JPH0230747A - Formation of film on plastic substrate - Google Patents

Formation of film on plastic substrate

Info

Publication number
JPH0230747A
JPH0230747A JP18010488A JP18010488A JPH0230747A JP H0230747 A JPH0230747 A JP H0230747A JP 18010488 A JP18010488 A JP 18010488A JP 18010488 A JP18010488 A JP 18010488A JP H0230747 A JPH0230747 A JP H0230747A
Authority
JP
Japan
Prior art keywords
film
plastic substrate
substrate
laser light
excimer laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18010488A
Other languages
Japanese (ja)
Inventor
Toshiaki Oimizu
利明 生水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP18010488A priority Critical patent/JPH0230747A/en
Publication of JPH0230747A publication Critical patent/JPH0230747A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To increase the bonding force of vacuum-deposited particles to a plastic substrate and to improve the adhesion and durability of a film formed on the substrate by vacuum deposition by irradiating the surface of the substrate with excimer laser light before or during vacuum deposition to remove water and impurities on the surface. CONSTITUTION:When a film of SiO2, Al2O3, MgF2, etc., is formed on a plastic substrate by vacuum deposition, the surface of the substrate is irradiated with excimer laser light before or during vacuum deposition to remove water and impurities on the surface and to activate molecules. The bonding force of vacuum-deposited particles to the substrate is increased, the adhesion and durability of a formed film are improved and the wear and scratch resistances are enhanced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、耐摩耗性や耐擦傷性等を向上させるためにプ
ラスチック基板に薄膜を形成させるためのプラスチック
基板への成膜方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for forming a thin film on a plastic substrate in order to improve wear resistance, scratch resistance, etc.

〔従来の技術〕[Conventional technology]

近年、レンズ、ミラー、プリズム等の光学部品の素材と
して無機ガラスに代えてプラスチックが多く用いられる
ようになってきている。その主な理由は、軽量かつ低コ
ストにて製作でき、しかも形状の自由度が大きいという
利点があるからである。又、かかる利点を有することか
ら、最近では光学部品以外の各種部品にも幅広く利用さ
れつつある。
In recent years, plastics have been increasingly used instead of inorganic glass as materials for optical components such as lenses, mirrors, and prisms. The main reason for this is that it has the advantage of being lightweight, low-cost to manufacture, and having a large degree of freedom in shape. Furthermore, because of these advantages, it has recently been widely used in various parts other than optical parts.

ところが、これらプラスチックにて構成した部品は、ガ
ラスや金属に比して耐摩耗性、耐擦傷性が劣るために、
何らかの表面処理を施さなければ実用上問題が多い。特
に、プラスチックを光学部品として使用する場合には、
光学ガラスの場合と同様に光学薄膜を成形する必要性が
ある。しかしながら、光学ガラスの場合には光学ガラス
を加熱して蒸着させることができるので、光学ガラスと
光学薄膜との密着性が良好となるが、プラスチックの場
合には、基板を加熱させて蒸着させるのが困難なために
、常温で蒸着させなければならず、そのためにプラスチ
ック基板に対する薄膜の付着力、密着性が悪くなり、耐
久性が劣るという問題点があった。
However, parts made of these plastics have inferior wear and scratch resistance compared to glass or metal, so
There are many practical problems unless some kind of surface treatment is performed. Especially when using plastic as optical components,
As with optical glass, there is a need to form optical thin films. However, in the case of optical glass, it is possible to vapor-deposit it by heating the optical glass, which improves the adhesion between the optical glass and the optical thin film, but in the case of plastic, it is not possible to vapor-deposit it by heating the substrate. Since it is difficult to deposit the thin film, it must be deposited at room temperature, resulting in poor adhesion and adhesion of the thin film to the plastic substrate, resulting in poor durability.

そこで、上記問題点を解消するために蒸着材料の点から
はプラスチック基板と接する層にSin。
Therefore, in order to solve the above problems, from the point of view of the vapor deposition material, the layer in contact with the plastic substrate is made of Sin.

A11z Ox 、  Ce Fsを用いる構成が、又
、有機物質をブライマーコートとしてスピンコード。
The structure using A11z Ox and Ce Fs is also a spin code with an organic material as a brimer coat.

デイツプコートの手法を用いて形成し、その上に誘電体
膜を蒸着する方法が従業されている。かかる技術と同様
の技術は、特開昭61−64301号公報に開示されて
いる。又、その他の手法としては、蒸着する前にプラス
チック基板にプラズマ処理を施したり、イオンビームを
照射して表面改質を行う方法が採用されている。
A method has been used in which a dielectric film is formed using a dip coating method and a dielectric film is deposited thereon. A technique similar to this technique is disclosed in Japanese Patent Laid-Open No. 61-64301. Other methods that have been adopted include subjecting the plastic substrate to plasma treatment or irradiating it with an ion beam to modify the surface before vapor deposition.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来のプラスチック基板への成膜方法では、共通し
た欠点として一層目に蒸着できる材料が限定されてしま
うために、光学″”dlW!、を設計する上で所望の特
性を満たすことが極めて困難になるという問題点があっ
た。又、プライマーコート等の有機材料を使用した前処
理法においては、液の管理や作業環境等に充分注意を払
わなければ良い再現性を得ることができず、さらに、蒸
着前に複雑な工程が入ることから、コスト面2歩留り面
でも不利となる欠点がある。又、基板表面をプラズマ処
理する方法においては、チャンバー内の汚れによって逆
に汚染されるおそれがあるために良好な手段とはいえな
い。又、イオンビーム照射等により基板表面を改質する
方法においては、膜とプラスチック基板との密着性が充
分とはいえず、しかも、誘電体膜を蒸着することで成膜
面上にチャージアップ現象が生じるので、成膜上好まし
い手段ではない。
A common drawback of the above-mentioned conventional film deposition methods on plastic substrates is that the materials that can be deposited on the first layer are limited. There was a problem in that it was extremely difficult to satisfy desired characteristics when designing. In addition, in pretreatment methods using organic materials such as primer coating, good reproducibility cannot be obtained unless sufficient attention is paid to liquid management and working environment, and furthermore, complicated processes are required before vapor deposition. Because of the high cost, there are disadvantages in terms of both cost and yield. Further, in the method of plasma processing the substrate surface, it is not a good method because there is a risk of contamination due to dirt in the chamber. In addition, in methods of modifying the substrate surface by ion beam irradiation, etc., the adhesion between the film and the plastic substrate is not sufficient, and furthermore, the deposition of a dielectric film causes a charge-up phenomenon on the film-forming surface. This is not a preferable method for film formation.

本発明は、上記従来技術の問題点に鑑みなされたもので
あって、プラスチック基板に対して良好な密着性、耐久
性を有し、ガラス素材に対する成膜の場合と同等の性質
を有する薄膜を成膜しうるようにしたプラスチック基板
への成膜方法を提供することを目的とする。
The present invention has been made in view of the problems of the prior art described above, and provides a thin film that has good adhesion and durability to plastic substrates and has properties equivalent to those when deposited on glass materials. It is an object of the present invention to provide a method for forming a film on a plastic substrate that allows film formation.

、〔課題を解決するための手段及び作用〕本発明に係る
プラスチック基板への成膜方法は、プラスチック基板に
真空蒸着法にて成膜を行う方法において、蒸着前又は、
”蒸着前及び蒸着中に、プラスチック基板表面にエキシ
マレーザ−光を照射して真空蒸着を行うものであり、か
かる方法によれば、プラスチック基板表面の水や汚染さ
れた不純物が除去され、分子の活性化が図れる。その結
果、蒸着粒子の基板への結合力が増大し、緻密な膜形成
が可能となる。
, [Means and effects for solving the problem] The method of forming a film on a plastic substrate according to the present invention is a method of forming a film on a plastic substrate by a vacuum evaporation method, and the method includes:
``Vacuum deposition is performed by irradiating the plastic substrate surface with excimer laser light before and during vapor deposition. According to this method, water and contaminated impurities on the plastic substrate surface are removed, and molecular As a result, the bonding force of the vapor deposited particles to the substrate increases, making it possible to form a dense film.

〔実施例〕〔Example〕

以下、必要に応じて図面を用いつつ本発明の実施例につ
いて詳細に説明する。
Embodiments of the present invention will be described in detail below, using drawings as necessary.

(第1実施例) 第1図は、本発明に係るプラスチック基板への成膜方法
を実施するための装置(真空蒸着装置)1を示している
(First Embodiment) FIG. 1 shows an apparatus (vacuum evaporation apparatus) 1 for carrying out the method of forming a film on a plastic substrate according to the present invention.

図において2で示すのは、その表面に薄膜を被着(蒸着
)されるべきプラスチック基板で、本実施例においては
成形されたアクリル製レンズ(アクリルレンズ)を用い
ている。アクリルレンズ2は、真空蒸着装置1における
真空蒸着チャンバー3内に配備された回転ドーム4に取
り付けである。
In the figure, 2 is a plastic substrate on which a thin film is to be deposited (evaporated), and in this embodiment, a molded acrylic lens (acrylic lens) is used. The acrylic lens 2 is attached to a rotating dome 4 placed in a vacuum deposition chamber 3 in the vacuum deposition apparatus 1 .

5で示すのは蒸発材料で、本実施例においては、Sin
、を用いた。6で示すのは、蒸発材料5を加熱蒸発させ
るための電子銃である。
5 is an evaporation material, and in this example, Sin
, was used. Reference numeral 6 designates an electron gun for heating and evaporating the evaporation material 5.

7で示すのはエキシマレーザ−光発射装置で、ミラー8
.拡散レンズ9を介してエキシマレーザ−光10を回転
ドーム4の全面に照射しうるように設定しである。
7 is an excimer laser light emitting device, and mirror 8
.. The setting is such that the entire surface of the rotating dome 4 can be irradiated with excimer laser light 10 via a diffusion lens 9.

次に、上記装置1を用いてアクリルレンズ2にSin、
の薄膜を成膜させる方法について説明する。
Next, using the device 1 described above, the acrylic lens 2 is coated with Sin,
A method for forming a thin film will be explained.

まず、アクリルレンズ2を回転ドーム4にセットし、真
空蒸着チャンバー3内の排気を行う。
First, the acrylic lens 2 is set on the rotating dome 4, and the inside of the vacuum deposition chamber 3 is evacuated.

そして、真空蒸着チャンバー3内の真空度がIX I 
O−’Torr以下になった時点でエキシマレーザ−光
発射装置7からエキシマレーザ−光(λ−248nm)
10を発射させる。エキシマレーザ−光10は、ミラー
8.拡散レンズ9を介して回転ドーム4の全面に拡散照
射される。この際のエキシマレーザ−光10の強度は、
アクリルレンズ2の面上で10mJ/c−以下となるよ
うに設定し、照射時間は10パルス/秒の条件で5分間
照射した。
Then, the degree of vacuum in the vacuum deposition chamber 3 is IX I
When the temperature becomes O-'Torr or less, excimer laser light (λ-248 nm) is emitted from the excimer laser light emitting device 7.
Fire 10. The excimer laser light 10 is transmitted to a mirror 8. The entire surface of the rotating dome 4 is diffused and irradiated via the diffusion lens 9. The intensity of the excimer laser light 10 at this time is
The irradiation time was set to 10 mJ/c or less on the surface of the acrylic lens 2, and the irradiation time was 5 minutes at 10 pulses/second.

上記エキシマレーザ−光10を照射した後、真空蒸着チ
ャンバー3内の真空度が所望の真空度に達した時点でS
iOア5を電子銃6による電子ビーム蒸着法で蒸着させ
て成膜させる。
After irradiating the excimer laser beam 10, when the degree of vacuum in the vacuum deposition chamber 3 reaches the desired degree of vacuum, S
The iO 5 is deposited by electron beam evaporation using an electron gun 6 to form a film.

上記工程を経てアクリルレンズ2に成膜したSin、の
性能を調べるため、Sin、の成膜面に対して引かき試
験、テープ4り離試験等を行ったところ、結果は、ガラ
スレンズに対してSiO□を薄着したものと同様の性能
が得られた。さらに、30°C〜80′Cの条件下で2
00時間耐久試験を行った後、上記と同様な試験を行っ
たところ、全く問題は生しなかった。かかる結果が生ず
るのは、エキシマレーザ−光10を用いた表面処理方法
においては、通常の可視領域でのレーザー光に比して非
常に大きな光子エネルギーを有するので、アクリルレン
ズ2表面に付着した水や汚染された不純物が除去され、
分子の活性化が行われるので、蒸着粒子のアクリルレン
ズ2への結合力(付着力)が増大するとともに緻密な(
密度が高く、充填率の高い)膜が形成されることになる
からである。従って、本実施例の成膜方法によれば、ガ
ラスレンズに成膜するのと同等な高密着性5高耐久性を
有し、実用化に充分耐えうる膜を成膜できるものである
In order to investigate the performance of the Sin film formed on the acrylic lens 2 through the above process, scratching tests, tape peeling tests, etc. were conducted on the film-formed surface of the Sin film, and the results showed that The same performance as that obtained by applying a thin layer of SiO□ was obtained. Furthermore, under the conditions of 30°C to 80'C, 2
After carrying out the 00 hour durability test, a test similar to the above was carried out, and no problems were found. This result occurs because in the surface treatment method using excimer laser light 10, the photon energy is much larger than that of laser light in the normal visible range, so water adhering to the surface of the acrylic lens 2 is and contaminated impurities are removed,
As the molecules are activated, the bonding force (adhesive force) of the vapor deposited particles to the acrylic lens 2 increases and a dense (
This is because a film with high density and high filling rate) is formed. Therefore, according to the film forming method of this example, it is possible to form a film that has high adhesion and high durability equivalent to that of a film formed on a glass lens, and is sufficiently durable for practical use.

(第2実施例) 本実施例においては、蒸着材料5としてM g F t
を用い、MgF、を蒸着する前処理として、第1実施例
と同様にエキシマレーザ−光(λ=193nm)10を
アクリルレンズ2に拡散照射した0本実施例においては
、エキシマレーザ−光10の強度をレンズ面上で5 m
J / cd以下となるように設定し、10パルス/秒
の条件で5分間照射した。
(Second Example) In this example, M g F t is used as the vapor deposition material 5.
As a pretreatment for vapor-depositing MgF, the acrylic lens 2 was diffusely irradiated with excimer laser light (λ=193 nm) 10 as in the first embodiment. 5 m on the lens surface
It was set to be below J/cd and irradiated for 5 minutes at 10 pulses/sec.

そして、その後、アクリルレンズ2にM g F zを
電子ビーム蒸着法で成膜させた。
Then, a film of M g F z was formed on the acrylic lens 2 by electron beam evaporation.

本実施例の方法により成膜した膜を、第1実施例と同様
の方法にて耐久性を調べたところ、第1実施例のSin
gの場合と同等の結果が得られた。
The durability of the film formed by the method of this example was examined in the same manner as in the first example.
The same results as in the case of g were obtained.

従って、第1実施例と同様の効果を奏しうるちのである
Therefore, the same effect as the first embodiment can be achieved.

(第3実施例) 本実施例においては、第1実施例と同様の条件で蒸着前
(成膜前)にエキシマレーザ−光10を照射し、さらに
成膜中においてもエキシマレーザ−光10を照射しなが
ら、アシスト蒸着を行った。膜構成としてはIN目にA
 l z○1.2層目にZrO□、3層目にMgF、を
用い、反射防止膜を電子ビーム蒸着法で成膜した。
(Third Example) In this example, excimer laser light 10 is irradiated before vapor deposition (before film formation) under the same conditions as in the first example, and excimer laser light 10 is also applied during film formation. Assisted vapor deposition was performed while irradiating. The membrane structure is A in the IN eye.
l z○1.An antireflection film was formed by electron beam evaporation using ZrO□ for the second layer and MgF for the third layer.

本実施例により成膜した膜の光学特性は、波長450〜
650nmで反射率0.8%以下を示し、ガラスレンズ
と同等の性能が得られた。又、引かき試験、テープ剥離
試験等による耐久性に関しても、第1実施例と同様に充
分実用化に耐えうる結果が得られた。
The optical properties of the film formed in this example are as follows:
The reflectance at 650 nm was 0.8% or less, and performance equivalent to that of a glass lens was obtained. Also, in terms of durability in scratch tests, tape peel tests, etc., results sufficient for practical use were obtained, similar to the first example.

(第4実施例) 本実施例においては、第2実施例と同様の条件で成膜前
及び成膜中にエキシマレーザ−光10を照射しながら蒸
着を行った。本実施例の場合、膜構成としてはIN目に
SiO□を施し、以下、奇数層にSing、偶数層にT
iO□を蒸着し、合計14N積層した赤外カットフィル
ターを成膜した。
(Fourth Example) In this example, vapor deposition was performed under the same conditions as in the second example while irradiating excimer laser light 10 before and during film formation. In the case of this example, the film structure is such that SiO□ is applied to the IN layer, Sing is applied to the odd-numbered layers, and T is applied to the even-numbered layers.
iO□ was evaporated to form an infrared cut filter laminated with a total thickness of 14N.

本実施例により成膜した膜の光学特性は通常ガラス基板
に密着したものと同様の性能が得られ、耐性試験後の特
性の変化もほとんど無かった。さらに、耐久性に関して
も、引かき試験5テープ剥離等の試験においても、初期
性能、耐久性能ともに前記実施例と同様、実用化に充分
耐えうる結果が得られた。
The optical properties of the film formed in this example were similar to those of a film adhered to a normal glass substrate, and there was almost no change in the properties after the durability test. Furthermore, with regard to durability, in tests such as scratch test 5 and tape peeling, both initial performance and durability performance were similar to those of the above examples, and results sufficient for practical use were obtained.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明の成膜方法によれば、プラスチック
基板表面の水や汚染された不純物を除去し、分子の活性
化が図れるので、蒸着粒子の基板への結合力を増大でき
、緻密な膜形成が可能となる。その結果、ガラス素材に
成膜するのと同等の高密着性、高耐久性の膜をプラスチ
ック基板に成膜できるものである。
As described above, according to the film forming method of the present invention, water and contaminated impurities on the surface of a plastic substrate can be removed and molecules can be activated, thereby increasing the bonding force of vapor deposited particles to the substrate and forming a dense layer. Film formation becomes possible. As a result, it is possible to form a film on a plastic substrate with high adhesion and durability equivalent to that on a glass material.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に係る方法の各種実施例を実施するた
めの装置を示す構成説明図である。 2・・・アクリルレンズ(プラスチック基板)5・・・
蒸着材料 6・・・電子銃 10・・・エキシマレーザ−光
FIG. 1 is a configuration explanatory diagram showing an apparatus for carrying out various embodiments of the method according to the present invention. 2... Acrylic lens (plastic substrate) 5...
Vapor deposition material 6...Electron gun 10...Excimer laser light

Claims (1)

【特許請求の範囲】 プラスチック基板に真空蒸着法にて成膜を行う方法にお
いて、 蒸着前又は、蒸着前及び蒸着中に、プラスチック基板表
面にエキシマレーザー光を照射して真空蒸着を行うこと
を特徴とするプラスチック基板への成膜方法。
[Claims] A method of forming a film on a plastic substrate by vacuum evaporation, characterized by performing vacuum evaporation by irradiating the surface of the plastic substrate with excimer laser light before, or before and during the evaporation. A method for forming a film on a plastic substrate.
JP18010488A 1988-07-18 1988-07-18 Formation of film on plastic substrate Pending JPH0230747A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18010488A JPH0230747A (en) 1988-07-18 1988-07-18 Formation of film on plastic substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18010488A JPH0230747A (en) 1988-07-18 1988-07-18 Formation of film on plastic substrate

Publications (1)

Publication Number Publication Date
JPH0230747A true JPH0230747A (en) 1990-02-01

Family

ID=16077496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18010488A Pending JPH0230747A (en) 1988-07-18 1988-07-18 Formation of film on plastic substrate

Country Status (1)

Country Link
JP (1) JPH0230747A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5276723A (en) * 1990-05-14 1994-01-04 Nec Corporation Floating diffusion type charge detection circuit for use in charge transfer device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5276723A (en) * 1990-05-14 1994-01-04 Nec Corporation Floating diffusion type charge detection circuit for use in charge transfer device

Similar Documents

Publication Publication Date Title
US3984581A (en) Method for the production of anti-reflection coatings on optical elements made of transparent organic polymers
EP0754777B1 (en) Process for producing thin film, and thin film formed by the same
Lee et al. Optical coatings on polymethyl methacrylate and polycarbonate
TWI680111B (en) Optical coating method, apparatus and product
JP7327385B2 (en) TRANSPARENT MEMBER AND METHOD FOR MANUFACTURING TRANSPARENT MEMBER
JPH0230747A (en) Formation of film on plastic substrate
Guenther Coating of plastics-coatings on plastic
JPH09189801A (en) Optical parts with heat resistant antireflection film
JP3497236B2 (en) Anti-reflection coating for high precision optical components
JPH0560904A (en) Optical parts and production thereof
JP2724260B2 (en) Optical member having antireflection film
JPH03162561A (en) Film formation to plastic substrate
JP3689923B2 (en) Method for producing plastic film having antireflection film
JP3332271B2 (en) Reflecting mirror and manufacturing method thereof
JPH0545503A (en) Optical element and production thereof
JPS62100701A (en) Production of plastic optical parts having antireflection film
JPH0553001A (en) Multilayered antireflection film of optical parts made of synthetic resin
Allen et al. Antireflection coatings for plastic optics
JP3353948B2 (en) Beam splitter
JPH03126644A (en) Production of reflecting mirror
JP3353944B2 (en) Antireflection film for optical component and optical component formed with this antireflection film
JP3412302B2 (en) Method for manufacturing plastic optical component having antireflection film
JP3278194B2 (en) Optical components
JPH08333672A (en) Production of optical parts
JPH0350501A (en) Hard coating film for plastic member and vacuum deposition device thereof