JPH0538627A - Electric discharge machining device - Google Patents

Electric discharge machining device

Info

Publication number
JPH0538627A
JPH0538627A JP19760391A JP19760391A JPH0538627A JP H0538627 A JPH0538627 A JP H0538627A JP 19760391 A JP19760391 A JP 19760391A JP 19760391 A JP19760391 A JP 19760391A JP H0538627 A JPH0538627 A JP H0538627A
Authority
JP
Japan
Prior art keywords
machining
electric discharge
signal
power supply
switching element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19760391A
Other languages
Japanese (ja)
Inventor
Toshimi Furuta
敏己 古田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP19760391A priority Critical patent/JPH0538627A/en
Publication of JPH0538627A publication Critical patent/JPH0538627A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce bad influence or irregular electric discharging by suppressing generation of electric discharge at side faces and the secondary discharge through the splashing powder from machining likely to occur when the discharge machining involves instability. CONSTITUTION:A switching element 7 and a capacitor 3 are connected in series to a DC power supply 1, and a current suppressing resistance 6 is connected in parallel with this switching element 7 while a machining electrode 4 and a work to be processed 5 are connected with the capacitor 3. The switching element 7 is turned off with the off signal prepared by a switch control circuit according to eventual instability of electric discharge, and the charging current to the capacitor 3 is lessened by the resistance 6. When machining becomes unstable, the charging current from the capacitor 3 to the machining electrode 4 and the work 5, i.e., supply energy, is decreased so as to suppress generation of electric discharge phenomenon.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は放電加工装置の放電加工
電源回路に係り、特に二次放電の影響を少なくして意図
しない放電の発生を抑えるようにしたものに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric discharge machining power supply circuit for an electric discharge machining apparatus, and more particularly to an electric discharge machining power supply circuit for suppressing the influence of secondary discharge to suppress the generation of unintended discharge.

【0002】[0002]

【従来の技術】図7は従来の放電加工装置の放電加工電
源回路を示す回路図、図8は同放電加工電源回路におけ
る加工電極及び被加工物間即ち極間の電圧・電流を示す
波形図である。図において、1は直流電圧源、2は可変
抵抗器、3は直流電圧源1に可変抵抗器2を介して直列
に接続されたコンデンサ、4はコンデンサ3の一方の端
子に接続された加工用電極、5はコンデンサ3の他方の
端子に接続された被加工物である。
2. Description of the Related Art FIG. 7 is a circuit diagram showing an electric discharge machining power supply circuit of a conventional electric discharge machining apparatus, and FIG. 8 is a waveform diagram showing a voltage / current between a machining electrode and a workpiece, that is, a pole in the electric discharge machining power supply circuit. Is. In the figure, 1 is a DC voltage source, 2 is a variable resistor, 3 is a capacitor connected in series to the DC voltage source 1 via a variable resistor 2, and 4 is a processing device connected to one terminal of the capacitor 3. The electrodes 5 are workpieces connected to the other terminal of the capacitor 3.

【0003】従来の放電加工装置の放電加工電源回路は
上記のように構成され、直流電圧源1の直流電圧は可変
抵抗器2を通してコンデンサ3の両端に印加され、コン
デンサ3には電気エネルギーが蓄積され、コンデンサ3
の両端電圧は徐々に上昇して直流電圧源1の直流電圧値
に近づいていく。そして、加工用電極4及び被加工物5
間(以下「極間」と称する)は直流電圧源1の直流電圧
付近で放電現象を誘発できる非常に狭い間隙に制御され
ているため、コンデンサ3の両端電圧が直流電圧源1の
直流電圧付近に達すると極間に放電現象が発生し、その
極間にはコンデンサ3に蓄えられたエネルギーが放電電
流となって流れる。この繰り返しにより被加工物5は徐
々に溶解されていくことになる。このときの極間の電圧
及び電流の波形を図8に示している。なお、可変抵抗器
2はコンデンサ3への充電電流を制限するためのもので
あり、コンデンサ3の両端電圧が直流電圧値に到達する
までの時間を変化させることができる。
The electric discharge power supply circuit of the conventional electric discharge machine is constructed as described above, and the DC voltage of the DC voltage source 1 is applied to both ends of the capacitor 3 through the variable resistor 2, and electric energy is accumulated in the capacitor 3. And capacitor 3
The voltage between both ends of the DC voltage gradually increases and approaches the DC voltage value of the DC voltage source 1. Then, the processing electrode 4 and the workpiece 5
Since the gap (hereinafter referred to as “between poles”) is controlled to a very narrow gap that can induce a discharge phenomenon near the DC voltage of the DC voltage source 1, the voltage across the capacitor 3 is near the DC voltage of the DC voltage source 1. When it reaches, the discharge phenomenon occurs between the electrodes, and the energy stored in the capacitor 3 flows as a discharge current between the electrodes. By repeating this, the workpiece 5 is gradually dissolved. The waveforms of the voltage and current between the electrodes at this time are shown in FIG. The variable resistor 2 is for limiting the charging current to the capacitor 3 and can change the time until the voltage across the capacitor 3 reaches the DC voltage value.

【0004】[0004]

【発明が解決しようとする課題】上記のような従来の放
電加工装置の放電加工電源回路では直流電圧源1に可変
抵抗器2を介してコンデンサ3が直列に接続され、コン
デンサ3の両端に加工用電極4と被加工物5がそれぞれ
接続されているから、極間がどのような状態であっても
コンデンサ3への充電は止めることができず、それに伴
って生じる放電も停止させることができない。従って、
放電加工が不安定になった場合には極間の加工状態を検
出し加工間隙を制御する数値制御装置のサーボ送り制御
によって加工用電極4をその不安定を解消するために加
工進行方向に対して送方向に逃がす訳であるが、この場
合においても極間では安定加工と同様に放電を行ってい
るため、加工用電極4の加工軸に対しての側面方向での
放電は解消されず、ひいては加工粉を介しての二次放電
の発生を抑えることができないという問題点があった。
In the electric discharge machining power supply circuit of the conventional electric discharge machining apparatus as described above, the capacitor 3 is connected in series to the DC voltage source 1 through the variable resistor 2, and machining is performed at both ends of the capacitor 3. Since the work electrode 4 and the work piece 5 are connected to each other, the charge to the capacitor 3 cannot be stopped and the discharge that accompanies it cannot be stopped regardless of the state between the electrodes. .. Therefore,
When the electric discharge machining becomes unstable, the machining electrode 4 is moved toward the machining advancing direction in order to eliminate the instability by the servo feed control of the numerical controller that detects the machining state between the electrodes and controls the machining gap. However, even in this case, since the electric discharge is performed between the electrodes in the same manner as the stable machining, the electric discharge in the lateral direction with respect to the machining axis of the machining electrode 4 cannot be eliminated. As a result, there is a problem in that it is not possible to suppress the occurrence of secondary discharge through the processed powder.

【0005】本発明は上記のような問題点を解決するた
めになされたもので、放電加工が不安定となって加工用
電極を加工進行方向に対して逆方向に逃がす場合に極間
への供給ネエルギーを減少させ或いは供給エネルギーの
供給を停止して側面方向での放電と加工粉を介しての二
次放電の発生を抑え或いは無くしてこれら放電により生
じる悪影響を少なくすることができる放電加工装置の放
電加工電源回路を得ることを目的とする。
The present invention has been made to solve the above problems, and when electric discharge machining becomes unstable and the machining electrode is allowed to escape in the direction opposite to the machining direction, the gap between the machining gap and Electric discharge machining apparatus capable of reducing supply energy or stopping supply of supply energy to suppress or eliminate side discharge and secondary discharge through machining powder to reduce adverse effects caused by these discharges. The purpose is to obtain the electric discharge machining power supply circuit.

【0006】[0006]

【課題を解決するための手段】本発明に係る放電加工装
置は直流電源に直列に接続され、且つ加工用電極及び被
加工物間に並列に接続された放電のための高周波パルス
を発生するコンデンサを有してなる放電加工電源回路
と、常時はオン信号を出力し、放電加工が不安定状態で
あって数値制御装置のサーボ送り制御による加工用電極
の加工進行方向の最深値からの戻り量が所定値以上のと
きに放電加工が安定する直前までオフ信号を出力するス
イッチ制御回路と、直流電源と放電加工電源回路との間
に設けられ、スイッチ制御回路のオン・オフ信号により
オン・オフ動作させられ、電流抑制抵抗が並列接続され
たスイッチング素子とを備えるように構成したものであ
る。
A discharge machining apparatus according to the present invention is a capacitor connected in series to a DC power source and connected in parallel between a machining electrode and a workpiece to generate a high frequency pulse for discharge. And the amount of return from the deepest value in the machining advancing direction of the machining electrode due to the servo feed control of the numerical control device that outputs an ON signal at all times and the EDM is always in an unstable state. Is a predetermined value or more, the switch control circuit that outputs an OFF signal until just before electrical discharge machining stabilizes is provided between the DC power supply and the electrical discharge machining power supply circuit. It is configured to include a switching element which is operated and in which current suppressing resistors are connected in parallel.

【0007】また本発明に係るもう一つの放電加工装置
は直流電源と加工用電極及び被加工物との間に設けら
れ、発振器の出力信号に駆動されて放電のための高周波
パルスを発生させるスイッチング素子を有してなる放電
加工電源回路と、常時はオン信号を出力し、放電加工が
不安定状態であって数値制御装置のサーボ送り制御によ
る加工用電極の加工進行方向の最深値からの戻り量が所
定値以上のときに放電加工が安定する直前までオフ信号
を出力するスイッチ制御回路と、発振器とスイッチング
素子との間に設けられ、発振器の出力信号を、スイッチ
制御回路のオン信号を受けたときにスイッチング素子に
流し、スイッチ制御回路のオフ信号を受けたときにはス
イッチング素子に流さないようにしたゲート手段とを備
えるように構成したものである。
Further, another electric discharge machining apparatus according to the present invention is provided between the DC power supply, the machining electrode and the work piece, and is driven by the output signal of the oscillator to generate a high frequency pulse for electric discharge. An electric discharge machining power supply circuit that has elements and an ON signal is always output, and the electric discharge machining is unstable, and the numerical control device returns from the deepest value in the machining progress direction of the machining electrode by servo feed control. A switch control circuit that outputs an OFF signal until just before the electrical discharge machining stabilizes when the amount is a predetermined value or more, and it is provided between the oscillator and the switching element and receives the output signal of the oscillator and the ON signal of the switch control circuit. And a gate means that prevents the current from flowing to the switching element when it receives an off signal from the switch control circuit. Than it is.

【0008】[0008]

【作用】本発明においては、安定な放電加工を行なって
いる上では放電加工電源回路のコンデンサに充放電が繰
り返され、数値制御装置のサーボ制御によって加工用電
極が加工進行方向の最深値を更新しながら加工を続行し
ていくわけであるが、ひとたび放電加工が不安定になる
と数値制御装置は加工用電極を加工進行方向に対して逃
がす動作を行う。この逃がし量が所定値以上のときには
スイッチ制御回路はオフ信号を安定する直前まで出力す
る。そうすると、直流電源と放電加工電源回路との間に
設けられたスイッチング素子は、そのオフ信号によって
オフ動作し、今までスイッチング素子に流れていたコン
デンサへの充電電流は、スイッチング素子に並列接続さ
れた電流抑制抵抗に流れることとなり、コンデンサに流
れる充電電流は小さくなる。従って、コンデンサの両端
電圧が直流電圧値になるのに非常に長い時間を費やすと
こととなり、この間の意図しない放電は減少し、電流供
給の停止と等価となる。
In the present invention, during stable electric discharge machining, the capacitor of the electric discharge machining power supply circuit is repeatedly charged and discharged, and the machining electrode updates the deepest value in the machining progress direction by the servo control of the numerical controller. While the machining continues, the numerical controller once again releases the machining electrode in the machining direction once the electric discharge machining becomes unstable. When the escape amount is equal to or larger than the predetermined value, the switch control circuit outputs the OFF signal until just before the stabilization. Then, the switching element provided between the DC power supply and the electric discharge machining power supply circuit is turned off by the off signal, and the charging current to the capacitor, which has been flowing in the switching element until now, is connected in parallel to the switching element. Since the current flows through the current suppressing resistor, the charging current flowing through the capacitor becomes small. Therefore, it takes a very long time for the voltage across the capacitor to reach the DC voltage value, and unintentional discharge during this period is reduced, which is equivalent to stopping the current supply.

【0009】また、もう一つの発明においてはひとたび
放電加工が不安定になり、数値制御装置が加工用電極を
加工進行方向に対して逃がす動作を行い、その逃がし量
が所定値以上のときにはスイッチ制御回路はオフ信号を
安定する直前まで出力する。この場合に、発振器とスイ
ッチング素子との間に設けられたゲート手段はそのオフ
信号を受けて発振器の出力信号をスイッチング素子に流
されないようにしてスイッチング素子をオフ状態にす
る。従って、直流電源と加工用電極及び被加工物との間
が遮断され、極間への電流供給が停止され、この間の放
電が生じなくなる。
According to another aspect of the present invention, once the electric discharge machining becomes unstable, the numerical control device performs an operation of escaping the machining electrode in the machining progress direction, and when the escaping amount is equal to or greater than a predetermined value, switch control is performed. The circuit outputs the off signal until just before it stabilizes. In this case, the gate means provided between the oscillator and the switching element receives the off signal and turns off the switching element by preventing the output signal of the oscillator from flowing through the switching element. Therefore, the direct current power supply is cut off from the machining electrode and the workpiece, the current supply to the gap between the electrodes is stopped, and no discharge occurs during this period.

【0010】[0010]

【実施例】図1は本発明の一実施例の放電加工電源回路
を示す回路図、図2は同放電加工電源回路におけるTR
制御信号並びに極間の電圧・電流波形のタイミングチャ
ート、図3は同実施例のスイッチ制御回路を示すブロッ
ク図、図4は加工用電極の動きと時間との関係を示すと
共に放電不安定発生時の加工用電極の逃がし量に対する
トランジスタへのTR制御信号を示す波形図である。
FIG. 1 is a circuit diagram showing an electric discharge machining power supply circuit according to an embodiment of the present invention, and FIG. 2 is a TR in the electric discharge machining power supply circuit.
Timing chart of control signal and voltage / current waveform between poles, FIG. 3 is a block diagram showing the switch control circuit of the same embodiment, and FIG. 4 shows the relationship between the movement of the machining electrode and time and when discharge instability occurs. FIG. 6 is a waveform diagram showing a TR control signal to the transistor with respect to the escape amount of the processing electrode.

【0011】図1において、1は直流電圧源、2は可変
抵抗器、3はコンデンサ、4は加工用電極、5は被加工
物、6は電流抑制用の固定抵抗器、7はスイッチング素
子であるトランジスタである。直流電圧源1に対して、
可変抵抗器2、トランジスタ7及びコンデンサ3が直列
に接続されている。コンデンサ3の一方の端子に加工用
電極4が接続され、コンデンサ3の他方の端子に被加工
物5が接続されている。可変抵抗2とトランジスタ7の
直列回路に固定抵抗器6が並列に接続されている。
In FIG. 1, 1 is a DC voltage source, 2 is a variable resistor, 3 is a capacitor, 4 is a machining electrode, 5 is a workpiece, 6 is a fixed resistor for suppressing current, and 7 is a switching element. It is a transistor. For DC voltage source 1,
The variable resistor 2, the transistor 7 and the capacitor 3 are connected in series. The processing electrode 4 is connected to one terminal of the capacitor 3, and the workpiece 5 is connected to the other terminal of the capacitor 3. The fixed resistor 6 is connected in parallel to the series circuit of the variable resistor 2 and the transistor 7.

【0012】図3において、10はトランジスタ7のT
R制御信号を発生するためのスイッチ制御回路で、エン
コーダである位置検出センサ11、軸位置制御部12、
戻り量カウンタ13、オフ位置設定値設定器14、オン
位置設定値設定器15及び出力部15により構成され、
位置検出センサ11からの位置フィードバックパルス信
号は軸位置制御部12に伝えられる。加工用電極4及び
被加工物5間の加工状態を検出し、加工間隙を制御する
数値制御装置(図示省略)からのサーボ送り制御指令を
受けた軸位置制御部12では放電加工が安定な場合は加
工用電極4の加工軸の最深値を更新しながら加工軸をサ
ーボ送り制御しているが、不安定等の影響により加工軸
が逃げ方向に戻ったときには戻り量を数える戻り量カウ
ンタ13に戻り量を転送する。戻り量カウンタ13には
TR制御信号をオフする戻り量及びオフした後にオンす
る戻り量の設定値がオフ位置設定値設定器14及びオン
位置設定値設定器15により予め設定されており、これ
らの設定値に達したときに出力部15よりTR制御信号
であるオン信号又はオフ信号が出力される。これを図9
に基づいて説明すると、加工用電極4の加工軸は安定加
工時には加工進行方向に向って進んで行くが、ひとたび
不安定となった時に加工軸は加工進行方向の送方向に戻
される。この戻り量がオフ位置設定値以上となるとTR
制御信号はオフ信号となり、その後極間状態が安定にな
り加工軸が加工最深位置手前のオン位置設定値になると
TR制御信号はオン信号となる。
In FIG. 3, 10 is the T of the transistor 7.
A switch control circuit for generating an R control signal, which includes an encoder position detection sensor 11, an axis position control unit 12,
The return amount counter 13, the off position set value setter 14, the on position set value setter 15 and the output unit 15
The position feedback pulse signal from the position detection sensor 11 is transmitted to the shaft position control unit 12. When electric discharge machining is stable in the axis position control unit 12 which receives a servo feed control command from a numerical controller (not shown) that detects the machining state between the machining electrode 4 and the workpiece 5 and controls the machining gap. Performs servo feed control of the machining axis while updating the deepest value of the machining axis of the machining electrode 4, but when the machining axis returns in the escape direction due to the influence of instability or the like, a return amount counter 13 that counts the return amount is displayed. Transfer the return amount. The return amount counter 13 is preset with a set value of the return amount for turning off the TR control signal and a set value of the return amount for turning on after turning off the TR control signal by the off position set value setter 14 and the on position set value setter 15. When the set value is reached, the output section 15 outputs an ON signal or an OFF signal which is a TR control signal. Figure 9
The machining axis of the machining electrode 4 advances in the machining progress direction during stable machining, but once unstable, the machining axis is returned to the feeding direction of the machining progress direction. When this return amount exceeds the OFF position set value, TR
When the control signal becomes an OFF signal and then the machining gap state becomes stable and the machining axis reaches the ON position set value before the machining deepest position, the TR control signal becomes an ON signal.

【0013】次に、本実施例の放電加工電源回路の動作
について説明する。加工用電極4は加工開始と同時に加
工進行方向へ進み、加工用電極4と被加工物5がある距
離に近づいた場合に放電が開始される。その後、加工が
安定に進んでいる場合にはスイッチ制御回路10からの
TR制御信号はオン信号であり、トランジスタ7をオン
させている。この場合、固定抵抗器6は可変抵抗器2に
対して十分大きな抵抗値であるため、コンデンサ3への
充電電流のほとんどは可変抵抗器2を通して供給され、
コンデンサ3の両端電圧は徐々に上昇し、直流電圧源1
の電圧値に近づいていく。この時、極間は前記の電圧で
放電現象を誘発できる非常に狭い間隙に制御されている
ために放電現象が発生し、極間にはコンデンサ3に蓄え
られたエネルギーが放電電流となって流れる。この繰り
返しにより、数値制御装置のサーボ制御によって加工用
電極4が加工進行方向の最深値を更新しながら加工を続
行して被加工物5は徐々に溶解されていくことになる。
しかし、加工がひとたび不安定になった場合は、スイッ
チ制御回路10からのTR制御信号はその後極間状態が
安定になり加工軸が加工最深位置手前のオン位置設定値
になるまでの所定時間オフ信号となってトランジスタ7
をオフさせる。そのため、コンデンサ3への充電電流は
電流抑制抵抗器である固定抵抗器6を通してのみ供給さ
れることとなる。この固定抵抗器6は非常に大きな抵抗
値としているため、充電電流は小さく、コンデンサ3の
両端電圧は直流電圧源1の電圧値になるのに非常に長い
時間を費やすため、この間の側面方向の放電と加工粉を
介した二次放電は減少し、電源供給の休止と等価として
考えることができる。従って、加工の安定化および加工
速度の向上が図れることとなった。
Next, the operation of the electric discharge machining power supply circuit of this embodiment will be described. The machining electrode 4 advances in the machining advancing direction simultaneously with the start of machining, and when the machining electrode 4 and the workpiece 5 approach a certain distance, electric discharge is started. After that, when the processing is progressing stably, the TR control signal from the switch control circuit 10 is an ON signal, and the transistor 7 is turned ON. In this case, since the fixed resistor 6 has a resistance value sufficiently larger than that of the variable resistor 2, most of the charging current to the capacitor 3 is supplied through the variable resistor 2.
The voltage across the capacitor 3 gradually rises and the DC voltage source 1
Approaching the voltage value of. At this time, since the gap between the electrodes is controlled to be a very narrow gap that can induce the discharge phenomenon with the above voltage, the discharge phenomenon occurs, and the energy stored in the capacitor 3 flows between the electrodes as a discharge current. . By repeating this, the machining electrode 4 updates the deepest value in the machining progress direction by the servo control of the numerical controller, and the machining is continued while the workpiece 5 is gradually melted.
However, when the machining becomes unstable once, the TR control signal from the switch control circuit 10 is turned off for a predetermined time until the machining gap state becomes stable and the machining axis reaches the ON position set value before the deepest machining position. Transistor 7 as a signal
To turn off. Therefore, the charging current to the capacitor 3 is supplied only through the fixed resistor 6 which is a current suppressing resistor. Since the fixed resistor 6 has a very large resistance value, the charging current is small, and it takes a very long time for the voltage across the capacitor 3 to reach the voltage value of the DC voltage source 1. The discharge and the secondary discharge through the machining powder are reduced and can be considered as equivalent to the suspension of the power supply. Therefore, the processing can be stabilized and the processing speed can be improved.

【0014】図5は本発明のもう一つの実施例の放電加
工電源回路を示す回路図、図6は同放電加工電源回路に
おける発振器の出力信号、TR制御信号並びに極間の電
圧・電流波形のタイミングチャートである。この実施例
は、直流電圧源1に対してトランジスタ、可変抵抗器
2、加工用電極4及び被加工物5が直列に接続されてい
る。8はゲート手段であるANDゲートで、その入力側
はパルス状の出力信号を発振する発振器9とTR制御信
号を出力するスイッチング制御回路10とに接続され、
その出力側はトランジスタ7のベースに接続されてい
る。なお、スイッチング制御回路10の構成は前記実施
例の図3に示した構成と同じであり、図示を省略する。
FIG. 5 is a circuit diagram showing an electric discharge machining power supply circuit according to another embodiment of the present invention, and FIG. 6 shows an output signal of an oscillator, a TR control signal, and a voltage / current waveform between electrodes in the electric discharge machining power supply circuit. It is a timing chart. In this embodiment, a transistor, a variable resistor 2, a processing electrode 4 and a workpiece 5 are connected in series to a DC voltage source 1. Reference numeral 8 is an AND gate which is a gate means, the input side of which is connected to an oscillator 9 which oscillates a pulsed output signal and a switching control circuit 10 which outputs a TR control signal,
The output side is connected to the base of the transistor 7. The structure of the switching control circuit 10 is the same as the structure shown in FIG.

【0015】次に、本実施例の放電加工電源回路の動作
について説明する。加工用電極4は加工開始と同時に加
工進行方向へ進み、加工用電極4と被加工物5がある距
離に近づいた場合に放電が開始される。その後放電加工
が安定に進んでいる場合にはスイッチ制御回路からのT
R制御信号はHレベルであるオン信号を出力し、AND
ゲート8を開いて発振器9からの出力信号をトランジス
タ7に伝え、トランジスタ7をスイッチングさせて高周
波パルスを発生させて放電加工が進められていく。しか
し、放電加工がひとたび不安定になった場合はスイッチ
制御回路からのTR制御信号は前述の実施例と同様に所
定時間Lレベルであるオフ信号を出力し、ANDゲート
8を閉じて発振器9からの出力信号をカットし、トラン
ジスタ7をオフ状態にする。従って、直流電源1と加工
用電極4及び被加工物5との間が遮断され、加工用電極
4及び被加工物5間への電流供給が停止され、この間に
側面方向の放電と加工粉を介した二次放電が生じること
がなくなった。
Next, the operation of the electric discharge machining power supply circuit of this embodiment will be described. The machining electrode 4 advances in the machining advancing direction simultaneously with the start of machining, and when the machining electrode 4 and the workpiece 5 approach a certain distance, electric discharge is started. After that, if the electrical discharge machining is proceeding steadily, T from the switch control circuit
The R control signal outputs an H level ON signal, and AND
The gate 8 is opened to transmit the output signal from the oscillator 9 to the transistor 7, the transistor 7 is switched to generate a high frequency pulse, and the electric discharge machining is advanced. However, when the electric discharge machining becomes unstable once, the TR control signal from the switch control circuit outputs the OFF signal which is L level for a predetermined time as in the above-mentioned embodiment, the AND gate 8 is closed and the oscillator 9 is closed. The output signal of is cut off and the transistor 7 is turned off. Therefore, the direct current power supply 1 is cut off from the machining electrode 4 and the workpiece 5, and the current supply between the machining electrode 4 and the workpiece 5 is stopped. The secondary discharge through is no longer generated.

【0016】[0016]

【発明の効果】本発明は、以上説明したとおり、加工が
不安定となった場合に放電加工電源回路から加工用電極
及び被加工物間への供給エネルギーを減少或いは供給エ
ネルギーの供給を停止させて放電現象の発生を抑えるよ
うにしたので、側面方向の放電と加工粉を介した二次放
電を減少或いは無くすることができ、放電加工の安定化
及び加工速度の向上が図れるという効果を有する。
As described above, according to the present invention, when the machining becomes unstable, the energy supplied from the electric discharge machining power supply circuit between the machining electrode and the workpiece is reduced or the energy supply is stopped. Since the occurrence of the electric discharge phenomenon is suppressed by this, it is possible to reduce or eliminate the electric discharge in the side direction and the secondary electric discharge through the machining powder, and it is possible to stabilize the electric discharge machining and improve the machining speed. ..

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の放電加工電源回路を示す回
路図である。
FIG. 1 is a circuit diagram showing an electric discharge machining power supply circuit according to an embodiment of the present invention.

【図2】同放電加工電源回路におけるTR制御信号並び
に極間の電圧・電流波形のタイミングチャートである。
FIG. 2 is a timing chart of TR control signals and voltage / current waveforms between electrodes in the same electric discharge machining power supply circuit.

【図3】同実施例のスイッチ制御回路を示すブロック図
である。
FIG. 3 is a block diagram showing a switch control circuit of the same embodiment.

【図4】加工用電極の動きと時間との関係を示すと共に
放電不安定発生時の加工用電極の逃がし量に対するトラ
ンジスタへのTR制御信号を示す波形図である。
FIG. 4 is a waveform diagram showing the relationship between the movement of the machining electrode and time, and showing the TR control signal to the transistor with respect to the escape amount of the machining electrode when discharge instability occurs.

【図5】本発明のもう一つの実施例の放電加工電源回路
を示す回路図である。
FIG. 5 is a circuit diagram showing an electric discharge machining power supply circuit according to another embodiment of the present invention.

【図6】同放電加工電源回路における発振器の出力信
号、TR制御信号並びに極間の電圧・電流波形のタイミ
ングチャートである。
FIG. 6 is a timing chart of an oscillator output signal, a TR control signal, and a voltage / current waveform between the electrodes in the electric discharge machining power supply circuit.

【図7】従来の放電加工装置の放電加工電源回路を示す
回路図である。
FIG. 7 is a circuit diagram showing an electric discharge power supply circuit of a conventional electric discharge machine.

【図8】同放電加工電源回路における極間の電圧・電流
を示す波形図である。
FIG. 8 is a waveform diagram showing a voltage / current between electrodes in the same electric discharge machining power supply circuit.

【符号の説明】[Explanation of symbols]

1 直流電圧源 3 コンデンサ 4 加工用電極 5 被加工物 6 固定抵抗器(電流抑制抵抗) 7 トランジスタ(スイッチング素子) 1 DC Voltage Source 3 Capacitor 4 Processing Electrode 5 Workpiece 6 Fixed Resistor (Current Suppression Resistor) 7 Transistor (Switching Element)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 直流電源に直列に接続され、且つ加工用
電極及び被加工物間に並列に接続された放電のための高
周波パルスを発生するコンデンサを有してなる放電加工
電源回路と、常時はオン信号を出力し、放電加工が不安
定状態であって数値制御装置のサーボ送り制御による加
工用電極の加工進行方向の最深値からの戻り量が所定値
以上のときに放電加工が安定する直前までオフ信号を出
力するスイッチ制御回路と、直流電源と放電加工電源回
路との間に設けられ、スイッチ制御回路のオン・オフ信
号によりオン・オフ動作させられ、電流抑制抵抗が並列
接続されたスイッチング素子とを備えたことを特徴とす
る放電加工装置。
1. An electric discharge machining power supply circuit comprising a capacitor connected in series to a DC power supply and connected in parallel between a machining electrode and a workpiece to generate a high frequency pulse for electric discharge, and always. Outputs an ON signal, and the electric discharge machining is stable when the electric discharge machining is unstable and the amount of return from the deepest value in the machining advancing direction of the machining electrode by the servo feed control of the numerical control device is equal to or more than a predetermined value. It is provided between the switch control circuit that outputs the OFF signal until immediately before, and the DC power supply and the electric discharge machining power supply circuit. The switch control circuit is turned on / off by the ON / OFF signal, and the current suppressing resistors are connected in parallel. An electric discharge machine comprising a switching element.
【請求項2】 直流電源と加工用電極及び被加工物との
間に設けられ、発振器の出力信号に駆動されて放電のた
めの高周波パルスを発生させるスイッチング素子を有し
てなる放電加工電源回路と、常時はオン信号を出力し、
放電加工が不安定状態であって数値制御装置のサーボ送
り制御による加工用電極の加工進行方向の最深値からの
戻り量が所定値以上のときに放電加工が安定する直前ま
でオフ信号を出力するスイッチ制御回路と、発振器とス
イッチング素子との間に設けられ、発振器の出力信号
を、スイッチ制御回路のオン信号を受けたときにスイッ
チング素子に流し、スイッチ制御回路のオフ信号を受け
たときにはスイッチング素子に流さないようにしたゲー
ト手段とを備えてなることを特徴とする放電加工装置。
2. An electric discharge machining power supply circuit comprising a switching element which is provided between a DC power supply, a machining electrode and a workpiece and which is driven by an output signal of an oscillator to generate a high frequency pulse for electric discharge. And always output an ON signal,
When the electrical discharge machining is unstable and the return amount from the deepest value in the machining progress direction of the machining electrode by the servo feed control of the numerical control device is equal to or more than the predetermined value, the OFF signal is output until just before the electrical discharge machining stabilizes. Provided between the switch control circuit and the oscillator and the switching element, the output signal of the oscillator is passed to the switching element when the ON signal of the switch control circuit is received, and the switching element when the OFF signal of the switch control circuit is received. An electric discharge machine comprising:
JP19760391A 1991-08-07 1991-08-07 Electric discharge machining device Pending JPH0538627A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19760391A JPH0538627A (en) 1991-08-07 1991-08-07 Electric discharge machining device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19760391A JPH0538627A (en) 1991-08-07 1991-08-07 Electric discharge machining device

Publications (1)

Publication Number Publication Date
JPH0538627A true JPH0538627A (en) 1993-02-19

Family

ID=16377221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19760391A Pending JPH0538627A (en) 1991-08-07 1991-08-07 Electric discharge machining device

Country Status (1)

Country Link
JP (1) JPH0538627A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110114604A1 (en) * 2008-07-24 2011-05-19 Mitsubishi Electric Corporation Electric discharge machining apparatus, electric discharge machining method, and semiconductor substrate manufacturing method
US8331746B2 (en) 2005-09-30 2012-12-11 Osram Opto Semiconductors Gmbh Illumination unit comprising luminescence diode chip and optical waveguide, method for producing an illumination unit and LCD display
US20140014624A1 (en) * 2012-07-10 2014-01-16 Fanuc Corporation Wire electric discharge machine with machining power source switchable for wire cutting
JP5409963B1 (en) * 2012-10-31 2014-02-05 三菱電機株式会社 EDM machine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8331746B2 (en) 2005-09-30 2012-12-11 Osram Opto Semiconductors Gmbh Illumination unit comprising luminescence diode chip and optical waveguide, method for producing an illumination unit and LCD display
US20110114604A1 (en) * 2008-07-24 2011-05-19 Mitsubishi Electric Corporation Electric discharge machining apparatus, electric discharge machining method, and semiconductor substrate manufacturing method
US9550245B2 (en) * 2008-07-24 2017-01-24 Mitsubishi Electric Corporation Electric discharge machining apparatus, electric discharge machining method, and semiconductor substrate manufacturing method
US20140014624A1 (en) * 2012-07-10 2014-01-16 Fanuc Corporation Wire electric discharge machine with machining power source switchable for wire cutting
JP5409963B1 (en) * 2012-10-31 2014-02-05 三菱電機株式会社 EDM machine
US9533365B2 (en) 2012-10-31 2017-01-03 Mitsubishi Electric Corporation Electric discharge machining apparatus
DE112012007077B4 (en) 2012-10-31 2021-12-09 Mitsubishi Electric Corporation Electric discharge machining device

Similar Documents

Publication Publication Date Title
US4695696A (en) Electric discharge machine with control of the machining pulse's current value in accordance with the delay time
US4459460A (en) Generator of high current pulses
JPS58206312A (en) Wire cut discharge machining power supply
JPH0538627A (en) Electric discharge machining device
JP3773696B2 (en) Electric discharge machine power supply device
JP2682276B2 (en) Power supply for electric discharge machine
JP3078245B2 (en) Arc start assist device
KR860000619B1 (en) Wire-cut electric discharge machining device
KR910004962B1 (en) Discharge machining power
US3485988A (en) Electrical discharge machining power supply circuit
JP2756962B2 (en) Control device for wire electric discharge machine
JPH059209B2 (en)
EP0185101B1 (en) Power source for discharge machining
JPS6240125B2 (en)
JPH11333632A (en) Electrical discharging device
JPH027770B2 (en)
KR830002269B1 (en) Wire-Cut Discharge Machining Power
JPS6059098B2 (en) Power supply device for electrical discharge machining
US3485989A (en) Electrical discharge machining power supply circuit
JP2984664B2 (en) Electric discharge machine
US3415969A (en) Gap width control method and apparatus for spark erosion machines
JPH0230810B2 (en)
US4891486A (en) Device for feed control of electrode-tool in spark erosion machines
SU371047A1 (en) 6C? SO: OZNAG
KR930009402B1 (en) Electricity control circuit for electric discharge machine