JPH0230810B2 - - Google Patents

Info

Publication number
JPH0230810B2
JPH0230810B2 JP56183207A JP18320781A JPH0230810B2 JP H0230810 B2 JPH0230810 B2 JP H0230810B2 JP 56183207 A JP56183207 A JP 56183207A JP 18320781 A JP18320781 A JP 18320781A JP H0230810 B2 JPH0230810 B2 JP H0230810B2
Authority
JP
Japan
Prior art keywords
short circuit
machining
wire
discharge
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56183207A
Other languages
Japanese (ja)
Other versions
JPS5890425A (en
Inventor
Yoshio Ozaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP18320781A priority Critical patent/JPS5890425A/en
Publication of JPS5890425A publication Critical patent/JPS5890425A/en
Publication of JPH0230810B2 publication Critical patent/JPH0230810B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H7/00Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
    • B23H7/02Wire-cutting
    • B23H7/04Apparatus for supplying current to working gap; Electric circuits specially adapted therefor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Description

【発明の詳細な説明】 本発明は、ワイヤカツト放電加工装置用加工電
源に関するものであり、特に被加工物と該被加工
物を貫通させたワイヤ電極との間に放電電圧より
も高いパルス電圧を印加し、被加工物とワイヤ電
極とでなす極間に間欠放電を発生させ、この放電
エネルギによつて被加工物を加工するワイヤカツ
ト放電加工装置用加工電源に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a machining power source for a wire-cut electrical discharge machining device, and in particular, a pulse voltage higher than a discharge voltage is applied between a workpiece and a wire electrode passing through the workpiece. The present invention relates to a machining power supply for a wire-cut electric discharge machining apparatus that generates intermittent discharge between the machining gap between the workpiece and the wire electrode, and processes the workpiece using the discharge energy.

従来、この種の加工電源は、被加工物とワイヤ
電極とでなす極間にコンデンサを並列に接続し、
トランジスタ等のスイツチング素子を開閉してコ
ンデンサにパルス電圧を供給し、極間に放電が発
生するとコンデンサに蓄えられたエネルギを該極
間に放出する。この動作を繰返すことにより被加
工物を加工する。このようにコンデンサの充放電
による放電加工は、充電途中において放電するこ
とが多々あり、個々の放電エネルギにばらつきを
生ずる。
Conventionally, this type of processing power supply connects a capacitor in parallel between the poles formed by the workpiece and the wire electrode.
A switching element such as a transistor is opened and closed to supply a pulse voltage to the capacitor, and when a discharge occurs between the electrodes, the energy stored in the capacitor is released between the electrodes. By repeating this operation, the workpiece is processed. In this manner, in electrical discharge machining by charging and discharging a capacitor, discharge often occurs during charging, resulting in variations in individual discharge energy.

一般に放電加工は個々の放電エネルギが大きい
ほど、加工面粗度は悪くなり、加工速度は速くな
る。そのため、コンデンサ放電では加工面粗度は
最も大きいエネルギを持つ放電によつて決まり、
加工速度は途中放電の多発により低下する。
Generally, in electric discharge machining, the greater the individual discharge energy, the worse the machined surface roughness and the faster the machining speed. Therefore, in capacitor discharge, the machined surface roughness is determined by the discharge with the greatest energy.
Machining speed decreases due to frequent electrical discharges during the process.

通常の型ぼり放電加工装置では、特公昭44−
13195号公報に開示されるように、短形波の電流
波形で電流ピーク値ip、パルス幅(放電電流継続
時間)τpを一定にすることにより、極間に同一の
エネルギを供給して加工面粗度に対する加工速度
を速くするように工夫されている。そして、上述
の公報に示されたものでは、スイツチング素子の
開閉により電流ピーク値が一定で、かつ放電検出
によりパルス幅τpを一定にしている。
In normal mold-forming electrical discharge machining equipment,
As disclosed in Publication No. 13195, by keeping the current peak value i p and pulse width (discharge current duration) τ p constant in a rectangular current waveform, the same energy can be supplied between the electrodes. It has been devised to increase the machining speed relative to the roughness of the machined surface. In the device disclosed in the above-mentioned publication, the current peak value is kept constant by opening and closing the switching element, and the pulse width τ p is kept constant by detecting the discharge.

ところが、型ぼり放電加工装置をワイヤカツト
放電加工装置に適用すると、次に述べる欠点が生
じて実用上不適である。即ち、加工条件として放
電電流継続時間τpおよび休止時間τrを設定して加
工を行うと、短絡が生じた場合、最も大きな実効
電流が流れることになる。即ち、放電電流波形を
ピーク値ipなる矩形波とし、デユーテイフアクタ
Dとすると、電気回路論でいわれる一般的な電流
の実効値、すなわち実効電流値Irnsは、 Irns=ip・√ と定義される。
However, when a die-forming electrical discharge machining apparatus is applied to a wire-cut electrical discharge machining apparatus, the following disadvantages arise, making it unsuitable for practical use. That is, when machining is performed with the discharge current duration time τ p and rest time τ r set as machining conditions, the largest effective current will flow if a short circuit occurs. That is, assuming that the discharge current waveform is a rectangular wave with a peak value i p and the duty factor is D, the effective value of a general current referred to in electric circuit theory, that is, the effective current value I rns is I rns = i p・Defined as √.

ここで、短絡が生じている場合には、電圧を印
加すると同時に電流が流れるので、デユーテイフ
アクタDは、 D=τp/τp+τr と定義され、この時、すなわち短絡時の実効電流
値IAnaxが最も大きくなり、 となる。
Here, when a short circuit occurs, a current flows at the same time as voltage is applied, so the duty factor D is defined as D=τp/τp+τr, and the effective current value at this time, that is, at the time of a short circuit I Anax becomes the largest, becomes.

また、正常な加工においては、電圧を印加して
から放電発生までの遅延時間があるため、小さい
電流値しか流せない。例えば、遅延時間の平均値
をτpとすると、電流の実効値Irnsは、 となる。
In addition, during normal machining, there is a delay time between the application of voltage and the occurrence of discharge, so only a small current value can be passed. For example, if the average value of the delay time is τ p , the effective value of the current I rns is becomes.

放電電流波形をピーク値ipなる矩形波にしたと
き、平均電流Iはip・Dと定義される。本発明者
は多くの実験の結果、供給し得る最大平均電流
Inaxの約半分に相当する電流値までは正常加工が
可能であるが、1/2Inax以上の電流を流すために
加工送り速度を速くすると短絡が発生して、加工
が不安定になることを見出した。
When the discharge current waveform is made into a rectangular wave with a peak value i p , the average current I is defined as i p ·D. As a result of many experiments, the inventor determined that the maximum average current that can be supplied is
Normal machining is possible up to a current value equivalent to about half of I nax , but if the machining feed speed is increased to flow a current of 1/2 I nax or more, a short circuit will occur and machining will become unstable. I found out.

一方、加工速度を速めるには電流ピーク値ip
しくは放電電流継続時間τpを増加させ、最大平均
電流Inaxを大きくすれば良いが、ワイヤ電極に流
せ得る電流の実効値には自ら限界があり、ある値
以上の実効値の電流を流せば断線してしまう。こ
の限界の電流値をワイヤ断線限界電流の実効値と
いう。従つて、加工条件の選定においては、電流
ピーク値ip、放電電流継続時間τp、休止時間τr
調整し、短絡時の加工電流の実効値IAnaxがワイ
ヤ断線限界電流の実効値以下になるように選定
し、加工送り速度は短絡時の平均電流の約半分以
下になるように送り速度を設定しなければならな
くなる。特にワイヤカツト放電加工ではワイヤ電
極が振動するので、短絡現象は加工中は勿論コー
ナ部での加工および加工開始時に多く発生する。
このため、大電流を流せないという欠点は致命的
となり、加工速度は低下する。
On the other hand, to increase the machining speed, increase the current peak value i p or the discharge current duration τ p and increase the maximum average current I nax , but there is a limit to the effective value of the current that can be passed through the wire electrode. Yes, if a current with an effective value exceeding a certain value is applied, the wire will break. This limit current value is called the effective value of wire breakage limit current. Therefore, when selecting machining conditions, adjust the current peak value i p , discharge current duration τ p , and rest time τ r so that the effective value I Anax of the machining current at the time of short circuit is less than the effective value of the wire breakage limit current. The machining feed rate must be set so that it is approximately half or less of the average current during a short circuit. In particular, in wire cut electric discharge machining, the wire electrode vibrates, so short circuits often occur not only during machining, but also at corners and at the start of machining.
Therefore, the drawback of not being able to flow a large current becomes fatal, and the processing speed decreases.

本発明は上述した従来の課題に鑑み為されたも
のであり、その目的は、短絡時に供給する電流を
ワイヤ断線限界電流の実効値以内に変更すること
により、加工速度の増大を計ることができるワイ
ヤカツト放電加工装置用加工電源を提供すること
にある。
The present invention has been made in view of the above-mentioned conventional problems, and its purpose is to increase the processing speed by changing the current supplied at the time of a short circuit to within the effective value of the wire breakage limit current. An object of the present invention is to provide a machining power source for a wire cut electrical discharge machining device.

この目的を達成するために、本発明は、被加工
物と該被加工物を貫通させたワイヤ電極との間
に、スイツチング素子により放電電圧よりも高い
パルス電圧を印加し、被加工物とワイヤ電極とで
なす極間に放電を発生させ、スイツチング素子も
しくは他のスイツチング素子の開閉による放電エ
ネルギーによつて被加工物を加工するワイヤカツ
ト放電加工装置用加工電源において、極間の短絡
を検出する短絡検出手段と、放電電流継続時間・
休止時間もしくはピーク電流値を正常時と極間の
短絡時とでそれぞれ設定する設定手段と、短絡検
出手段からの検出信号に応じて設定手段を切り換
える切換手段とを具備し、短絡時には切換手段が
設定手段を正常時から短絡時に切り換え、短絡時
の設定値は該極間に流れる電流の実効値がある決
められた値以上に流れないようにしたことを特徴
とする。
In order to achieve this object, the present invention applies a pulse voltage higher than a discharge voltage between a workpiece and a wire electrode passed through the workpiece by a switching element, and connects the workpiece and the wire. A short circuit that detects a short circuit between the poles in a machining power supply for a wire-cut electrical discharge machining machine that generates discharge between the poles and processes the workpiece using the discharge energy generated by opening and closing a switching element or other switching elements. Detection means, discharge current duration,
It is equipped with a setting means for setting the rest time or a peak current value respectively in a normal state and in the case of a short circuit between poles, and a switching means for switching the setting means in response to a detection signal from the short circuit detection means. The setting means is switched from a normal state to a short circuit, and the set value at the time of a short circuit is such that the effective value of the current flowing between the electrodes does not exceed a certain determined value.

また、短絡時の設定値をワイヤ径・ワイヤ材質
の選択により実動的に決定し、これを加工液流量
により変更可能としたものである。
In addition, the set value at the time of short circuit is determined dynamically by selecting the wire diameter and wire material, and this can be changed by the flow rate of the machining fluid.

以下、図面に基づいて本発明の好適な実施例を
説明する。第1図において、符合10で示すワイ
ヤ電極は、被加工物12にあけられた初孔12a
を通つて被加工物の両側に設けられた不図示の供
給リールと巻取リール間に張設されている。ワイ
ヤ電極10と被加工物12を結ぶ電路には、例え
ばトランジスタ等のスイツチング素子14、限流
抵抗16、直流電源18が順次直列に接続されて
いる。スイツチング素子14はドライブ回路20
によつて開閉制御され、ワイヤ電極10と被加工
物12とでなす極間にパルス電圧を印加する。発
振回路22はドライブ回路20を制御して、スイ
ツチング素子14のON時間およびOFF時間を設
定する。
Hereinafter, preferred embodiments of the present invention will be described based on the drawings. In FIG. 1, a wire electrode designated by 10 is connected to an initial hole 12a made in a workpiece 12.
It is stretched between a supply reel and a take-up reel (not shown) provided on both sides of the workpiece. A switching element 14 such as a transistor, a current limiting resistor 16, and a DC power source 18 are connected in series to the electric path connecting the wire electrode 10 and the workpiece 12. The switching element 14 is a drive circuit 20
The opening and closing are controlled by the wire electrode 10 and the workpiece 12, and a pulse voltage is applied between the poles formed by the wire electrode 10 and the workpiece 12. The oscillation circuit 22 controls the drive circuit 20 and sets the ON time and OFF time of the switching element 14.

休止時間τrを設定する休止時間選択回路24お
よび短絡電流供給後休止時間選択回路26の夫々
の出力は、切換回路28を介して発振回路22に
供給される。放電電流継続時間τpを設定する放電
電流継続時間選択回路30および短絡電流継続時
間選択回路32の夫々の出力は、切換回路34を
介して発振回路22に供給される。
The respective outputs of the rest time selection circuit 24 and the post-short-circuit current supply rest time selection circuit 26 that set the rest time τ r are supplied to the oscillation circuit 22 via the switching circuit 28 . The respective outputs of the discharge current duration selection circuit 30 and the short-circuit current duration selection circuit 32 that set the discharge current duration τ p are supplied to the oscillation circuit 22 via the switching circuit 34.

短絡検出回路36はワイヤ電極10と被加工物
12間に接続され、これ等の短絡を検出するもの
である。この場合、短絡の検出方法としては種々
あるが、例えば、ワイヤ電極10と被加工物12
との間に加工用電源とは別の電源から電圧を印加
し、短絡が発生すると別電源より電流が流れるこ
とにより短絡を検出する方法、または発振回路2
2によりスイツチング素子14がON時の信号A
を受け、かつ極間電圧と放電電圧より低い電圧値
とをコンパレータ等で比較して極間電圧が低いと
きに発する信号Bを受け、これ等信号A・Bを論
理回路で論理して得た信号Cを短絡検出信号とす
る方法等がある。検出速度としては後者の方法が
優れている。短絡検出回路36は短絡検出時の出
力信号で切換回路28,34を制御し、休止時間
選択回路24を短絡電流供給後休止時間選択回路
26へ、放電電流継続時間選択回路30を短絡電
流継続時間選択回路32へ夫々切換えると同時
に、短絡検出回路36の出力信号は発振回路22
と切換回路44に供給される。
The short circuit detection circuit 36 is connected between the wire electrode 10 and the workpiece 12, and detects a short circuit between them. In this case, there are various methods of detecting a short circuit, but for example, if the wire electrode 10 and the workpiece 12 are
A method of detecting a short circuit by applying voltage from a power source different from the processing power source between the
2, the signal A when the switching element 14 is ON
Then, the inter-electrode voltage and the voltage value lower than the discharge voltage are compared with a comparator, etc., and the signal B which is emitted when the inter-electrode voltage is low is received, and these signals A and B are logically obtained by using a logic circuit. There is a method in which the signal C is used as a short circuit detection signal. The latter method is superior in terms of detection speed. The short circuit detection circuit 36 controls the switching circuits 28 and 34 with the output signal when a short circuit is detected, and changes the rest time selection circuit 24 to the rest time selection circuit 26 after supplying the short circuit current, and the discharge current duration selection circuit 30 to the short circuit current duration selection circuit. At the same time as switching to the selection circuit 32, the output signal of the short circuit detection circuit 36 is switched to the oscillation circuit 22.
and is supplied to the switching circuit 44.

放電検出回路38はワイヤ電極10と被加工物
12間に接続され、その出力は発振回路22に供
給される。放電電流ピーク値ipを選択する放電電
流ピーク値選択回路40および短絡電流ピーク値
を選択する短絡電流ピーク値選択回路42の夫々
の出力は、切換回路44を介してドライブ回路2
0に供給される。切換回路44は短絡検出回路3
6から短絡検出信号を受けると、放電電流ピーク
値選択回路40より短絡電流ピーク値選択回路4
2に切換えられる。
The discharge detection circuit 38 is connected between the wire electrode 10 and the workpiece 12, and its output is supplied to the oscillation circuit 22. The respective outputs of the discharge current peak value selection circuit 40 that selects the discharge current peak value i p and the short circuit current peak value selection circuit 42 that selects the short circuit current peak value are connected to the drive circuit 2 via the switching circuit 44.
0. The switching circuit 44 is the short circuit detection circuit 3
When a short circuit detection signal is received from the discharge current peak value selection circuit 40, the short circuit current peak value selection circuit 4 is selected from the discharge current peak value selection circuit 40.
Can be switched to 2.

ドライブ回路20はスイツチング素子14の開
閉する数によつてピーク電流が変えられる。即
ち、短絡検出回路36により極間の短絡が検出さ
れると、その短絡検出出力を受けた切換回路2
8,34,44により短絡時の条件に切換られ
る。短絡電流供給後休止時間、短絡電流継続時
間、短絡電流ピーク値等は夫々の選択回路に設定
しても良いが、各種の状況に応じて選択するのは
繁雑である。
The peak current of the drive circuit 20 is changed depending on the number of switching elements 14 that are opened and closed. That is, when a short circuit between poles is detected by the short circuit detection circuit 36, the switching circuit 2 that receives the short circuit detection output
8, 34, and 44 to switch to the conditions at the time of short circuit. The pause time after supplying the short circuit current, the duration time of the short circuit current, the peak value of the short circuit current, etc. may be set in each selection circuit, but it is complicated to select them according to various situations.

そこで、本出願人が実験した結果、正常放電時
の加工条件によらず、ワイヤ径およびワイヤ材質
に応じて一定の条件にすれば良いことが判明し
た。第1図におけるワイヤ径およびワイヤ材質選
択回路46でワイヤ材質、ワイヤ径を選択すれ
ば、選択回路46の選択出力は短絡電流供給後休
止時間選択回路26、短絡電流継続時間選択回路
32及び短絡電流ピーク値選択回路42に供給さ
れ、選択されたワイヤ材質、ワイヤ径に対応する
短絡電流供給後休止時間、短絡電流継続時間、短
絡電流ピーク値が自動的に設定される。
Therefore, as a result of experiments conducted by the present applicant, it was found that it is sufficient to set constant conditions according to the wire diameter and wire material, regardless of the machining conditions during normal discharge. If the wire material and wire diameter are selected by the wire diameter and wire material selection circuit 46 in FIG. The short-circuit current is supplied to the peak value selection circuit 42, and the short-circuit current post-supply pause time, short-circuit current duration time, and short-circuit current peak value corresponding to the selected wire material and wire diameter are automatically set.

各選択回路24,26,30,32,40,4
2、切換回路28,34,44は、ゲート等で比
較的容易に構成することができる。
Each selection circuit 24, 26, 30, 32, 40, 4
2. The switching circuits 28, 34, 44 can be constructed relatively easily using gates or the like.

本発明の実施例はこのような構成からなるもの
で、以下その作用を第2図の波形図を参照しなが
ら説明する。第2図において、aは極間電圧波形
図、bは加工電流波形図で、図の上部に時刻を信
号t0〜t11として付してある。この第2図は放電電
流継続時間のみを変化させる事例である。
The embodiment of the present invention has such a configuration, and its operation will be explained below with reference to the waveform diagram of FIG. 2. In FIG. 2, a is a machining voltage waveform diagram, b is a machining current waveform diagram, and times are indicated at the top of the diagram as signals t 0 to t 11 . This FIG. 2 shows an example in which only the discharge current duration time is changed.

先ず、時刻t1において極間に電圧が印加され、
遅延があつた後、時刻t2において放電が発生する
と、放電電流継続時間τp1の間、極間に電流が流
れ放電検出回路38により放電が検出される。時
刻t3において休止時間τrのカウントを開始し、時
刻t4において再び極間に電圧を印加する。短絡時
には時刻t7〜t9の経過をたどるが、時刻t7におい
てスイツチング素子14をONにした際、極間に
電圧が生じないため、短絡検出回路36は短絡と
判断し、この判断出力で切換回路28,34,4
4を制御する。これによつて、短絡電流継続時間
選択回路32に切換えられ、短絡電流継続時間
τp2のカウントを開始する。時刻t8において、休
止時間τrのカウントを開始して時刻t9において再
び極間に電圧を印加する。この場合、短絡電流継
続時間τp2、休止時間τr、電流ピーク値ipによつて
決まる実効電流値をIAとすると、 がワイヤ径およびワイヤ材質によつて定まる短絡
時の電流の実効値、すなわちワイヤ断線限界電流
の実効値IAWnaxをこえない値となるように短絡電
流継続時間τp2を求める。即ち、ワイヤ径および
ワイヤ材質選択により自動的にτp2が選定される
ように構成しておくものである。
First, a voltage is applied between the poles at time t1 ,
After the delay, when a discharge occurs at time t 2 , a current flows between the electrodes for a discharge current duration time τ p1 and the discharge is detected by the discharge detection circuit 38 . At time t3 , counting of the rest time τr is started, and at time t4 , voltage is again applied between the electrodes. In the event of a short circuit, time t 7 to t 9 progress, but when the switching element 14 is turned on at time t 7 , no voltage is generated between the poles, so the short circuit detection circuit 36 determines that there is a short circuit, and uses this determination output to Switching circuit 28, 34, 4
Control 4. As a result, the circuit is switched to the short-circuit current duration selection circuit 32, and starts counting the short-circuit current duration time τ p2 . At time t8 , counting of the rest time τr is started, and at time t9 , the voltage is again applied between the electrodes. In this case, if the effective current value determined by the short-circuit current duration τ p2 , rest time τ r , and current peak value i p is I A , then The short-circuit current duration τ p2 is determined so that the effective value of the current at the time of short circuit determined by the wire diameter and wire material, that is, the value that does not exceed the effective value I AWnax of the wire breakage limit current. That is, the configuration is such that τ p2 is automatically selected based on the wire diameter and wire material selection.

なお、この実施例では、放電電流継続時間τp
変化させるものを示したが、休止時間τr、電流ピ
ーク値ipまたはこれらの組合せを変化させるよう
にしてもよい。
In this embodiment, the discharge current duration time τ p is changed, but the rest time τ r , the current peak value i p or a combination thereof may be changed.

また、上記実施例では、ワイヤ径およびワイヤ
材質の選択によつて短絡時の条件を選べるように
したが、極間に流す加工液量によつてもわずかに
ワイヤ断線限界電流の実効値が変わるので、液量
に対応する微調を付するとより一層効果がある。
In addition, in the above embodiment, the conditions at the time of short circuit can be selected by selecting the wire diameter and wire material, but the effective value of the wire breakage limit current changes slightly depending on the amount of machining fluid flowing between the electrodes. Therefore, it is even more effective to make fine adjustments corresponding to the liquid volume.

以上の如く、本発明は、短絡時には放電電流継
続時間・休止時間もしくはピーク電流値またはこ
れ等の組合せを変化させ、ある決められた実効電
流値以上の電流が流れなあようにするから、短絡
時の電流によるワイヤ断線を防ぐことができる。
As described above, the present invention changes the discharge current duration, rest time, peak current value, or a combination of these in the event of a short circuit, and prevents a current exceeding a certain determined effective current value from flowing. Wire breakage due to current can be prevented.

また正常な遅延時間のあつた後に放電すると
き、ワイヤ断線限界電流の実効値IAWnaxに対して となる条件に放電電流継続時間τp・休止時間τr
電流ピーク値ipを選択することが可能となり、加
工速度を速くすることができる。また、個々の放
電による供給エネルギはすべて同一にできるた
め、加工面粗度に対する加工速度も速くなる等の
効果が得られる。
Also, when discharging after a normal delay time, the effective value of the wire breakage limit current I AWnax Under the conditions, discharge current duration τ p・rest time τ r
It becomes possible to select the current peak value i p and the machining speed can be increased. Furthermore, since the energy supplied by each discharge can be made the same, effects such as an increase in machining speed for machining surface roughness can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明によるワイヤカツト放電加工装
置用加工電源の一実施例を示す回路構成図、第2
図は実施例回路において、短絡時に放電電流継続
時間を変化させたときの極間電圧および加工電流
の波形図である。 10はワイヤ電極、12は被加工物、14はス
イツチング素子、16は限流抵抗、18は直流電
源、20はドライブ回路、22は発振回路、24
は休止時間選択回路、26は短絡電流供給後休止
時間選択回路、30は放電電流継続時間選択回
路、32は短絡電流継続時間選択回路、36は短
絡検出回路、38は放電検出回路、40は放電電
流ピーク値選択回路、42は短絡電流ピーク値選
択回路、28,34,44は切換回路、46はワ
イヤ径およびワイヤ材質選択回路である。
FIG. 1 is a circuit configuration diagram showing an embodiment of a machining power supply for a wire-cut electrical discharge machining apparatus according to the present invention, and FIG.
The figure is a waveform diagram of the gap voltage and machining current when the discharge current duration is changed during a short circuit in the example circuit. 10 is a wire electrode, 12 is a workpiece, 14 is a switching element, 16 is a current limiting resistor, 18 is a DC power supply, 20 is a drive circuit, 22 is an oscillation circuit, 24
26 is a pause time selection circuit after short-circuit current supply, 30 is a discharge current duration selection circuit, 32 is a short-circuit current duration selection circuit, 36 is a short-circuit detection circuit, 38 is a discharge detection circuit, and 40 is a discharge 42 is a short-circuit current peak value selection circuit; 28, 34, and 44 are switching circuits; and 46 is a wire diameter and wire material selection circuit.

Claims (1)

【特許請求の範囲】 1 被加工物と該被加工物を貫通させたワイヤ電
極との間に、スイツチング素子の開閉により放電
電圧よりも高いパルス電圧を印加し、上記被加工
物とワイヤ電極とでなす極間に放電を発生させ、
上記スイツチング素子もしくは他のスイツチング
素子の開閉による放電エネルギーによつて上記被
加工物を加工するワイヤカツト放電加工装置用加
工電源において、上記極間の短絡を検出する短絡
検出手段と、放電電流継続時間・休止時間もしく
はピーク電流値を正常時と極間の短絡時とでそれ
ぞれ設定する設定手段と、上記短絡検出手段から
の検出信号に応じて上記設定手段を切り換える切
換手段とを具備し、短絡時には上記切換手段が上
記設定手段を正常時から短絡時に切り換え、短絡
時の設定値は該極間に流れる電流の実効値がある
決められた値以上に流れないようにしたことを特
徴とするワイヤカツト放電加工装置用加工電源。 2 特許請求の範囲第1項に記載の装置におい
て、短絡時の設定値をワイヤ径・ワイヤ材質の選
択により自動的に決定するワイヤカツト放電加工
装置用加工電源。 3 特許請求の範囲第1項に記載の装置におい
て、短絡時の設定値を加工液流量によつて変更を
可能としたワイヤカツト放電加工装置用加工電
源。
[Claims] 1. A pulse voltage higher than a discharge voltage is applied between a workpiece and a wire electrode passing through the workpiece by opening and closing a switching element, and the workpiece and wire electrode are generate a discharge between the electrodes,
In a machining power source for a wire cut electric discharge machining apparatus that processes the workpiece using discharge energy generated by opening and closing of the switching element or other switching elements, the machining power supply includes a short circuit detection means for detecting a short circuit between the poles, and a discharge current duration and time. It is equipped with a setting means for setting a rest time or a peak current value respectively in a normal state and in the case of a short circuit between poles, and a switching means for switching the setting means according to a detection signal from the short circuit detection means. Wire cut electric discharge machining characterized in that the switching means switches the setting means from a normal state to a short circuit state, and the set value at the time of a short circuit is such that the effective value of the current flowing between the electrodes does not exceed a certain determined value. Processing power supply for equipment. 2. A machining power source for a wire-cut electrical discharge machining device, which automatically determines a set value at the time of a short circuit by selecting a wire diameter and wire material, in the device according to claim 1. 3. A machining power source for a wire-cut electrical discharge machining device, in which the set value at the time of a short circuit can be changed depending on the flow rate of machining fluid, in the device according to claim 1.
JP18320781A 1981-11-16 1981-11-16 Power source for work on wire-cut electric discharge working machine Granted JPS5890425A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18320781A JPS5890425A (en) 1981-11-16 1981-11-16 Power source for work on wire-cut electric discharge working machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18320781A JPS5890425A (en) 1981-11-16 1981-11-16 Power source for work on wire-cut electric discharge working machine

Publications (2)

Publication Number Publication Date
JPS5890425A JPS5890425A (en) 1983-05-30
JPH0230810B2 true JPH0230810B2 (en) 1990-07-10

Family

ID=16131647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18320781A Granted JPS5890425A (en) 1981-11-16 1981-11-16 Power source for work on wire-cut electric discharge working machine

Country Status (1)

Country Link
JP (1) JPS5890425A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6150719A (en) * 1984-08-17 1986-03-13 Fanuc Ltd Wire cut electric discharge machine
JPS61121828A (en) * 1984-11-19 1986-06-09 Inoue Japax Res Inc Electric wire cut discharge machining method and unit

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54156296A (en) * 1978-05-31 1979-12-10 Mitsubishi Electric Corp Controlling method for wire-cut electric discharge machine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54156296A (en) * 1978-05-31 1979-12-10 Mitsubishi Electric Corp Controlling method for wire-cut electric discharge machine

Also Published As

Publication number Publication date
JPS5890425A (en) 1983-05-30

Similar Documents

Publication Publication Date Title
US4695696A (en) Electric discharge machine with control of the machining pulse's current value in accordance with the delay time
US4614854A (en) Wire EDM control circuit for rough and finished machining
JPH0338053B2 (en)
US4387285A (en) Power source for wire-cut electric discharge machines
EP0034477B1 (en) A power source circuit for an electric discharge machine
JPS5926414B2 (en) Electric discharge machining equipment
JP3040849B2 (en) Electric discharge machine
JPH0230810B2 (en)
JPH0564032B2 (en)
EP0185101B1 (en) Power source for discharge machining
JPH059209B2 (en)
JP3367345B2 (en) Wire electric discharge machine
JPS6161711A (en) Power source for electric discharge machining
JPH01295716A (en) Power supply device for electric discharge machining
JPS6240125B2 (en)
JPS6059098B2 (en) Power supply device for electrical discharge machining
JP2547365B2 (en) EDM power supply
JP2801280B2 (en) Wire cut EDM power supply
JPS6052891B2 (en) Power supply device for wire cut electrical discharge machining
JPH058121A (en) Electric discharge macining apparatus
JPS6052889B2 (en) Power supply device for electrical discharge machining
JPS637225A (en) Wire cut electric discharge machine
JPH0538627A (en) Electric discharge machining device
JPH11333632A (en) Electrical discharging device
JPH11123614A (en) Electric discharge machining device