JPS6161711A - Power source for electric discharge machining - Google Patents

Power source for electric discharge machining

Info

Publication number
JPS6161711A
JPS6161711A JP17926984A JP17926984A JPS6161711A JP S6161711 A JPS6161711 A JP S6161711A JP 17926984 A JP17926984 A JP 17926984A JP 17926984 A JP17926984 A JP 17926984A JP S6161711 A JPS6161711 A JP S6161711A
Authority
JP
Japan
Prior art keywords
machining
short
signal
turn
condition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17926984A
Other languages
Japanese (ja)
Inventor
Haruki Obara
小原 治樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fanuc Corp
Original Assignee
Fanuc Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fanuc Corp filed Critical Fanuc Corp
Priority to JP17926984A priority Critical patent/JPS6161711A/en
Publication of JPS6161711A publication Critical patent/JPS6161711A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H1/00Electrical discharge machining, i.e. removing metal with a series of rapidly recurring electrical discharges between an electrode and a workpiece in the presence of a fluid dielectric
    • B23H1/02Electric circuits specially adapted therefor, e.g. power supply, control, preventing short circuits or other abnormal discharges
    • B23H1/024Detection of, and response to, abnormal gap conditions, e.g. short circuits

Abstract

PURPOSE:To expedite the recovery of short-condition between electrodes to aim at stabilizing arc-discharge machining, by detecting the short condition between the electrodes to adjust the turn-on and -off time of a switching element. CONSTITUTION:When the short condition between electrode is established, a short detecting circuit 25 determines the level of the detected short condition, and delivers a signal to an oscillator OSC2 which issue therefore, an turn-on and -off signal. That is, when the short condition is established, at first the turn-on condition is established and then the turn-off condition is established. With the repetition of this turn-on and turn-off conditions, when the short condition is released, the oscillation is ceased. Therefore, the turn-on and -off time widths of an oscillators 22 is changed in accordance with an area to be machined, and therefore, when the time width of thinned-out operation is decreased, the machining may be stabilized even if an area to be machined is large.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、放電加工電源に係り、特に、電極間のショー
トが回復し易いと共に放電加工が安定な放電加工電源に
関する6 (従来技術) 第3図は放電加工、特に、ワイヤカット放電加工機の構
成図であり、図中、1は放電加工電源、2は上部ワイヤ
ガイド、3は下部ワイヤガイド。
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to an electric discharge machining power supply, and in particular to an electric discharge machining power supply that can easily recover from a short circuit between electrodes and can perform stable electric discharge machining. FIG. 3 is a block diagram of electrical discharge machining, in particular, a wire-cut electrical discharge machine. In the figure, 1 is a power source for electrical discharge machining, 2 is an upper wire guide, and 3 is a lower wire guide.

4はXYテーブル、5はワーク、6はワイヤ電極、7は
X軸サーボモータ、8はY軸サーボモータ、9は加工液
処理槽、10はCNC111は加工指令テープである。
4 is an XY table, 5 is a workpiece, 6 is a wire electrode, 7 is an X-axis servo motor, 8 is a Y-axis servo motor, 9 is a machining liquid treatment tank, and 10 is a CNC 111 is a machining instruction tape.

ワーク5とワイヤ電極6間に放電を発生させる放電加工
電源lからはパルス状の電圧を発生させて、ワイヤ電極
6とワーク5間に印加するようにしている。この放電加
工電源の具体的構成iこついて詳細に説明する。
A pulsed voltage is generated from an electric discharge machining power supply l that generates an electric discharge between the workpiece 5 and the wire electrode 6, and is applied between the wire electrode 6 and the workpiece 5. The specific configuration of this electric discharge machining power source will be explained in detail.

第4図はトランジスタ制御付コンデンサ放電回路であり
、コンデンサCの放゛電回路の充電回路部分に、トラン
ジスタによるスイッチング素子を挿入したものである。
FIG. 4 shows a transistor-controlled capacitor discharging circuit in which a switching element using a transistor is inserted into the charging circuit portion of the discharging circuit for capacitor C.

この図によるとトランジスタTri及びTr2を制御回
路で切換えて放電電流のピークIpをかえることができ
る。この回路は電源と極間がスイッチ回路によって隔絶
できるため、放電電流が流れている時には、電源を遮断
することができ、絶縁回復の達成されない状態での電流
の流れ込みを防ぐことができる。また、第5図に示され
るように、トランジスタ電源では得られにくい、ピーク
値Ipが高くしかもパルス幅τpの狭い電流が加工上好
都合な、ワイヤ放電加工機、小孔穿加工機および超硬合
金の専用加工機の電源として広く使用される。
According to this figure, the peak Ip of the discharge current can be changed by switching the transistors Tri and Tr2 using the control circuit. In this circuit, the power supply and the poles can be isolated by a switch circuit, so when a discharge current is flowing, the power supply can be cut off, and current can be prevented from flowing in a state where insulation recovery is not achieved. In addition, as shown in Fig. 5, wire electrical discharge machines, small hole drilling machines, and cemented carbide materials are advantageous for machining with a current having a high peak value Ip and a narrow pulse width τp, which is difficult to obtain with a transistor power supply. Widely used as a power source for specialized processing machines.

(従来技術の問題点) しかしながら、放電加工においても時代の要請である自
動化、省力化の要請を受けて、放電加工のjo丁状態全
自動的に監視しなから、人手を介することなく放゛1ニ
加工を遂行し得るような工夫が求められるようになって
きている。例えば、放電加工中において電極間のショー
トが持続するような場合には、これに対応して加工条件
を切換えることができれば、自動化、省力化を推進でき
ることになり、ワークを無駄にすることもなく、また、
加工製品のイ言頼性の向上に寄γすることになる。
(Problems with the conventional technology) However, in response to the demands of the times for automation and labor saving in electric discharge machining, the joting status of electric discharge machining cannot be fully automatically monitored and discharged without human intervention. Increasingly, there is a need for a device that can perform one-step processing. For example, if a short circuit between electrodes persists during electrical discharge machining, if the machining conditions can be changed accordingly, automation and labor savings can be promoted, and workpieces will not be wasted. ,Also,
This will contribute to improving the reliability of processed products.

このような状況から、当該技術分野においてはかかる技
術的改良が強く望まれている。
Under these circumstances, such technical improvements are strongly desired in this technical field.

(発明の目的) 本発明は、作業の自動化、省力化を図ると共に極間のシ
ョー[・が回復し易く、かつ、放JY加下が安定な放電
加工電源を提供することを目的とする。
(Objective of the Invention) It is an object of the present invention to provide an electric discharge machining power source that automates work and saves labor, and also allows easy recovery of show between machining areas and stable discharge JY application.

(発明の概要) 本発明は、スイッチング素子のオン/オフによってコン
デンサの充放電を行ない放電加工を逐行する放電加工電
源において、極間のショート状態を検出する手段と、該
ショート状態には加工電流信号とサーボ送り速度とに基
づいて加工面積に関する信号を得る手段と、該加工面積
に関する信号に応じて前記スイッチング素子のオフタイ
ムを調整する手段とを設(するようにする。
(Summary of the Invention) The present invention provides a means for detecting a short-circuit condition between electrodes in an electric discharge machining power source that performs electric discharge machining by charging and discharging a capacitor by turning on and off switching elements, and a means for detecting a short-circuit condition between electrodes, and Means for obtaining a signal regarding the machining area based on the current signal and the servo feed rate, and means for adjusting the off time of the switching element in accordance with the signal regarding the machining area are provided.

(実施例) 以下、本発明の実施例を図面を参照しながら詳細に説明
する。
(Example) Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

第1図は本発明に係る放電加工電源の全体構成図、第2
図は第1図における各部の波形図である。図中、21は
通常のオン/オフ発振器であり、第2図(a)にその波
形図が示されている。
Fig. 1 is an overall configuration diagram of the electrical discharge machining power source according to the present invention;
The figure is a waveform diagram of each part in FIG. 1. In the figure, 21 is a normal on/off oscillator, whose waveform diagram is shown in FIG. 2(a).

22は発振器21のオン信号を間引くために用いられる
発振器であり、外付けの抵抗、コンデンサからなる時定
数を変化させることにより、オフタイムを変化させるよ
うにすることができる。23はAND回路、24は増幅
器、Trはスイッチングトランジスタ、R1は充電抵抗
、R2及びR3は極間電圧を検出するための分圧抵抗、
R4+寸加工電流検出用抵抗、Cはコンデンサ、25は
ショート検出回路、26は速度比例信号を出力する差動
アンプ、27は速度比例信号を平滑化する平滑回路、2
8は割算器 29乃至31は比1校器、32乃至34は
リレーコイル、r話IPJ全r愛3はリレー接点、Rは
抵抗、Co、CL乃至C3はコンデンサ、35は電圧/
周波数変換器である。
Reference numeral 22 denotes an oscillator used to thin out the on signal of the oscillator 21, and the off time can be changed by changing the time constant formed by an external resistor and capacitor. 23 is an AND circuit, 24 is an amplifier, Tr is a switching transistor, R1 is a charging resistor, R2 and R3 are voltage dividing resistors for detecting the voltage between electrodes,
R4 + size machining current detection resistor, C is a capacitor, 25 is a short circuit detection circuit, 26 is a differential amplifier that outputs a speed proportional signal, 27 is a smoothing circuit that smoothes the speed proportional signal, 2
8 is a divider, 29 to 31 are ratio 1 calculators, 32 to 34 are relay coils, 3 is a relay contact, R is a resistance, Co, CL to C3 are capacitors, 35 is a voltage /
It is a frequency converter.

次にかかる放電加工電源の動作について説明する。Next, the operation of the electrical discharge machining power supply will be explained.

通常は、コンデンサCの放電回路をオン/オフするスイ
ッチングトランジスタTrは、第2図(a)に示される
05CIの波形でも−〕てオン/オフゴれる。尚、03
C2は第21Cd)(こ示されるように、110常はオ
ンイハ号かA N D LIffii路23に入力され
ているので03CIの出力信号のみに依存した信号がA
ND回路23から出力され、その出力信号は増幅器24
で増幅されてスイッチングトランジスタTrのオン/才
)を行なう。一方、極間の電圧Egは電極間に接続され
る分圧抵抗R2、R3を介して監視するように構成され
る。
Normally, the switching transistor Tr that turns on/off the discharge circuit of the capacitor C is turned on/off even with the waveform of 05CI shown in FIG. 2(a). Furthermore, 03
C2 is the 21st Cd) (As shown, since the signal 110 is input to the ONIHA signal or the A N D Liffii path 23, the signal that depends only on the output signal of the 03CI is the A
The output signal is output from the ND circuit 23, and the output signal is sent to the amplifier 24.
The signal is amplified and turns on/off the switching transistor Tr. On the other hand, the voltage Eg between the electrodes is configured to be monitored via voltage dividing resistors R2 and R3 connected between the electrodes.

そこで、本発明においては、極間でショートが発生した
場合には03C2をオン/オフして、03CIからのオ
ン信号を間引くように構成する。
Therefore, in the present invention, when a short circuit occurs between poles, 03C2 is turned on/off to thin out the on signal from 03CI.

この点について、説明する。This point will be explained.

極間がショート状態になり、例えば、極間電圧Egが第
2図(b)に示されるような波形となると、ショート検
出回路25はショート検出レベルを判定して、第2図(
C)に示されるようにショート検出信号SSを出力する
。そのショート検出信号SSが発振器03C2へ入力さ
れると発振器05C2は第2図(d)に示されるように
オン/オフ信号を出力する。つまり、ショートすると最
初オンから始まり、オン/オフを繰返し。
When the gap between the electrodes becomes short-circuited and, for example, the voltage Eg between the electrodes takes a waveform as shown in FIG.
A short detection signal SS is output as shown in C). When the short detection signal SS is input to the oscillator 03C2, the oscillator 05C2 outputs an on/off signal as shown in FIG. 2(d). In other words, when you short circuit, it starts from on and then turns on and off repeatedly.

ショートか解除すると発振を停止1−する。従って。When the short circuit is released, oscillation is stopped and set to 1-. Therefore.

05CIからの出力信号のオン/オフ信号はこの○SC
2のオン/オフ信号と論理積をとられることになる。つ
まり、03CIのオン信号は○S02からのオン/オフ
信号によって間引かれることになる。
The on/off signal of the output signal from 05CI is this ○SC
It will be logically ANDed with the on/off signal of 2. In other words, the ON signal of 03CI is thinned out by the ON/OFF signal from ○S02.

ところで、本発明においては、更に、そのオフタイム幅
を加工面積に応じて変えるように構成する。3口ち、加
工面積Smは加工電流Imを加工速j¥Fmで割算した
値に比例する。つまり、Sm=Ks  (Im/Fm) ここで、Kは定数である。
By the way, in the present invention, the off-time width is further configured to be changed depending on the processing area. 3, the machining area Sm is proportional to the value obtained by dividing the machining current Im by the machining speed j\Fm. That is, Sm=Ks (Im/Fm) where K is a constant.

そこで、加工電流Inは加工電流検出抵抗R4を介して
得て、その加工電流信号Xを割算器28に入力する。
Therefore, the machining current In is obtained via the machining current detection resistor R4, and the machining current signal X is input to the divider 28.

一方、加工速度Fmは平均加工電圧とサーボ基準電圧と
の差に比例するので、サーボ系からの信号と極間電圧E
gからの信号とを差動増幅器26)こ入カレ、該差動増
幅器26からは加工速度比例信号Yを出力する6更に、
その信号は平滑回路27を介して平滑化した橋本こ1割
算器28にスカする。そこで1割算器28は、加工電流
信号Xを加工速度比例信号Yで割算を行ない、加工面積
比例信号Zを出力する。この信号Zのレベルはそれぞれ
段階的に設定される基阜電圧VLI〜VL3が接続され
る比較器01〜C5で比較し、七の時の加工面積比例信
号Zのレベルに応じてリレーコイルRL l乃至RL 
3を付勢する。つまり、加工面積比例信号2の出力が高
い場合は、リレーコイルRLlからRI、3が付勢され
るので、接点rl、からr15は開かれ、0SC2から
出力されるイ言号のオフタイムは短かくなる。
On the other hand, since the machining speed Fm is proportional to the difference between the average machining voltage and the servo reference voltage, the signal from the servo system and the machining voltage E
The signal from g is input to a differential amplifier 26), and the differential amplifier 26 outputs a machining speed proportional signal Y6).
The signal is passed through a smoothing circuit 27 to a Hashimoto divider 28 where it is smoothed. Therefore, the 1 divider 28 divides the machining current signal X by the machining speed proportional signal Y, and outputs the machining area proportional signal Z. The level of this signal Z is compared by comparators 01 to C5 to which reference voltages VLI to VL3, which are set in stages, are connected, respectively, and relay coil RL is selected according to the level of processing area proportional signal Z at 7. ~RL
Energize 3. In other words, when the output of machining area proportional signal 2 is high, relay coil RLl to RI, 3 is energized, contacts rl to r15 are opened, and the off time of the I word output from 0SC2 is short. It becomes like this.

このように、加工面積に応じて、0SC2のオン/オフ
タイム幅を変えることができる。そして、ショート状態
が続いた場合に、通常のスイッチングトランジスタTr
のオン/オブバルスを間引くとショート状、態が回復し
易くなる。しかしながら、加工面積が友きい材料を加工
するときには、スイッチングペルスの間引、きの時1g
1幅を小さくすると加工が非常に安定する。従って、前
記放電加工電源でちって、ショート状!!−の回復を図
ると共に安定な放電加工を効率よく行なうことができる
In this way, the on/off time width of 0SC2 can be changed depending on the processing area. If the short-circuit condition continues, the normal switching transistor Tr
By thinning out the on/obverse state, it becomes easier to recover from the short-circuit condition. However, when processing materials with a small processing area, it is necessary to thin out the switching pulse and
1. If the width is made smaller, processing becomes very stable. Therefore, the electrical discharge machining power supply is short-circuited! ! - It is possible to recover stable electrical discharge machining efficiently.

尚、ここでは、スイッチングトランジスタTrのスイフ
チングを行なうための回路構成及び加工面積に応じてパ
ルスの間引きを行なうための回路構成をマイクココンピ
ュータを有する数値制御(NC)装置内で実行するよう
に構成することができることは言うまでもない。特に、
送り速度信号はNC装置から直接送り速度信号を得て、
NC装置内で、電流検出器から得られた加工電流信号を
該送り速度信号で割算して加工面積を求め、直接パルス
の間引き幡を変えて、スイッチングトランジスタTrの
オン/オフ制御を行なう信号をNC装置から出力するよ
うに構成することもできる。
Here, the circuit configuration for swifting the switching transistor Tr and the circuit configuration for thinning out pulses according to the processing area are configured to be executed in a numerical control (NC) device having a microphone cocomputer. It goes without saying that you can. especially,
The feed speed signal is obtained directly from the NC device,
In the NC device, the machining current signal obtained from the current detector is divided by the feed rate signal to obtain the machining area, and the signal is used to directly control the on/off of the switching transistor Tr by changing the pulse thinning range. It can also be configured to output from the NC device.

また本例では03C2のオフタイムを3段階としたが更
にこまかく設定できるように17でも良く逆に粗くして
も良いことはいうまでもない。
Further, in this example, the off time of 03C2 is set to three stages, but it goes without saying that it may be set to 17 so that it can be set more precisely, or it may be set coarser.

(:発明の効果) 本発明によれば、 スイッチング素子の汁ン/オフによ
ってコンデンサの充放電?行ない放電加工を遂行する放
電加工電源において、極間のショート状態を検出する手
段と、該ショート状態には加工電流信号とサーボ送り速
度とに基づいて加工面1Mに関する信号を得る手段と、
該加工面積に関する信号に応じて前記スイッチング素子
のオフタイムを調整する手段とを設けるようにしたので
、人手を介することなく放電加工の自動化、省力化を図
ることができる。また、極間がショート状態にある場合
に、加工面積をも考慮し、スイッチング素子のオフタイ
ムを調整し得るので、極間のショート状態の回復を早め
ると共に放電加工を安定に!!続させることができる6
(: Effect of the invention) According to the present invention, is it possible to charge/discharge the capacitor by turning on/off the switching element? In an electric discharge machining power supply that performs electric discharge machining, means for detecting a short-circuit condition between machining electrodes, and means for obtaining a signal regarding the machining surface 1M based on a machining current signal and a servo feed rate in the short-circuit condition;
Since the apparatus is provided with means for adjusting the off-time of the switching element in accordance with the signal related to the machining area, it is possible to automate electric discharge machining and save labor without manual intervention. In addition, when there is a short-circuit between the machining areas, the off-time of the switching element can be adjusted taking into account the machining area, which speeds up the recovery from the short-circuit between the machining areas and stabilizes electrical discharge machining! ! 6.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る放電加工電源の全体構成図、第2
図は第1図における各部の波形図、第3図は放電前ニジ
ステムの全体図、第4図は従来のトランジスタ制御つき
コンデンサ放電回路図、第5図は第4図における電圧、
世論の波形図である。 21.22・・・発振器、23・・・AND回路、24
・・・増幅器、25・・・ショーI・回路、26・・・
差動増幅器、27・・・平滑化回路、28・・・割算器
、29〜31・・・比校器、32〜34・・・リレーコ
イル。 特許出願人  ファナンク株式会社 代  理  人   弁理士  辻        實
(外1名)
Fig. 1 is an overall configuration diagram of the electric discharge machining power supply according to the present invention, Fig. 2
The figure is a waveform diagram of each part in Figure 1, Figure 3 is an overall diagram of the system before discharge, Figure 4 is a diagram of a conventional capacitor discharge circuit with transistor control, Figure 5 is the voltage in Figure 4,
It is a waveform diagram of public opinion. 21.22... Oscillator, 23... AND circuit, 24
...Amplifier, 25...Show I circuit, 26...
Differential amplifier, 27... Smoothing circuit, 28... Divider, 29-31... Calibrator, 32-34... Relay coil. Patent applicant: Fananku Co., Ltd. Agent: Minoru Tsuji (1 other person)

Claims (1)

【特許請求の範囲】[Claims] スイッチング素子のオン/オフによってコンデンサの充
放電を行ない放電加工を遂行する放電加工電源において
、極間のショート状態を検出する手段と、該ショート状
態には加工電流信号とサーボ送り速度とに基づいて加工
面積に関する信号を得る手段と、該加工面積に関する信
号に応じてスイッチング素子のオフタイムを調整する手
段とを具備することを特徴とする放電加工電源。
In an electric discharge machining power source that performs electric discharge machining by charging and discharging a capacitor by turning on and off a switching element, there is provided a means for detecting a short-circuit condition between electrodes, and a means for detecting a short-circuit condition between machining electrodes based on a machining current signal and a servo feed rate. An electric discharge machining power supply comprising: means for obtaining a signal regarding the machining area; and means for adjusting an off time of a switching element in accordance with the signal regarding the machining area.
JP17926984A 1984-08-30 1984-08-30 Power source for electric discharge machining Pending JPS6161711A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17926984A JPS6161711A (en) 1984-08-30 1984-08-30 Power source for electric discharge machining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17926984A JPS6161711A (en) 1984-08-30 1984-08-30 Power source for electric discharge machining

Publications (1)

Publication Number Publication Date
JPS6161711A true JPS6161711A (en) 1986-03-29

Family

ID=16062885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17926984A Pending JPS6161711A (en) 1984-08-30 1984-08-30 Power source for electric discharge machining

Country Status (1)

Country Link
JP (1) JPS6161711A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63312019A (en) * 1987-06-12 1988-12-20 Hoden Seimitsu Kako Kenkyusho Ltd Electric discharge machine
EP1806196A1 (en) * 2004-10-28 2007-07-11 Mitsubishi Electric Corporation Electric discharge machining power supply apparatus, and electric discharge machining method
JP2017092064A (en) * 2015-11-02 2017-05-25 国立研究開発法人産業技術総合研究所 Semiconductor wafer machining device
US9878385B2 (en) 2013-12-19 2018-01-30 Mitsubishi Electric Corporation Wire electric discharge machining apparatus, wire electric discharge machining method, and control device
US9895759B2 (en) 2013-12-19 2018-02-20 Mitsubishi Electric Corporation Wire electric discharge machining apparatus, wire electric discharge machining method, and control device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63312019A (en) * 1987-06-12 1988-12-20 Hoden Seimitsu Kako Kenkyusho Ltd Electric discharge machine
EP1806196A1 (en) * 2004-10-28 2007-07-11 Mitsubishi Electric Corporation Electric discharge machining power supply apparatus, and electric discharge machining method
EP1806196A4 (en) * 2004-10-28 2010-12-29 Mitsubishi Electric Corp Electric discharge machining power supply apparatus, and electric discharge machining method
US8168914B2 (en) 2004-10-28 2012-05-01 Mitsubishi Electric Corporation Electric-discharge-machining power supply apparatus and electric discharge machining method
US9878385B2 (en) 2013-12-19 2018-01-30 Mitsubishi Electric Corporation Wire electric discharge machining apparatus, wire electric discharge machining method, and control device
US9895759B2 (en) 2013-12-19 2018-02-20 Mitsubishi Electric Corporation Wire electric discharge machining apparatus, wire electric discharge machining method, and control device
JP2017092064A (en) * 2015-11-02 2017-05-25 国立研究開発法人産業技術総合研究所 Semiconductor wafer machining device

Similar Documents

Publication Publication Date Title
US4363948A (en) Method of electrically cutting materials with a wire-shaped electrode and apparatus for practicing the same
US4347425A (en) Wire-cut, electric-discharge machining power source
US4695696A (en) Electric discharge machine with control of the machining pulse's current value in accordance with the delay time
EP0124625B1 (en) Electric discharge machining control circuit
JPS6161711A (en) Power source for electric discharge machining
EP0032023B1 (en) A power source for an electric discharge machine
US4767905A (en) EDM method and apparatus with trapezoidized short-duration pulses
EP0102693A1 (en) Wire-cut electric discharge machine
EP0037240B1 (en) Automatic cutting condition control equipment
JPS5976724A (en) Wire cut electric discharge machining system
US4431895A (en) Power source arrangement for electric discharge machining
JP3252622B2 (en) Machining power supply controller for wire electric discharge machine
US4719327A (en) Electrical discharge machining power supply
JP3367345B2 (en) Wire electric discharge machine
US4891486A (en) Device for feed control of electrode-tool in spark erosion machines
JPS60255313A (en) Electric discharge machining power supply
JPH059209B2 (en)
JPS6059098B2 (en) Power supply device for electrical discharge machining
JPS6052891B2 (en) Power supply device for wire cut electrical discharge machining
JPH0230810B2 (en)
JPS6052889B2 (en) Power supply device for electrical discharge machining
JPS637225A (en) Wire cut electric discharge machine
JP2572416B2 (en) Electric discharge machine
JPH0230422A (en) Electric discharge machining device
JPS60146624A (en) Method of electric discharge machining and device therefor