殻部材を安価に製造できる燃焼器を
提供することにある。
Another object of the present invention is to provide a combustor that can lower the shell temperature and withstand long-term use, and to provide a combustor whose shell member can be manufactured at low cost.

〔課題を解決するための手段〕[Means to solve the problem]

冷却空気室と燃焼室とをへたてる燃焼器殻の内側にもう
一層の殻を設け、この内側の殻は、外側の殻と一定間隙
離して設定する。すなわち、燃焼宝器は二重であり、内
殻と外殻の間は中間室となる。内殻の中間室側面は、中
間室の間隙より低いハニカムにより、全面おおわれてい
る。この中間室には、外殻の冷却孔から冷却空気を導入
して内殻のハニカムフィンを対流冷却する。中間室の冷
却空気は内殻の後流端の孔から燃焼室へ排出し、内殻の
燃焼室側に冷却空気層を形成し内殻の加熱を防ぐ。
Inside the combustor shell that separates the cooling air chamber and the combustion chamber is another layer of shell, the inner shell being spaced a certain distance from the outer shell. In other words, the combustion treasure is double, with an intermediate chamber between the inner and outer shells. The sides of the intermediate chamber of the inner shell are completely covered with a honeycomb that is lower than the gap between the intermediate chambers. Cooling air is introduced into this intermediate chamber through cooling holes in the outer shell to cool the honeycomb fins in the inner shell by convection. The cooling air in the intermediate chamber is discharged from the hole at the trailing end of the inner shell to the combustion chamber, forming a cooling air layer on the combustion chamber side of the inner shell to prevent heating of the inner shell.

このようにして、上記目的は達成される。In this way, the above objective is achieved.

[作用〕 従来の技術では、殻の内側に冷却空気層を作るためにリ
ップを設けていたが、リップの長さが部分的であるため
、燃焼火炎の振動や、熱輻射により、冷却層は十分に形
成されないこともある。そこで、本発明では、強度部材
である外殻の温度を確実に下げ、温度不均一による熱応
力を低下させることを主眼にして、外殻の内側に一層の
中間室を作り、燃焼室と分層したにれによりlA殻内部
の冷却空気層は確実に形成され、外殻の温度は。
[Function] In conventional technology, a lip was provided inside the shell to create a cooling air layer, but because the length of the lip is partial, the cooling layer is damaged by vibrations of the combustion flame and heat radiation. Sometimes it is not fully formed. Therefore, in the present invention, with the main aim of reliably lowering the temperature of the outer shell, which is a strength member, and reducing thermal stress caused by temperature unevenness, an intermediate chamber is created inside the outer shell and separated from the combustion chamber. The layered slits ensure the formation of a cooling air layer inside the 1A shell, and the temperature of the outer shell.

低下すると共に、外殻に火炎が当たらないため熱輻射を
受けず温度の不均一がなくなる。冷却孔を外殻に設け、
外殻外側から、中間室への冷却空気を導入し、中間室内
側の表面にハニカムの付いた内殻を、いわゆる、ピンフ
ィン冷却する。この内殻は燃焼室の火炎と、直接、接触
するが、ビンフィン冷却効率が高いため、特に、高温に
ならない。
At the same time, since the outer shell is not exposed to flame, it is not subject to heat radiation and temperature non-uniformity is eliminated. Cooling holes are provided in the outer shell,
Cooling air is introduced into the intermediate chamber from the outside of the outer shell, and the inner shell, which has a honeycomb on its surface inside the intermediate chamber, is cooled by what is called a pin fin. Although this inner shell is in direct contact with the flame in the combustion chamber, it does not reach a particularly high temperature because of its high bottle fin cooling efficiency.

また、中間室から燃焼室への排気冷却空気により燃焼室
側に冷却空気層が形成さお、る。すなわち、フィルム冷
却される。これも内殻の高温化を防止する。
In addition, a cooling air layer is formed on the combustion chamber side by the exhaust cooling air flowing from the intermediate chamber to the combustion chamber. That is, film cooling is performed. This also prevents the inner shell from becoming too hot.

〔実施例〕〔Example〕

以下、本発明の実施例を図面を用いて説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図は、本発明の一実施例である。FIG. 1 shows one embodiment of the present invention.

冷却空気室3と燃焼室4の間には、燃焼器外殻1がある
。外殻1には、複数の部片6がロー付け、または、溶接
等で固定されている。更に、詳細には、下記となる。
Between the cooling air chamber 3 and the combustion chamber 4 there is a combustor shell 1 . A plurality of pieces 6 are fixed to the outer shell 1 by brazing, welding, or the like. Further details are as follows.

第4図に示すように、部片6の中間室7側の面には、ハ
ニカム30がロー付けされる。ハニカム30のセルを形
成する中空六角柱の複数個は、背が高く、他は、背が低
い。前者は、外殻1へのハニカム30付きの部片6の支
持柱31であり、後者は、中間室7を流れる冷却空気に
より、伝熱を促進する、いわゆる、タービュランスプロ
モータ32の役割をはたす。ハニカム30は、部片6ヘ
ニツケルロー付けを行ない、また、エツチングにより複
数の支持柱31を除き、タービュランスプロモータ32
となるハニカム30の背を低くする。
As shown in FIG. 4, a honeycomb 30 is brazed to the surface of the piece 6 on the intermediate chamber 7 side. Some of the hollow hexagonal columns forming the cells of the honeycomb 30 are tall, and others are short. The former is a support column 31 of the piece 6 with honeycomb 30 to the outer shell 1, and the latter serves as a so-called turbulence promoter 32, which promotes heat transfer by cooling air flowing through the intermediate chamber 7. The honeycomb 30 is assembled into a turbulence promoter 32 by brazing the parts 6 and removing the plurality of support columns 31 by etching.
The height of the honeycomb 30 is lowered.

部片6と外殻1は、再度、ニッケルロー付け。Part 6 and outer shell 1 are nickel-brazed again.

または、拡散接合により固着する。部片の端は。Alternatively, it is fixed by diffusion bonding. The ends of the pieces.

他部片と狭い間隙を介して隣接する。この間隙は。Adjacent to other parts with a narrow gap between them. This gap is.

冷却空気室3から流入する空気の量、および1部片6の
熱伸び量により決められる。冷却空気室3の冷却空気は
、冷却孔5を通って部片6に衝突し、中間室7へ入る。
It is determined by the amount of air flowing in from the cooling air chamber 3 and the amount of thermal expansion of one piece 6. The cooling air in the cooling air chamber 3 impinges on the piece 6 through the cooling holes 5 and enters the intermediate chamber 7 .

この衝突と対流冷却により部片6の外周面を冷却する。The outer peripheral surface of the piece 6 is cooled by this collision and convection cooling.

中間室7から燃焼室4への冷却空気の排出は部片6の周
辺端に設けた排出溝8より排気され、部片6の内側面、
および、後流側の部片6の内側面を冷却する。部片6は
燃焼室の火炎に、直接、触れるため高温になり、外殻1
との温度差により熱応力が発生する。従って、熱応力を
低減させるため、軸方向及び周方向に分割する必要があ
り、第2図は、周方向および軸方向に直線的に排出溝8
を設けた例であり、部片6はタイル形状である。もちろ
ん、小部片を取りつけてもよいが、製作工数が増加する
ため、部片6は最少数にする方がよい。また、第4図の
ように、排出溝8の端には応力緩和のため、スリット1
0を設けると、部片6の応力集中低減となり寿命を延ば
すことになる。排出溝8とスリット10は冷却空気の性
能に影響を及ぼすため、寸法を十分調整する必要がある
。また、冷却孔5は外殻の強度と性能の許す限り、径を
大きく、また、数を少なくし部片6を冷却する方がよい
。排出溝8は六角形状でもよい。第6図により部片6の
後流側に当る排出溝8付近は隣の部片を有効に冷却する
必要があるため、冷却空気フィルムを形成しやすいよう
後流側部片6の端を外殻側に傾斜させ、境界層としての
冷却空気フィルムが燃焼室のガス流に錯乱を受けにくく
する。外殻の冷却孔5は排出溝8のスリット10と離れ
ていることが条件である。
Cooling air is discharged from the intermediate chamber 7 to the combustion chamber 4 through an exhaust groove 8 provided at the peripheral end of the piece 6, and from the inner surface of the piece 6.
Then, the inner surface of the piece 6 on the downstream side is cooled. Piece 6 comes into direct contact with the flame in the combustion chamber, so it becomes hot, and the outer shell 1
Thermal stress occurs due to the temperature difference between the Therefore, in order to reduce thermal stress, it is necessary to divide the groove in the axial direction and the circumferential direction.
In this example, the piece 6 has a tile shape. Of course, small pieces may be attached, but since this increases the number of manufacturing steps, it is better to minimize the number of pieces 6. In addition, as shown in FIG. 4, a slit 1 is provided at the end of the discharge groove 8 to relieve stress.
If 0 is provided, the stress concentration in the piece 6 will be reduced and its life will be extended. Since the exhaust grooves 8 and the slits 10 affect the performance of the cooling air, it is necessary to sufficiently adjust their dimensions. Further, it is preferable that the cooling holes 5 have a large diameter and a small number to cool the piece 6 as far as the strength and performance of the outer shell allow. The discharge groove 8 may have a hexagonal shape. As shown in Fig. 6, since it is necessary to effectively cool the adjacent parts near the discharge groove 8 on the downstream side of the piece 6, the end of the downstream side piece 6 is removed to facilitate the formation of a cooling air film. Slanted toward the shell side, the cooling air film as a boundary layer is less susceptible to disturbances in the combustion chamber gas flow. The condition is that the cooling holes 5 in the outer shell are separated from the slits 10 in the discharge groove 8.

これは、冷却孔5から導入された冷却空気が燃焼室4へ
直接入ることを防ぐためである。
This is to prevent cooling air introduced from the cooling holes 5 from directly entering the combustion chamber 4.

第5図は本発明の第二の実施例を示す。外殻1は軸方向
に山形をつけてリング状をなし、゛剛性を向上させたも
のである。冷却孔の下流側の外殻の内側に部片6を固定
しである。部片の上流側は。
FIG. 5 shows a second embodiment of the invention. The outer shell 1 has a ring shape with a chevron in the axial direction to improve rigidity. A piece 6 is fixed inside the outer shell on the downstream side of the cooling hole. The upstream side of the piece is.

外殻に固着されている。中間室7に冷却孔から入った冷
却空気は部片のフィンに衝突しながら中間室を流れ、部
片後端の排出孔8より出て隣の部片の内表面にそって冷
却フィルム層を形成し部片を冷却する。部片の周方向の
出口には排出溝を設けであるが、これは、部片の熱応力
を緩和するのに役立つ。また、冷却孔の位置は部片を冷
却するために、どの位置に移動してもよいので、部片の
温度を均一化し熱応力を低減することができる。また、
冷却空気を最少とするため、冷却孔を小さくする場合も
あり得る。この時は1部片の内側面に射熱コーティング
を処して、部片のメタル温度を低下させて寿命を向上さ
せることもできる。
attached to the outer shell. Cooling air enters the intermediate chamber 7 through the cooling hole, flows through the intermediate chamber while colliding with the fins of the piece, exits through the exhaust hole 8 at the rear end of the piece, and spreads a cooling film layer along the inner surface of the adjacent piece. Form and cool the pieces. The circumferential exit of the piece is provided with a drainage groove, which serves to relieve thermal stresses in the piece. Further, since the position of the cooling hole can be moved to any position in order to cool the parts, it is possible to equalize the temperature of the parts and reduce thermal stress. Also,
In order to minimize the amount of cooling air, the cooling holes may be made small. At this time, the inner surface of one piece may be coated with a thermal radiation coating to lower the metal temperature of the piece and improve its life.

部片は、燃焼器殻の軸方向、及び、周方向にも部分的に
取りつけることができる。また、多筒式燃焼器にはライ
ナ及びトランジションピースのどちらも適用可能であり
、アニユラ式燃焼器にも適用できる。
The pieces can be attached partially in the axial direction and also in the circumferential direction of the combustor shell. Further, both the liner and the transition piece can be applied to a multi-tube combustor, and can also be applied to an annular combustor.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、熱ふく射による極度温度上昇がなくな
った。また、殻は十分に低温にすることが可能となる。
According to the present invention, extreme temperature increases due to heat radiation are eliminated. Additionally, the shell can be kept at a sufficiently low temperature.

また、内殻では、十分低温になる。In addition, the temperature in the inner shell is sufficiently low.

また、中間室からの排出空気により燃焼室側はフィルム
冷却される。更に、内殻の高温化に対しては遮熱コーテ
ィングを施せば十分効果がある。
Furthermore, the combustion chamber side is film-cooled by the exhaust air from the intermediate chamber. Furthermore, applying a thermal barrier coating will be sufficiently effective against the rise in temperature of the inner shell.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の燃焼器の断面図。 第2図は従来の燃焼器の断面図、第3図は従来の燃焼器
の壁温の分布図、第4図は、第1図の部片上のハニカム
を中間室側から見た図、第5図は、本発明の第二の実施
例の燃焼器の断面図、第6図は、本発明の第三の実施例
の燃焼器の断面図である。 1・・・燃焼器外殻、3・・・冷却空気室、4・・・燃
焼室、5・・・冷却孔、6・・・部片、7・・・中間室
、8・・・排出溝、10・・・応力緩和スリット。 第1図 第2図 第 図 第5図 第 図 第、6図
FIG. 1 is a sectional view of a combustor according to an embodiment of the present invention. Figure 2 is a cross-sectional view of a conventional combustor, Figure 3 is a wall temperature distribution diagram of a conventional combustor, Figure 4 is a view of the honeycomb on the piece of Figure 1 seen from the intermediate chamber side, FIG. 5 is a cross-sectional view of a combustor according to a second embodiment of the present invention, and FIG. 6 is a cross-sectional view of a combustor according to a third embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Combustor outer shell, 3... Cooling air chamber, 4... Combustion chamber, 5... Cooling hole, 6... Part, 7... Intermediate chamber, 8... Discharge Groove, 10... stress relaxation slit. Figure 1 Figure 2 Figure 5 Figure 6

Claims (1)

【特許請求の範囲】 1、一方の面に沿つて加熱媒体が流れ、他方の面に沿つ
て冷却媒体が流れる隔壁において、 前記加熱媒体が流れる面は、複数の部片から構成され、
前記冷却媒体が流れる面は、一枚の連続的な面から構成
され、面の相互間には、中間室を形成し、前記冷却媒体
が流れる面から前記冷却媒体が、前記中間室を経由し、
前記加熱媒体側に流れる手段と、前記加熱媒体が流れる
面の前記中間室側に前記加熱媒体からの伝熱を促進する
手段を設けたことを特徴とする遮熱圧力隔壁。 2、特許請求項第1項において、 前記冷却媒体が流れる面から前記冷却媒体が前記中間室
を経由し、前記加熱媒体側に流れるように、前記冷却媒
体が流れる面、ならびに、前記加熱媒体が流れる面に前
記中間室と連絡する複数の孔を設けたことを特徴とする
遮熱圧力隔壁。 3、特許請求項第1項において、 前記加熱媒体が流れる面の前記中間室側の面に前記加熱
媒体からの伝熱を促進する手段として、蜂の巣状の部片
を前記加熱媒体が流れる面の前記中間室側の面に固着し
たことを特徴とする遮熱圧力隔壁。
[Claims] 1. In a partition wall in which a heating medium flows along one surface and a cooling medium flows along the other surface, the surface through which the heating medium flows is constituted by a plurality of pieces,
The surface through which the cooling medium flows is composed of one continuous surface, an intermediate chamber is formed between the surfaces, and the cooling medium flows from the surface through which the cooling medium flows via the intermediate chamber. ,
A heat shielding pressure partition wall characterized in that a means for flowing toward the heating medium and a means for promoting heat transfer from the heating medium are provided on the intermediate chamber side of the surface through which the heating medium flows. 2. In claim 1, the surface through which the cooling medium flows and the heating medium are arranged so that the cooling medium flows from the surface through which the cooling medium flows through the intermediate chamber and toward the heating medium side. A heat shielding pressure partition wall characterized in that a plurality of holes communicating with the intermediate chamber are provided on the flow surface. 3. In claim 1, as a means for promoting heat transfer from the heating medium to the surface on the intermediate chamber side of the surface through which the heating medium flows, a honeycomb-shaped piece is placed on the surface through which the heating medium flows. A heat shielding pressure partition wall fixed to a surface on the side of the intermediate chamber.
JP30785288A 1988-12-07 1988-12-07 Heat shielding pressure partition wall Pending JPH02154919A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30785288A JPH02154919A (en) 1988-12-07 1988-12-07 Heat shielding pressure partition wall

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30785288A JPH02154919A (en) 1988-12-07 1988-12-07 Heat shielding pressure partition wall

Publications (1)

Publication Number Publication Date
JPH02154919A true JPH02154919A (en) 1990-06-14

Family

ID=17973954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30785288A Pending JPH02154919A (en) 1988-12-07 1988-12-07 Heat shielding pressure partition wall

Country Status (1)

Country Link
JP (1) JPH02154919A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6043986A (en) * 1995-09-19 2000-03-28 Nippondenso Co., Ltd. Printed circuit board having a plurality of via-holes
JP2013503289A (en) * 2009-09-02 2013-01-31 シーメンス アクティエンゲゼルシャフト Cooling of gas turbine elements designed as rotor disks or turbine blades

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6043986A (en) * 1995-09-19 2000-03-28 Nippondenso Co., Ltd. Printed circuit board having a plurality of via-holes
JP2013503289A (en) * 2009-09-02 2013-01-31 シーメンス アクティエンゲゼルシャフト Cooling of gas turbine elements designed as rotor disks or turbine blades
US8956116B2 (en) 2009-09-02 2015-02-17 Siemens Aktiengesellschaft Cooling of a gas turbine component designed as a rotor disk or turbine blade

Similar Documents

Publication Publication Date Title
US5197852A (en) Nozzle band overhang cooling
JP4575532B2 (en) Hot wall with impingement baffle with dimples
US7219498B2 (en) Waffled impingement effusion method
US6554563B2 (en) Tangential flow baffle
US4302941A (en) Combuster liner construction for gas turbine engine
JP4382670B2 (en) Outflow liquid cooling transition duct with shaped cooling holes
CA2562584C (en) Turbine nozzle triplet with differential vane cooling
US6779597B2 (en) Multiple impingement cooled structure
JP5475901B2 (en) Combustor liner and gas turbine engine assembly
JP4156245B2 (en) Slot-cooled combustor liner
JP4677086B2 (en) Film cooled combustor liner and method of manufacturing the same
EP0178242B1 (en) Cooling scheme for combustor vane interface
JP6329375B2 (en) Hot gas path components for turbine systems
CA2939125C (en) Internally cooled dilution hole bosses for gas turbine engine combustors
US20050268613A1 (en) Method and apparatus for cooling combustor liner and transition piece of a gas turbine
US20090120093A1 (en) Turbulated aft-end liner assembly and cooling method
JPS6335897B2 (en)
JPH031582B2 (en)
JP2010203439A (en) Effusion cooled one-piece can combustor
EP1146289B1 (en) Cooling structure of combustor tail tube
JPH06221562A (en) Combustor of gas turbine
EP3067622B1 (en) Combustion chamber with double wall and method of cooling the combustion chamber
KR100729891B1 (en) Methods and apparatus for preferential placement of turbine nozzles and shrouds based on inlet conditions
JPH02154919A (en) Heat shielding pressure partition wall
JPS63143422A (en) Gas turbine combustor