JPH0230766A - Method and apparatus for coating powder - Google Patents
Method and apparatus for coating powderInfo
- Publication number
- JPH0230766A JPH0230766A JP63176979A JP17697988A JPH0230766A JP H0230766 A JPH0230766 A JP H0230766A JP 63176979 A JP63176979 A JP 63176979A JP 17697988 A JP17697988 A JP 17697988A JP H0230766 A JPH0230766 A JP H0230766A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- reaction chamber
- reaction
- gas
- filter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000843 powder Substances 0.000 title claims abstract description 73
- 238000000576 coating method Methods 0.000 title claims abstract description 24
- 239000011248 coating agent Substances 0.000 title claims abstract description 20
- 238000000034 method Methods 0.000 title claims description 8
- 238000006243 chemical reaction Methods 0.000 claims abstract description 54
- 238000010438 heat treatment Methods 0.000 claims abstract description 8
- 239000012159 carrier gas Substances 0.000 claims abstract description 6
- 239000012495 reaction gas Substances 0.000 claims description 7
- 239000012780 transparent material Substances 0.000 claims description 2
- 239000007789 gas Substances 0.000 abstract description 23
- 238000005229 chemical vapour deposition Methods 0.000 abstract description 4
- 239000000376 reactant Substances 0.000 abstract 2
- 238000013019 agitation Methods 0.000 abstract 1
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 14
- 239000000463 material Substances 0.000 description 9
- 239000000919 ceramic Substances 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 239000000758 substrate Substances 0.000 description 6
- 239000011521 glass Substances 0.000 description 5
- 238000005245 sintering Methods 0.000 description 4
- 238000005530 etching Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- BYFGZMCJNACEKR-UHFFFAOYSA-N aluminium(i) oxide Chemical compound [Al]O[Al] BYFGZMCJNACEKR-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000004108 freeze drying Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 2
- 229910052753 mercury Inorganic materials 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000010923 batch production Methods 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000011819 refractory material Substances 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 238000001694 spray drying Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
- 229910052845 zircon Inorganic materials 0.000 description 1
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J13/00—Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
- B01J13/02—Making microcapsules or microballoons
- B01J13/04—Making microcapsules or microballoons by physical processes, e.g. drying, spraying
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/442—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using fluidised bed process
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Dispersion Chemistry (AREA)
- Manufacturing Of Micro-Capsules (AREA)
- Powder Metallurgy (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
Description
【発明の詳細な説明】
〔概 要〕
セラミック粉末や金属粉末の粉末材料、より詳しくは、
このような粉末を無機質膜で被覆する方法および被覆装
置に関し、
粉末表面を均一な無機質膜で覆う被覆方法およびそのた
めの装置を提供することを目的とし粉末を収容している
反応室内へ該反応室の底部からキャリアガスを導入して
該粉末を流動床状態にし、次に、粉末に紫外光を照射し
かつ該粉末を加熱しながら反応ガスを反応室の底部から
導入して光CVD反応により粉末を無機質膜で被覆する
ように構成する。[Detailed Description of the Invention] [Summary] Powder materials such as ceramic powder and metal powder, more specifically,
Regarding a method and a coating apparatus for coating such powder with an inorganic film, the purpose of the present invention is to provide a coating method and apparatus for covering the powder surface with a uniform inorganic film, and to provide a coating method and apparatus for coating the powder surface with a uniform inorganic film. A carrier gas is introduced from the bottom of the reaction chamber to make the powder into a fluidized bed state. Next, while the powder is irradiated with ultraviolet light and the powder is heated, a reaction gas is introduced from the bottom of the reaction chamber to form the powder by photo-CVD reaction. is constructed so as to be covered with an inorganic film.
本発明は、セラミック粉末や金属粉末の粉末材料、より
詳しくは、このような粉末を無機質膜で被覆する方法お
よび被覆装置に関する。The present invention relates to powder materials such as ceramic powders and metal powders, and more particularly to a method and a coating apparatus for coating such powders with an inorganic film.
粉末を焼結することによって各種の製品が作られており
、午、fに、セラミックスはエレクトロニクス用部品(
例えば、IC基板、圧電素子、コンデンサーなど)、機
械的あるいは熱的特性を利用した構造材料(切削工具、
耐火物、自動車エンジン部品など)、さらに医療用、電
子力機器に使用する部祠などに用いられている。そのた
めに、各種のセラミック粉末(アルミナ、ジルコニア、
フェライト、炭化ケイ素、窒化ケイ素などの粉末)が製
造されている。Various products are made by sintering powder, and ceramics are used for electronics parts (
For example, IC boards, piezoelectric elements, capacitors, etc.), structural materials that utilize mechanical or thermal properties (cutting tools,
It is used for refractories, automobile engine parts, etc.), as well as for medical purposes and shrines used in electronic power equipment. For this purpose, various ceramic powders (alumina, zirconia,
Powders of ferrite, silicon carbide, silicon nitride, etc.) are manufactured.
〔発明が解決しようとする課題〕
一般的に、−成分系の材料(一種の材料)にない物性(
特性)を得るために、異なる性質の成分の材料(別の材
料)を組合せる(複合化する)ことが行なわれている。[Problem to be solved by the invention] In general, physical properties (
In order to obtain the desired characteristics, materials (separate materials) having different properties are combined (compounded).
しかしながら、実際には材料の複合化(例えば、異なる
粉末の混合焼結)は任意の組合せにできるわけではなく
、互いに反応したり、材料間のぬれ性、なじみが悪いた
めに複合化できない場合が多い。However, in reality, composite materials (for example, mixed sintering of different powders) cannot be combined arbitrarily, and there are cases where materials cannot be composited due to reactions with each other or poor wettability or compatibility between materials. many.
粉末の複合化においては、一方の粉末を他の物質で被覆
して、粉末材料間の反応を抑制したり、ぬれ性改碧を行
なうことが考えられている。この方法としては、凍結乾
燥法やスプレードライ法などがあるが、いずれも粉末の
特性を損なわずに薄くて緻密な被覆膜を形成することは
困難であり、特に、反応抑制やぬれ性改善に効果のある
窒化物や酸化物系の無機質膜の形成は困難であった。In compounding powders, it has been considered to coat one powder with another substance to suppress reactions between the powder materials or to improve wettability. Examples of this method include freeze-drying and spray-drying, but with either method it is difficult to form a thin and dense coating without impairing the properties of the powder. It has been difficult to form nitride- and oxide-based inorganic films that are effective for this purpose.
本発明の目的は、粉末表面を均一な無機質膜で覆う被覆
方法およびそのための装置を提供することである。An object of the present invention is to provide a method of coating a powder surface with a uniform inorganic film and an apparatus for the same.
上述の目的が、粉末を収容している反応室内へ該反応室
の底部からキャリアガスを導入して該粉末を流動床状態
にし、次に、粉末に紫外光を照射しかつ該粉末を加熱し
ながら反応ガスを反応室の底部から導入して光CVD反
応により粉末を無機質膜で被覆することを特徴とする粉
末の被覆方法によって達成される。The above purpose is to introduce a carrier gas into a reaction chamber containing powder from the bottom of the reaction chamber to bring the powder into a fluidized bed state, and then to irradiate the powder with ultraviolet light and heat the powder. This is achieved by a powder coating method characterized in that a reactive gas is introduced from the bottom of a reaction chamber and the powder is coated with an inorganic film by a photo-CVD reaction.
また、上述の目的が紫外線透過窓を有するかあるいは紫
外線透過性材料で作られている反応室であって、該反応
室内に粉末を保持するだめの底部フィルタおよび頂部フ
ィルタを備えている該反応室:反応室の内部を照射する
紫外光ランプ;反応室内の粉末を加熱する加熱器;底部
フィルタを通して前記反応室内へキャリアガスおよび反
応ガスを導入するために反応室に取付けられている導入
管;および頂部フィルタを通して導入したガスを排出す
るために前記反応室に取付けられている排出管:からな
る粉末の被覆装置によっても達成される。Also, the above-mentioned object is a reaction chamber having a UV-transparent window or made of a UV-transparent material, said reaction chamber comprising a bottom filter and a top filter for retaining powder within said reaction chamber. : an ultraviolet light lamp for illuminating the interior of the reaction chamber; a heater for heating the powder in the reaction chamber; an inlet tube installed in the reaction chamber for introducing carrier gas and reaction gas into said reaction chamber through a bottom filter; and This is also achieved by a powder coating device consisting of: a discharge pipe attached to the reaction chamber for discharging the gas introduced through the top filter.
流動床状態の均一な攪拌によって粉末と紫外光および反
応ガスとの接触を促進し、同時に光CVD(化学的気相
成長)によって薄くて緻密な被覆膜を比較的低温で粉末
上に形成することができる。Uniform stirring in a fluidized bed promotes contact between the powder and ultraviolet light and reaction gas, and at the same time, a thin and dense coating film is formed on the powder at a relatively low temperature by photo-CVD (chemical vapor deposition). be able to.
光CVDは、被覆膜(無機質膜)の反応ガス(原料ガス
)を光のエネルギーで励起して反応させるもので高温加
熱の必要がなく、小さな隙間へも回り込みよく、良質の
成膜が可能である。なお、この反応は、あくまで光(紫
外線)の照射されている部分のみの反応であるために、
従来は、基板表面への絶縁膜などの形成に限られていた
。Photo-CVD uses light energy to excite the reactive gas (raw material gas) of the coating film (inorganic film) and cause it to react.There is no need for high-temperature heating, the gas can easily penetrate into small gaps, and it is possible to form a high-quality film. It is. Please note that this reaction only occurs in the area that is irradiated with light (ultraviolet light), so
Conventionally, this has been limited to forming an insulating film on the surface of a substrate.
以下、添付図面を参照して本発明の実施例によって本発
明の詳細な説明する。Hereinafter, the present invention will be described in detail by way of embodiments with reference to the accompanying drawings.
第1図は、本発明に係る粉末の被覆装置の概略図であり
、紫外線透過性の石英ガラス製の円筒管である反応容器
1がその周囲に配置された低圧水銀ランプの紫外光ラン
プ2および赤外線加熱ランブ3で、第2図に示すように
、囲まれている。この反応容器1内に被覆すべき粉末(
例えば、2n02粉末4を保持するように、石英ガラス
製のフィルタ(多孔状板)である底部フィルタ5および
頂部フィルタ6が反応容器1の底および頂面に底部キャ
ップ7および頂部キャップ8でもって取付けられている
。これらフィルタ5.6は粉末の粒径よりも小さい細孔
を有して、気体を通すが粉末を通さないものである。底
部キャップ7には反応室1内へガスを導入するための導
入管11,12.13および14が取付けられている。FIG. 1 is a schematic diagram of a powder coating apparatus according to the present invention, in which a reaction vessel 1, which is a cylindrical tube made of ultraviolet-transparent quartz glass, is surrounded by an ultraviolet lamp 2 and a low-pressure mercury lamp. It is surrounded by an infrared heating lamp 3, as shown in FIG. The powder (
For example, a bottom filter 5 and a top filter 6, which are quartz glass filters (porous plates), are attached to the bottom and top surfaces of the reaction vessel 1 with a bottom cap 7 and a top cap 8 so as to hold the 2n02 powder 4. It is being These filters 5.6 have pores smaller than the particle size of the powder, allowing gas to pass through but not powder. Attached to the bottom cap 7 are inlet pipes 11 , 12 , 13 and 14 for introducing gas into the reaction chamber 1 .
例えば、導入管11は流量制御器15を介して流動床用
の不活性ガス又は窒素ガスのボンベ16につながってお
り、導入管12は流量制御器17を介して第1反応ガス
〔^R2(CL) 3ガス〕ボンベ18につながってお
り、導入管13は流量制御器19を介して第2反応ガス
(0□ガス)ボンベ20につながっており、そして、導
入管13は流量制御器21を介してエツチングガス(S
Fsガス)ボンベ22につながっている。頂部キャップ
8には反応室1からのガスを排気するだめの排出管24
が取付けられ、この排出管は圧力制御器25、真空ポン
プなどの排気装置26および未反応ガス処理装置27に
つながっている。そして、紫外光ランプ2および加熱ラ
ンプ3の周囲に外壁29が設けられ、その内面はこれら
ランプの光を反射し、外壁自身を冷却する機構(図示せ
ず)が設けられている(例えば、内面を研摩したステン
レス筒としてその外面に水冷銅パイプが取付けられCい
る)。さらに、この場合には、被覆する無機質膜が粉末
だけでなく、反応容器1の石英ガラス管およびフィルタ
5.6にも付着してしまうので、この付着膜を除去する
ために、金属メツシュ電極31および32を底部キャッ
プ7および頂部キャップ8内に設け、これらを高周波電
源33に接続して反応容器1内にグロー放電が発生する
ようになっている。反応容器1の付着膜を別なところで
除去するようにして、バッチ処理ごとに反応容器を交換
するならば、金属メツシュ電極、高周波電源およびエツ
チングガスボンベ22は不用である。反応容器は紫外線
透過窓付きの容器であってもよく、ヒータで容器および
/又はガスを加熱してもよい。For example, the introduction pipe 11 is connected to a cylinder 16 of an inert gas or nitrogen gas for the fluidized bed via a flow rate controller 15, and the introduction pipe 12 is connected to a first reaction gas [^R2( CL) 3 gas] cylinder 18 , the introduction pipe 13 is connected to a second reaction gas (0□ gas) cylinder 20 via a flow rate controller 19 , and the introduction pipe 13 is connected to a flow rate controller 21 . Etching gas (S
Fs gas) cylinder 22. The top cap 8 has an exhaust pipe 24 for exhausting gas from the reaction chamber 1.
is attached, and this discharge pipe is connected to a pressure controller 25, an exhaust device 26 such as a vacuum pump, and an unreacted gas processing device 27. An outer wall 29 is provided around the ultraviolet light lamp 2 and the heating lamp 3, and its inner surface is provided with a mechanism (not shown) that reflects the light from these lamps and cools the outer wall itself (for example, the inner surface A water-cooled copper pipe is attached to the outer surface of the polished stainless steel tube (C). Furthermore, in this case, the inorganic film to be coated adheres not only to the powder but also to the quartz glass tube of the reaction vessel 1 and the filter 5.6, so in order to remove this adhered film, the metal mesh electrode 31 and 32 are provided in the bottom cap 7 and top cap 8, and these are connected to a high frequency power source 33 so that a glow discharge is generated within the reaction vessel 1. If the deposited film on the reaction vessel 1 is removed at a different location and the reaction vessel is replaced for each batch process, the metal mesh electrode, high frequency power source and etching gas cylinder 22 are unnecessary. The reaction vessel may be a vessel with an ultraviolet-transmitting window, and the vessel and/or the gas may be heated with a heater.
ZrO2粉末にAl2O3膜を被覆する場合には上述し
た装置を用いて次のようにして行なう。When ZrO2 powder is coated with an Al2O3 film, the above-mentioned apparatus is used in the following manner.
直径5cm、高さ60cmの石英ガラスの反応容器1を
用いて、透孔径で0.54の石英ガラスフィルタ5付の
底部キャップ7を反応容器1に取付ける。A quartz glass reaction vessel 1 with a diameter of 5 cm and a height of 60 cm is used, and a bottom cap 7 with a quartz glass filter 5 having a pore diameter of 0.54 is attached to the reaction vessel 1.
粒径0.5〜5JPrRのZrO□粉末4(1kg)を
反応容器1内に入れ、同じ石英ガラスのフィルタ6付の
頂部キャップ8を取付ける。排気装置26によっ°C反
応容器1内を減圧して真空状態にしてから、窒素(N2
)ガスをボンベ16から50〜500Paの圧力で導入
管11およびフィルタ5を通って反応容器1内へ流して
、粉末を流動床状態にする。所定温度まで、赤外線加熱
ランプ3によって粉末4を加熱し、水銀ランプ2による
紫外光を031〜1.0ml’1/ cutの強度で照
射開始したときに、A l a (CH3) 3ガスを
毎分5〜50cnfの量でボンベ18からそして酸素(
02)ガスを毎分10〜100 cnfの量でボンベ2
0からフィルタ5を通して反応容器1内へ流す。ZrO□ powder 4 (1 kg) with a particle size of 0.5 to 5 JPrR is placed in a reaction vessel 1, and a top cap 8 with a filter 6 made of the same quartz glass is attached. After reducing the pressure inside the °C reaction vessel 1 to a vacuum state using the exhaust device 26, nitrogen (N2
) Gas is flowed from the cylinder 16 at a pressure of 50 to 500 Pa through the inlet pipe 11 and the filter 5 into the reaction vessel 1 to bring the powder into a fluidized bed state. When the powder 4 is heated to a predetermined temperature by the infrared heating lamp 3 and irradiation with ultraviolet light from the mercury lamp 2 is started at an intensity of 0.31 to 1.0 ml'1/cut, Al a (CH3) 3 gas is added every time. from cylinder 18 and oxygen (
02) Gas cylinder 2 at a rate of 10-100 cnf per minute
0 into the reaction vessel 1 through the filter 5.
粉末温度を300℃に保ち、1時間光CVD反応させる
ことによって流動床状態のZrO2粉末4の表面に厚さ
約0.1−の均一なAl2O,膜を被覆することができ
る。By maintaining the powder temperature at 300 DEG C. and carrying out a photo-CVD reaction for 1 hour, the surface of the ZrO2 powder 4 in the fluidized bed state can be coated with a uniform Al2O film with a thickness of about 0.1 mm.
被覆処理後に、頂部キャップ8をフィルタ6と共に外し
て、反応容器1を含む全体を回転させるなどしてZrO
□粉末を取り出す。After the coating process, remove the top cap 8 together with the filter 6 and rotate the entire reaction vessel 1 to remove ZrO.
□Take out the powder.
取り出し後に、フィルタ付頂部キャップ8を取付け、再
び反応容器1内を真空状態にし、高周波型′#33から
金属メツシュ電極31.32に電気を印加すると同時に
、エツチングガス(SF6ガス)を毎分100enf、
圧力50Paでボンベ22から反応容器1内へ流して、
反応容器1内にグロー放電を発生させて、容器内部に付
着したA n 203膜を除去する。After taking it out, the top cap 8 with a filter is attached, the inside of the reaction vessel 1 is made into a vacuum state again, and electricity is applied from the high frequency type '#33 to the metal mesh electrodes 31 and 32, and at the same time, etching gas (SF6 gas) is supplied at 100 enf/min. ,
Flowing from the cylinder 22 into the reaction vessel 1 at a pressure of 50 Pa,
A glow discharge is generated in the reaction vessel 1 to remove the A n 203 film attached to the inside of the vessel.
上述したようにして得た^β20.被覆ZrO2粉末を
ガラス成分粉末と混合して、通常のIC用セラミック基
板の製造工程を経て基板を製造することができる。この
場合にはA l1203被覆膜がガラス成分と2r02
との反応を防ぐので、2r02のみ基板での焼結温度が
高くかつ誘電率が高いのをガラス成分で低くすることが
できる。ガラス成分とZrO2とが反応するとジルコン
になってZrO2基板の大きな熱膨張が低くなってしま
うが、それが防げる。例えば、GaAs用セラミック基
板として適切なものを提供することができる。^β20 obtained as described above. The coated ZrO2 powder can be mixed with the glass component powder and the substrate can be manufactured through the usual manufacturing process of ceramic substrates for ICs. In this case, the Al1203 coating film has a glass component and 2r02
Since the reaction with the glass component is prevented, the glass component can lower the sintering temperature and dielectric constant of 2r02, which has a high sintering temperature and high dielectric constant on the substrate. When the glass component reacts with ZrO2, it becomes zircon, which lowers the large thermal expansion of the ZrO2 substrate, but this can be prevented. For example, a suitable ceramic substrate for GaAs can be provided.
例えば、ZrO2粉末にAβ203被覆を行なう場合に
、従来の凍結乾燥法では処理温度が1400℃とかなり
高温であり、原料粉末に対して被覆材料の成分比が10
%程度と大きい。これに対して、上述したように、本発
明によれば、処理温度は100〜300℃と低温度であ
り、Aβ2O3被覆量も原料粉末に対して1%以下で済
み、薄い被覆膜であって2r02本来の特性を損なうこ
とがない。For example, when coating ZrO2 powder with Aβ203, the processing temperature is quite high at 1400°C in the conventional freeze-drying method, and the ratio of the coating material to the raw powder is 10.
It is large, about %. On the other hand, as described above, according to the present invention, the processing temperature is as low as 100 to 300°C, the amount of Aβ2O3 coated is less than 1% of the raw material powder, and the coating film is thin. The original characteristics of 2r02 are not impaired.
本発明の適用は、上述例のみだけでなくセラミック、金
属、樹脂の粉末へも可能である。The present invention can be applied not only to the above examples but also to ceramic, metal, and resin powders.
第1図は、本発明に係る被覆装置の概略図であり、
第2図は、第1図中線■−■での断面図である。
1・・・反応容器、 2・・・紫外光ランプ、3・
・・加熱ランプ、 4・・・粉末、5.6・・・フィ
ルタ、
16.18.20・22・・・ガスボンベ、26・・・
排気装置。FIG. 1 is a schematic diagram of a coating device according to the present invention, and FIG. 2 is a sectional view taken along the line ■--■ in FIG. 1... Reaction container, 2... Ultraviolet light lamp, 3.
...Heating lamp, 4...Powder, 5.6...Filter, 16.18.20/22...Gas cylinder, 26...
Exhaust device.
Claims (1)
キャリアガスを導入して該粉末を流動床状態にし、次に
、前記粉末に紫外光を照射しかつ該粉末を加熱しながら
反応ガスを前記反応室の底部から導入して光CVD反応
により前記粉末を無機質膜で被覆することを特徴とする
粉末の被覆方法。 2、紫外線透過窓を有するかあるいは紫外線透過性材料
で作られている反応室(1)であって、該反応室内に粉
末(4)を保持するための底部フィルタ(5)および頂
部フィルタ(6)を備えている該反応室(1); 前記反応室(1)の内部を照射する紫外光ランプ(2)
; 前記反応室(1)内の粉末(4)を加熱する加熱器(3
); 前記底部フィルタ(5)を通して前記反応室(1)内へ
キャリアガスおよび反応ガスを導入するために前記反応
室(1)に取付けられている導入管(11〜14);お
よび 前記頂部フィルタ(6)を通して導入したガスを排出す
るために前記反応室(1)に取付けられている排出管(
24); からなる粉末の被覆装置。[Claims] 1. A carrier gas is introduced into the reaction chamber containing the powder from the bottom of the reaction chamber to bring the powder into a fluidized bed state, and then the powder is irradiated with ultraviolet light and the powder is irradiated with ultraviolet light. A method for coating powder, characterized in that a reaction gas is introduced from the bottom of the reaction chamber while heating the powder, and the powder is coated with an inorganic film by a photo-CVD reaction. 2. A reaction chamber (1) with a UV-transparent window or made of UV-transparent material, a bottom filter (5) and a top filter (6) for retaining the powder (4) in the reaction chamber. ); an ultraviolet light lamp (2) that illuminates the inside of the reaction chamber (1);
; a heater (3) that heats the powder (4) in the reaction chamber (1);
); inlet pipes (11-14) attached to the reaction chamber (1) for introducing carrier gas and reaction gas into the reaction chamber (1) through the bottom filter (5); and the top filter (6) A discharge pipe (
24); A powder coating device consisting of;
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63176979A JP2550157B2 (en) | 1988-07-18 | 1988-07-18 | Powder coating method and coating apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63176979A JP2550157B2 (en) | 1988-07-18 | 1988-07-18 | Powder coating method and coating apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0230766A true JPH0230766A (en) | 1990-02-01 |
JP2550157B2 JP2550157B2 (en) | 1996-11-06 |
Family
ID=16023055
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63176979A Expired - Lifetime JP2550157B2 (en) | 1988-07-18 | 1988-07-18 | Powder coating method and coating apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2550157B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5155051A (en) * | 1990-06-22 | 1992-10-13 | Sanyo Electric Co., Ltd. | Method of manufacturing photovoltaic device |
JP2010526933A (en) * | 2007-04-20 | 2010-08-05 | リージェンツ オブ ザ ユニバーシティ オブ ミネソタ | Growth of coatings on nanoparticles by light-induced chemical vapor deposition |
EP2989229A4 (en) * | 2013-04-25 | 2017-01-18 | Polyvalor, Limited Partnership | Methods for the photo-initiated chemical vapor deposition (picvd) of coatings and coatings produced by these methods |
EP3824113A4 (en) * | 2018-07-19 | 2022-04-27 | Applied Materials, Inc. | Particle coating methods and apparatus |
EP3394316B1 (en) * | 2015-12-21 | 2023-06-07 | Luxembourg Institute of Science and Technology (LIST) | Fluidized bed reactor adapted for the production of biphased systems and method for a controlled-deposition of particles |
-
1988
- 1988-07-18 JP JP63176979A patent/JP2550157B2/en not_active Expired - Lifetime
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5155051A (en) * | 1990-06-22 | 1992-10-13 | Sanyo Electric Co., Ltd. | Method of manufacturing photovoltaic device |
JP2010526933A (en) * | 2007-04-20 | 2010-08-05 | リージェンツ オブ ザ ユニバーシティ オブ ミネソタ | Growth of coatings on nanoparticles by light-induced chemical vapor deposition |
EP2989229A4 (en) * | 2013-04-25 | 2017-01-18 | Polyvalor, Limited Partnership | Methods for the photo-initiated chemical vapor deposition (picvd) of coatings and coatings produced by these methods |
US10174424B2 (en) | 2013-04-25 | 2019-01-08 | Polyvalor, Limited Partnership | Methods for the photo-initiated chemical vapor deposition (PICVD) of coatings and coatings produced by these methods |
EP3394316B1 (en) * | 2015-12-21 | 2023-06-07 | Luxembourg Institute of Science and Technology (LIST) | Fluidized bed reactor adapted for the production of biphased systems and method for a controlled-deposition of particles |
EP3824113A4 (en) * | 2018-07-19 | 2022-04-27 | Applied Materials, Inc. | Particle coating methods and apparatus |
Also Published As
Publication number | Publication date |
---|---|
JP2550157B2 (en) | 1996-11-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5127196B2 (en) | Plasma-fluorine-alumina ceramic material with low particle generation and manufacturing method | |
US6416721B1 (en) | Fluidized bed reactor having a centrally positioned internal heat source | |
US9975320B2 (en) | Diffusion bonded plasma resisted chemical vapor deposition (CVD) chamber heater | |
JP2001316821A (en) | Low resistivity silicon carbide | |
JPH0230766A (en) | Method and apparatus for coating powder | |
NL8403313A (en) | STABLE CONDUCTIVE ELEMENTS FOR DIRECT EXPOSURE TO REACTIVE ENVIRONMENTS. | |
JP2000103689A (en) | Alumina sintered compact, its production and plasma- resistant member | |
JP2001261457A (en) | Boron carbide joined body, method for producing the same and plasma-resistant member | |
JPH1067554A (en) | Anticorrosive ceramic member | |
JP2007537128A (en) | Heat treatment of silicon carbide | |
JP2002523331A (en) | Method for producing an improved boron coating on graphite and articles obtained therefrom | |
JPH09102488A (en) | Alumina microwave introduction window and its manufacture | |
JP2003017479A (en) | Precoating method, treatment method, and plasma apparatus | |
JP4458692B2 (en) | Composite material | |
JP5053206B2 (en) | Method of forming quartz glass material using mold material | |
JPH04180566A (en) | Thin film forming device | |
JP4482319B2 (en) | Reaction vessel | |
JPH0692761A (en) | Sic-cvd coated and si impregnated sic product and its manufacture | |
JP2002097082A (en) | Method of manufacturing carbon part | |
JPH11278919A (en) | Plasma-resistant member | |
JPS6155918A (en) | Semiconductor manufacturing apparatus | |
JPS61243176A (en) | Method for cvd treatment | |
JPS62244123A (en) | Vapor growth device | |
JP2000109989A (en) | Inner wall protective member of plasma treatment device | |
JPS62167883A (en) | Production of composite body having carbon film |