JPH0230666A - Carbon fiber reinforced carbon composite material and production thereof - Google Patents

Carbon fiber reinforced carbon composite material and production thereof

Info

Publication number
JPH0230666A
JPH0230666A JP63225818A JP22581888A JPH0230666A JP H0230666 A JPH0230666 A JP H0230666A JP 63225818 A JP63225818 A JP 63225818A JP 22581888 A JP22581888 A JP 22581888A JP H0230666 A JPH0230666 A JP H0230666A
Authority
JP
Japan
Prior art keywords
composite material
resin
thickness direction
thermal conductivity
thermosetting resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63225818A
Other languages
Japanese (ja)
Other versions
JP2743397B2 (en
Inventor
Kohei Okuyama
奥山 公平
Kazuo Niwa
一夫 丹羽
Takanori Takahashi
孝徳 高橋
Kimihiro Iogi
公裕 伊尾木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Atomic Power Industries Inc
Mitsubishi Kasei Corp
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP63225818A priority Critical patent/JP2743397B2/en
Application filed by Mitsubishi Atomic Power Industries Inc, Mitsubishi Kasei Corp, Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Atomic Power Industries Inc
Priority to DE68923901T priority patent/DE68923901T2/en
Priority to EP94112521A priority patent/EP0630875B1/en
Priority to DE68929046T priority patent/DE68929046T2/en
Priority to EP89107551A priority patent/EP0339606B1/en
Publication of JPH0230666A publication Critical patent/JPH0230666A/en
Priority to US07/873,683 priority patent/US5390217A/en
Priority to US08/450,640 priority patent/US5586152A/en
Application granted granted Critical
Publication of JP2743397B2 publication Critical patent/JP2743397B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • Y02E30/128

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To enlarge coefficient of thermal conductivity in one direction by cutting filaments of carbon fiber impregnated with a thermosetting resin, molding, curing the resin, carbonizing, impregnating the carbonized molded article with pitch or thermosetting resin and carbonizing. CONSTITUTION:Filaments of carbon fiber are impregnated with 10-70wt.% solution of thermosetting resin, the thermosetting resin is cured under heating at 50-300 deg.C for 0.2-5 hours to give a fiber/resin composite material, which is cut into pieces (5-100mm) longer than the thickness of the composite material, arranged in parallel in one direction, the arranged material is pressurized in the direction perpendicular to the long direction of the fiber and the resin is cured to give a molded article. Then the molded article is carbonized under heating at <=1,000 deg.C, further impregnated with pitch or thermosetting resin, carbonized, optionally graphitized to give the aimed composite material having >=2 ratio of coefficient of thermal conductivity in the thickness direction to that in the direction perpendicular to the thickness direction and >=3w/cm. deg.C coefficient of thermal conductivity in the thickness direction.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、炭素繊維強化複合材料及びその製法に関する
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a carbon fiber reinforced composite material and a method for producing the same.

(従来の技術) 炭素繊維強化複合材料(以下、C/C複合材という)は
、軽量、高強度であり、耐熱、耐食性に優れているとい
う特徴を有する。このため、ロケットノズル、ノーズコ
ーン、航空機のディスクブレーキなどの航空宇宙材料、
発熱体、ポットプレス鋳型、その他の機械部品、原子炉
用部材等に用いられている。
(Prior Art) Carbon fiber reinforced composite materials (hereinafter referred to as C/C composite materials) are lightweight, have high strength, and have excellent heat resistance and corrosion resistance. For this reason, aerospace materials such as rocket nozzles, nose cones, and aircraft disc brakes,
It is used in heating elements, pot press molds, other mechanical parts, nuclear reactor parts, etc.

このC/C複合材は、一般にポリアクリロニトリル系、
ピッチ系等の長繊維°もしくは短繊維の炭素繊維にフェ
ノール樹脂フラン樹脂等CV熱硬化性樹脂又はピッチ等
の熱可塑性樹脂等のマトリックス物質を含浸又は混合し
て、加熱成形したものを不活性ガス等の非酸化性雰囲気
において、60θ〜1ooo℃程度で焼成、さらにピッ
チ、樹脂を含浸した後焼成するか、化学蒸清洗を用いる
方法あるいはこれらを組合わせる方法を用いて緻密化し
た後、必要に応じて黒鉛化することKより製造されてい
る。
This C/C composite material is generally made of polyacrylonitrile,
Long or short carbon fibers such as pitch-based carbon fibers are impregnated or mixed with matrix materials such as CV thermosetting resins such as phenol resins, furan resins, or thermoplastic resins such as pitch, and then heated and molded using an inert gas. In a non-oxidizing atmosphere such as It is manufactured from K by graphitizing accordingly.

(発明が解決しようとする問題点) しかしながら、得られるC/C複合材を、特に一方向、
すなわち厚み方向に熱を有効に伝導又は除去する用途に
使う必要がある場合には、必ずしも満足すべきものとは
いえず、実用に供するには問題があった。
(Problems to be solved by the invention) However, the obtained C/C composite material is
In other words, when it is necessary to use it for purposes of effectively conducting or removing heat in the thickness direction, it is not necessarily satisfactory, and there are problems in putting it into practical use.

そこで、本発明者らは、上述の不十分さを克服したC/
C複合材を得るべく、種々検討を行ない、一方向の熱伝
導率を大きくしたC/C複合材を得、本発明に到達した
Therefore, the present inventors have developed a C/
In order to obtain a C/C composite material, we conducted various studies, obtained a C/C composite material with increased thermal conductivity in one direction, and arrived at the present invention.

すなわち、本発明の要旨は (1)炭素繊維が実質的に厚み方向に配向しており、厚
み方向に直角の方向の熱伝導率に対する厚み方向の熱伝
導率の比率がコ以上であり、かつ厚み方向の熱伝導率が
3W/crrL・3以上である炭素繊維強化炭素複合材
料。
That is, the gist of the present invention is that (1) the carbon fibers are substantially oriented in the thickness direction, and the ratio of the thermal conductivity in the thickness direction to the thermal conductivity in the direction perpendicular to the thickness direction is greater than or equal to A carbon fiber-reinforced carbon composite material whose thermal conductivity in the thickness direction is 3 W/crrL·3 or more.

及び (2)炭素繊維の長繊維を熱硬化性樹脂に含浸し、これ
を加熱して繊維/樹脂の複合体を得、この複合体を目的
とする複合材料の厚み方向より長く切断し、互いに実質
的に平行となるように一方向に揃えて、その繊維の長さ
方向に直角の方向に圧力を加え、成形して樹脂を硬化し
、ついで炭化し、さらにこれをピッチ又は熱硬化性樹脂
に含浸した後、炭化、必要に応じて黒鉛化することを特
徴とする炭素繊維強化炭素複合材料の製法にある。
and (2) impregnate long carbon fibers in a thermosetting resin, heat this to obtain a fiber/resin composite, cut the composite into a length longer than the thickness of the desired composite material, and then The fibers are aligned in one direction so that they are substantially parallel to each other, pressure is applied in a direction perpendicular to the length of the fibers, the resin is molded, hardened, and then carbonized. A method for producing a carbon fiber-reinforced carbon composite material, which is characterized by impregnating the material with carbon fiber, followed by carbonization and, if necessary, graphitization.

(問題点を解決するための手段) 以下、本発明の詳細な説明する。(Means for solving problems) The present invention will be explained in detail below.

本発明で使用する炭素繊維は、ポリアクリロニトリル(
PAN)系、ピッチ系炭素繊維あるいは気相成長法炭素
繊維等、いずれの種類でもよいが、特に繊維軸方向の熱
伝導率が高い高特性のくツチ系炭素繊維が好適である。
The carbon fiber used in the present invention is polyacrylonitrile (
Any type of carbon fiber, such as PAN) type, pitch type carbon fiber, or vapor grown carbon fiber, may be used, but pine type carbon fiber, which has high properties such as high thermal conductivity in the fiber axis direction, is particularly suitable.

本発明に係るC/C複合材はこのような炭素繊維を用い
て得られ、炭素繊維が実質的に厚み方向釦配向しており
、厚み方向に直角の方向のW / cm・3以上である
ことを特徴とする。
The C/C composite material according to the present invention is obtained using such carbon fibers, the carbon fibers are substantially oriented in the thickness direction, and the W/C composite material in the direction perpendicular to the thickness direction is 3 or more. It is characterized by

そして、このようなC/C複合材は、次のような方法に
よって得られる。
Such a C/C composite material can be obtained by the following method.

まず、炭素繊維の長繊維を熱硬化性樹脂に含浸し、これ
を加熱して半硬化させる。
First, long carbon fibers are impregnated with a thermosetting resin and heated to semi-cure.

熱硬化性樹脂としては、例えばフェノール樹脂、フラン
樹脂、エポキシ樹脂、不飽和ポリエステル樹脂等が挙げ
られるが、フェノール樹脂特にレゾール型のフェノール
樹脂が好適に使用できる。これらの熱硬化性樹脂は通常
、エタノールのようなアルコール類、ヘキサンのような
炭化水素あるいはアセトンといった溶剤で溶解希釈して
用いる。
Examples of thermosetting resins include phenol resins, furan resins, epoxy resins, and unsaturated polyester resins, and phenol resins, particularly resol type phenol resins, can be preferably used. These thermosetting resins are usually used after being dissolved and diluted with a solvent such as an alcohol such as ethanol, a hydrocarbon such as hexane, or acetone.

ものを使用する。use something

また、フラン樹脂、ヱボキシ樹脂等硬化剤を要するもの
は硬化剤も溶液中に添加される〆がその量はそれぞれの
樹脂に適した量が添加される。
Further, for those requiring a curing agent such as furan resin and eboxy resin, the curing agent is also added to the solution in an amount appropriate for each resin.

かかる熱硬化性樹脂溶液に炭素繊維の長繊維を含浸する
方法としては、溶液中に炭素繊維を浸漬するといった簡
単な方法で良いが、長繊維ロービングであれば溶液の満
たされた槽内な連続的に走行させる方法が処理の効率の
点から好ましい。また、この際に溶液の満された槽に1
0−!;0KHz程度の超音波を作用させておくと各単
繊維間、織目間の気泡等による処理むらの影響を防ぐこ
とができるので好ましい。
A simple method for impregnating long carbon fibers in such a thermosetting resin solution may be a simple method such as immersing the carbon fibers in the solution. From the viewpoint of processing efficiency, it is preferable to use a method in which the particles are run in a continuous manner. Also, at this time, add 1
0-! It is preferable to apply ultrasonic waves of about 0 KHz because it is possible to prevent the effects of uneven processing due to air bubbles between each single fiber or between weaves.

熱硬化性樹脂溶液に含浸した炭素繊維は例えばローラー
を通すなどして余分な溶液を除去員、次いで加熱処理を
施される。
The carbon fibers impregnated with the thermosetting resin solution are passed through a roller to remove excess solution, and then heated.

該加熱処理により、熱硬化性樹脂は熱硬化される。加熱
処理の条件は使用する熱硬化性樹脂の種類によってそれ
ぞれ適正条件は異なるが通常30〜300℃、好ましく
は30〜200℃の温度で0.2〜3時間、好ましくは
0.2〜2時間加熱処理される。この際、炭素繊維に塗
布された熱硬化性樹脂溶液からの急激な溶剤の脱離を避
るため所定の温度への昇温を徐々に行なわれることが望
ましい。また、加熱処理は炭素繊維を連続的に加熱炉内
を走行させる方法で行なうのが処理の効率の点から好ま
しい。
The thermosetting resin is thermoset by the heat treatment. Appropriate conditions for heat treatment vary depending on the type of thermosetting resin used, but are usually 30 to 300°C, preferably 30 to 200°C for 0.2 to 3 hours, preferably 0.2 to 2 hours. Heat treated. At this time, it is desirable to gradually raise the temperature to a predetermined temperature in order to avoid rapid desorption of the solvent from the thermosetting resin solution applied to the carbon fibers. Further, it is preferable from the viewpoint of processing efficiency that the heat treatment is carried out by continuously running the carbon fibers in a heating furnace.

ついで、得られた繊維/樹脂の複合体を目的とするC/
C複合材の厚み方向より長く切断すい 少し長り範囲から選定され、たとえば/3〜100rr
asから選ばれる。切断された複合体は、互いに実質的
に平行となるように一方向に揃えられ、その繊維の長さ
方向に直角の方向に圧力を加え、加熱、成型する。
The resulting fiber/resin composite is then treated with a target C/
C It is selected from a slightly longer range than the thickness direction of the composite material, for example /3~100rr.
Selected from as. The cut composites are unidirectionally aligned substantially parallel to each other, heated and shaped by applying pressure in a direction perpendicular to the length of the fibers.

たとえば、金型にロート状の道具を使用して複合体を供
給するととKより金型内に実質的に平行になるように揃
え、樹脂の硬化のために必要な温度の加熱下に、繊維の
長さ方向に直角の方向に圧力を加えて樹脂を硬化させる
ことにより成型体を得る。
For example, when the composite is fed into a mold using a funnel-like tool, the fibers are aligned substantially parallel in the mold and the fibers are heated to the temperature required for curing of the resin. A molded body is obtained by applying pressure in a direction perpendicular to the length direction of the resin to harden the resin.

その後、成型体1に容器に入れ、成型体をコークスプリ
ーズで取囲むような形とした後、容器を電気炉に入れ、
必要に応じてN!ガス流通下で1ooo℃程度まで昇温
して炭化する。
After that, the molded body 1 is placed in a container, the molded body is surrounded by coke pleat, and the container is placed in an electric furnace.
N if necessary! Carbonize by raising the temperature to about 100°C under gas flow.

必要に応じては、さらに黒鉛化炉に入れ、不活性雰囲気
下で2000℃以上の温度まで熱処理する。
If necessary, it is further placed in a graphitization furnace and heat-treated to a temperature of 2000° C. or higher in an inert atmosphere.

ついで、得られた炭化物もしくは黒鉛化物を石油系、石
炭系ピッチあるいはフェノール樹脂、フラン樹脂等の熱
硬化性樹脂に含浸した後、また、熱硬化性樹脂を用い念
場合には樹脂を硬化させた後炭化させる。
Next, the obtained carbide or graphitized product is impregnated with a petroleum-based or coal-based pitch or a thermosetting resin such as a phenol resin or a furan resin, and if a thermosetting resin is used, the resin is hardened. Carbonize afterwards.

その際、熱硬化性樹脂は、アルコール、アセトン、アン
トラセン油等の溶媒、に溶解して適当な粘度に調整した
ものを使用するのが一般的である。
In this case, it is common to use a thermosetting resin that has been dissolved in a solvent such as alcohol, acetone, anthracene oil, etc. and adjusted to an appropriate viscosity.

また、この場合、圧力下に含浸する方法が好適に採用さ
れる。
Moreover, in this case, a method of impregnation under pressure is preferably employed.

たとえば、成型体の炭化物もしくは黒鉛化物とピッチを
低圧反応容器(オートクレーブ)内に入た真空中で加熱
してピッチを溶解し、炭化物もしくは黒鉛化物がピッチ
の溶融液の中に浸漬した状態となっ念後、N2ガスを導
入して低圧で5りoNtoo℃程度に昇温する。
For example, the pitch is melted by heating the carbide or graphitide of the molded body in a vacuum in a low-pressure reaction vessel (autoclave), and the carbide or graphitide is immersed in the molten pitch. After that, N2 gas is introduced and the temperature is raised to about 50Ntoo°C under low pressure.

その後、冷却して炭化物もしくは黒鉛化物の緻密化物を
取出し、前述と同様の方法でこれを1ooo℃程度まで
炭化し、必要に応じて黒鉛化する。
Thereafter, it is cooled to take out a densified carbide or graphitized product, which is carbonized to about 100° C. in the same manner as described above, and graphitized if necessary.

以上のいわゆる緻密化の方法を繰返して行なうことによ
シ比重へ6以上の高緻密のC/C複合材を得る。
By repeating the so-called densification method described above, a highly densified C/C composite material with a specific gravity of 6 or more is obtained.

この際、繊維/樹脂複合体の樹脂含量や緻密化が不十分
であったシ、炭化、黒鉛化の際の昇温速度が大きすぎる
と繊維の長さ方向に直角の方向の強度が小さくなシ、場
合によっては破壊に至るので適切な条件を選ぶ必要があ
る。
At this time, if the resin content or densification of the fiber/resin composite is insufficient, or if the heating rate during carbonization or graphitization is too high, the strength in the direction perpendicular to the fiber length direction will decrease. In some cases, this may lead to destruction, so it is necessary to choose appropriate conditions.

得られたC/C複合材は厚み方向に高い熱伝導率、電気
伝導車を有する、異方性の材料となる。得られたC/C
複合材は、目的に応じ、厚み方向と直角方向の強度を向
上させるために、炭素繊維を材料とした長繊維等を用い
て周囲を巻くことができ、あるいはC/C複合材等の炭
素材料を適当な形にして結束することができる。
The resulting C/C composite material is an anisotropic material with high thermal conductivity and electrical conductivity in the thickness direction. Obtained C/C
Depending on the purpose, in order to improve the strength in the thickness direction and perpendicular direction, the composite material can be wrapped around the periphery using long fibers made of carbon fiber, or carbon material such as C/C composite material. can be tied into a suitable shape.

また、複数の複合材の面間を、フェノール樹脂を主体と
する樹脂などを用いて接着し、これを再びC/C複合材
が最終的に処理され次温度程度−にまで昇温させてC/
C複合材の小片を複数枚互いに接着させて目的とする大
きさの複合材とすることもできる。
In addition, the surfaces of multiple composite materials are bonded using a resin mainly composed of phenolic resin, and this is heated again to a temperature of approximately -200°C, which is the temperature at which the C/C composite material is finally treated. /
A plurality of small pieces of C composite material may be adhered to each other to form a composite material of a desired size.

本発明におけるC/C複合材は、厚み方向に熱伝導、電
気伝導が一方向に高いものであシ、熱を有効に除去した
シ伝達したりしうる。また、厚み方向と直角の方向の耐
熱衝撃性も高く、高温炉での使用に耐えるものである。
The C/C composite material of the present invention has high thermal conductivity and high electrical conductivity in the thickness direction, and can effectively remove and transmit heat. It also has high thermal shock resistance in the direction perpendicular to the thickness direction, and can withstand use in high-temperature furnaces.

すなわち、本発明のC/C複合材は、その厚み方向(1
)とその直角方向(〃)の熱伝導率の比率がコ以上、好
ましくは7以上、最適にはio以上であシ、かつ厚み方
向(1)の熱伝導高がJ W / am・℃以上であシ
、たとえば、その一方の面に高温度に加熱された物質を
置いても厚み方向の熱伝導率が高いため、他方の面に熱
が伝わシやすく、この他方の面に冷却水を流した部分を
接触させることにより、この加熱した物質を有効に冷却
することができる。すなわち、熱交換によ多物質を冷却
する場合に有効に使用しうる。
That is, the C/C composite material of the present invention has a thickness direction (1
) and the thermal conductivity in the direction perpendicular to it (〃) is 7 or more, preferably 7 or more, optimally io or more, and the thermal conductivity in the thickness direction (1) is JW/am・℃ or more. For example, even if a substance heated to a high temperature is placed on one side, the heat conductivity in the thickness direction is high, so the heat will easily be transferred to the other side, and cooling water can be placed on this other side. By bringing the flowed parts into contact, this heated substance can be effectively cooled. That is, it can be effectively used when cooling multiple substances by heat exchange.

なお、本発明において、繊維軸方向の熱伝導率が大きい
ピッチ系、特に石炭ピッチ系の高特性の炭素繊維を用い
ると、その効果がよシ大きくなるpで好適である。
In the present invention, it is preferable to use pitch-based carbon fibers with high thermal conductivity in the fiber axial direction, particularly coal pitch-based carbon fibers with high properties, since the effect will be even greater.

(実施例) 以下、本発明を実施例によシさらに詳細に説明するが、
本発明はこれらの実施例に限定されるものではない。
(Example) Hereinafter, the present invention will be explained in more detail with reference to Examples.
The present invention is not limited to these examples.

実施例1 ピッチ系炭素繊維(三菱化成株式会社製”ダイアリード
uooo)、イラメント、繊維径10μ)の長線mt5
フェノール樹脂のエタノール溶液に浸漬し、ついでこれ
を乾燥器に入れ70℃でエタノールを除去した後、10
0℃以上に昇温してフェノール樹脂を半硬化させた。得
られた繊維/樹脂の複合体(トウプリプレグ)(炭素繊
維:樹脂=st、:eぐ重量比)を長さ’lOwaに切
断した。このものは繊維が樹脂で固められ、棒状で剛直
であった。この切断した複合体を互いに平行になるよう
に金型内に一方向に揃えて並べ、目的とするC/C複合
材の寸法よシ大きくなるような形状に充填した。
Example 1 Long wire mt5 of pitch-based carbon fiber (Mitsubishi Kasei Corporation "Dialead uooo", filament, fiber diameter 10μ)
After immersing the phenol resin in an ethanol solution and then putting it in a dryer to remove the ethanol at 70°C,
The temperature was raised to 0° C. or higher to semi-cure the phenol resin. The obtained fiber/resin composite (tow prepreg) (carbon fiber:resin=st, :egg weight ratio) was cut into a length of 'lOwa'. The fibers of this material were hardened with resin and were rod-shaped and rigid. The cut composites were arranged parallel to each other in one direction in a mold and filled into a shape larger than the intended C/C composite material.

ついで、iso℃で低圧を付加し、7時間で250℃ま
で昇温し、250℃で1時間保持し、成型、硬化した。
Then, low pressure was applied at iso°C, the temperature was raised to 250°C over 7 hours, and held at 250°C for 1 hour to mold and harden.

成型後の寸法は、10八り×lコQ、j;×I10./
 0であった。
Dimensions after molding are 108 × 1, Q, j; × I10. /
It was 0.

ついで、この成型品をコークスプリーズを詰めた容器の
中に入れコークスプリーズでおおった状態で、約50時
間かけて7000℃まで昇温し樹脂の炭化を行なった。
Next, this molded product was placed in a container filled with Coke Please, and while covered with Coke Please, the temperature was raised to 7000° C. over about 50 hours to carbonize the resin.

ついで、この炭化した複合材と固形のピッチをオートク
レーブに入れ、減圧状態のまま、250℃まで昇温し、
ついでN2ft入れることによシ雰囲気を陽圧とした後
、昇温し5時間で50θ℃まで到達させた後、200℃
で5時間保時した。
Next, this carbonized composite material and solid pitch were placed in an autoclave, and the temperature was raised to 250°C while maintaining the reduced pressure.
Then, after making the atmosphere positive pressure by introducing 2ft of N, the temperature was raised to 50θ℃ in 5 hours, and then heated to 200℃.
The time was maintained for 5 hours.

昇温の際に圧力は、オートクレーブに付属したパルプを
使って一定に保持した。
The pressure was kept constant during the temperature rise using the pulp attached to the autoclave.

オートクレーブを冷却し、複合材を取出し、成型品の炭
化と同様の方法でtooo′c’!で炭化した。上記の
オートクレーブ処理とその後の炭化処理を合計3回行な
った後、これを黒鉛化炉に入れアルゴン雰囲気中1.2
goo′Cまで昇温した後、冷却し、C/C複合材を得
た。得られたC/C複合材の嵩密度は八Kl/cdで、
厚み方向(繊維軸と同一方向)とそれに直角の方向の熱
伝導率をレーザーフラッシュ法熱定数測定装置(真空理
工製)で測定した。
Cool the autoclave, take out the composite material, and carbonize the molded product in the same way as too'c'! It was carbonized. After performing the above autoclave treatment and subsequent carbonization treatment three times in total, this was placed in a graphitization furnace for 1.2 hours in an argon atmosphere.
After heating up to goo'C, it was cooled to obtain a C/C composite material. The bulk density of the obtained C/C composite material was 8 Kl/cd,
Thermal conductivity in the thickness direction (same direction as the fiber axis) and in the direction perpendicular thereto was measured using a laser flash method thermal constant measuring device (manufactured by Shinku Riko).

厚み方向の熱伝導率は3.りσW / cm・℃、厚み
方向に直角の方向の熱伝導率は0.3/W/cm・℃で
あシ、その比率は/ 2.0であった。
The thermal conductivity in the thickness direction is 3. The thermal conductivity in the direction perpendicular to the thickness direction was 0.3/W/cm·°C, and the ratio was /2.0.

なお、このものは;1!;00℃の加熱された黒鉛化炉
内に急速に入れても破壊せず、耐熱衝翠性にも優れてい
た。
In addition, this one is; 1! It did not break even when rapidly placed in a graphitization furnace heated to 00°C, and had excellent thermal shock resistance.

実施例コ 実施例1において、成型後の寸法を/、2コ×/3りX
G(IIwとし九こと、及び、オートクレーブ処理とそ
の後の炭化処理を合計グ回行なったこと、のほかは実施
例1と同様にしてC/C複合材を得た。
Example In Example 1, the dimensions after molding are /, 2 x / 3 x
A C/C composite material was obtained in the same manner as in Example 1, except that G (IIw) was used, and the autoclave treatment and subsequent carbonization treatment were performed twice in total.

得られたC/C複合材の嵩密度は八g3g/dであった
。厚み方向の熱伝導率は、7.A/、厚み方向に直角の
方向の熱伝導率は0.!; /であシ、の比率は7.O
gであった。
The bulk density of the obtained C/C composite material was 8g/d. The thermal conductivity in the thickness direction is 7. A/, thermal conductivity in the direction perpendicular to the thickness direction is 0. ! The ratio of /Ashi is 7. O
It was g.

とのC/C複合材は:1!;00℃に加熱された黒鉛化
炉内に急速に入れても破壊せず、耐熱衝撃性にもずぐれ
ていた。
C/C composite material with: 1! It did not break even when rapidly placed in a graphitization furnace heated to 00°C, and its thermal shock resistance was also excellent.

(発明の効果) 本発明に係るC/C複合材は、その厚み方向に大きい熱
伝導率、電気伝導率を有するため、特に一方向の熱もし
くは電気の伝導を必要とする場合に使用すると有効であ
シ、たとえば熱除去、熱伝達をするような熱交換の材料
あるいはスイッチ材料などに使用しうる。
(Effects of the Invention) The C/C composite material according to the present invention has large thermal conductivity and electrical conductivity in the thickness direction, so it is particularly effective when used when unidirectional heat or electricity conduction is required. It can be used as a material for heat exchange such as heat removal or heat transfer, or as a switch material.

Claims (2)

【特許請求の範囲】[Claims] (1)炭素繊維が実質的に厚み方向に配向しており、厚
み方向に直角の方向の熱伝導率に対する厚み方向の熱伝
導率の比率が2以上であり、かつ厚み方向の熱伝導率が
3W/cm・℃以上である炭素繊維強化炭素複合材料。
(1) The carbon fibers are substantially oriented in the thickness direction, the ratio of the thermal conductivity in the thickness direction to the thermal conductivity in the direction perpendicular to the thickness direction is 2 or more, and the thermal conductivity in the thickness direction is A carbon fiber-reinforced carbon composite material having a temperature of 3W/cm・℃ or more.
(2)炭素繊維の長繊維を熱硬化性樹脂に含浸し、これ
を加熱して繊維/樹脂の複合体を得、この複合体を目的
とする複合材料の厚み方向より長く切断し、互いに実質
的に平行となるように一方向に揃えて、その繊維の長さ
方向に直角の方向に圧力を加え、成形して樹脂を硬化し
、ついで炭化し、さらにこれをピッチ又は熱硬化性樹脂
に含浸した後、炭化、必要に応じて黒鉛化することを特
徴とする炭素繊維強化炭素複合材料の製法。
(2) Impregnate long carbon fibers in thermosetting resin, heat this to obtain a fiber/resin composite, cut this composite into a length longer than the thickness direction of the desired composite material, and The fibers are aligned in one direction so that they are parallel to each other, pressure is applied in a direction perpendicular to the length direction of the fibers, the resin is molded, hardened, and then carbonized. A method for producing a carbon fiber-reinforced carbon composite material, which is characterized by impregnating, carbonizing, and optionally graphitizing.
JP63225818A 1988-04-28 1988-09-09 Carbon fiber reinforced carbon composite material and method of using the same Expired - Lifetime JP2743397B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP63225818A JP2743397B2 (en) 1988-04-28 1988-09-09 Carbon fiber reinforced carbon composite material and method of using the same
EP94112521A EP0630875B1 (en) 1988-04-28 1989-04-26 Carbon fiber-reinforced carbon composite materials, processes for their production, and first walls of nuclear fusion reactors employing them
DE68929046T DE68929046T2 (en) 1988-04-28 1989-04-26 Carbon fiber reinforced carbon composites, processes for their manufacture and their use as inner walls of nuclear fusion reactors
EP89107551A EP0339606B1 (en) 1988-04-28 1989-04-26 Carbon fiber-reinforced carbon composite materials, processes for their production, and first walls of nuclear fusion reactors employing them
DE68923901T DE68923901T2 (en) 1988-04-28 1989-04-26 Carbon fiber reinforced carbon composites, processes for their production and their use as inner walls of nuclear fusion reactors.
US07/873,683 US5390217A (en) 1988-04-28 1992-04-24 Carbon fiber-reinforced carbon composite materials processes for their production, and first walls of nuclear fusion reactors employing them
US08/450,640 US5586152A (en) 1988-04-28 1995-05-25 Carbon fiber-reinforced carbon composite materials, processes for their production, and first walls of nuclear fusion reactors employing them

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP63-106158 1988-04-28
JP10615888 1988-04-28
JP63225818A JP2743397B2 (en) 1988-04-28 1988-09-09 Carbon fiber reinforced carbon composite material and method of using the same

Publications (2)

Publication Number Publication Date
JPH0230666A true JPH0230666A (en) 1990-02-01
JP2743397B2 JP2743397B2 (en) 1998-04-22

Family

ID=26446324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63225818A Expired - Lifetime JP2743397B2 (en) 1988-04-28 1988-09-09 Carbon fiber reinforced carbon composite material and method of using the same

Country Status (1)

Country Link
JP (1) JP2743397B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020038919A (en) * 2018-09-05 2020-03-12 ウシオ電機株式会社 Electric component unit

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63107862A (en) * 1986-10-23 1988-05-12 三菱化学株式会社 Manufacture of carbon fiber reinforced carbon composite material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63107862A (en) * 1986-10-23 1988-05-12 三菱化学株式会社 Manufacture of carbon fiber reinforced carbon composite material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020038919A (en) * 2018-09-05 2020-03-12 ウシオ電機株式会社 Electric component unit

Also Published As

Publication number Publication date
JP2743397B2 (en) 1998-04-22

Similar Documents

Publication Publication Date Title
EP0339606B1 (en) Carbon fiber-reinforced carbon composite materials, processes for their production, and first walls of nuclear fusion reactors employing them
EP0714869B1 (en) Carbon fiber-reinforced carbon composite material and process for the preparation thereof
WO2006003774A1 (en) Method for manufacturing carbon fiber reinforced carbon composite material suitable for semiconductor heat sink
US4101354A (en) Coating for fibrous carbon material in boron containing composites
US3728423A (en) Matching the volume shrinkage of organic fibers to that of the resin matrix in carbon or graphite composites
JP2664047B2 (en) Method for producing carbon fiber reinforced carbon composite material
JPH03150266A (en) Production of carbon/carbon composite material
JP2018104250A (en) Manufacturing method of unidirectional carbon fiber-reinforced carbon composite
JPH0230666A (en) Carbon fiber reinforced carbon composite material and production thereof
CN116283332A (en) Preparation method of pitch-based carbon/carbon composite material with high thermal conductivity in thickness direction
JP2811681B2 (en) First wall of fusion device
JP4260426B2 (en) heatsink
JP2699443B2 (en) Carbon fiber reinforced carbon composite material bonded to metal and method for producing the same
JP2775766B2 (en) Carbon fiber reinforced carbon composite and use thereof
KR0145784B1 (en) Carbon fiber-reinforced c/c composite
JP2002255664A (en) C/c composite material and production method therefor
JPH08225375A (en) Unidirectional carbon fiber-reinforced carbon composite material assembly and production of prismatic unit of the same carbon composite material and its assembly
JPH0829987B2 (en) Method for producing carbon fiber reinforced carbon composite material
JPH0551257A (en) Production of carbon fiber reinforced carbon material
JPH05148017A (en) Production of carbon fiber-reinforced carbon material for general purpose
JP3244279B2 (en) Manufacturing method of jig material for glass container manufacturing
JPH0788261B2 (en) Method for producing carbon fiber reinforced carbon composite material
JPS63112464A (en) Manufacture of carbon fiber reinforced carbon material
JPS6316357B2 (en)
JPH0455991B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080206

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090206

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090206

Year of fee payment: 11

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090206

Year of fee payment: 11

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090206

Year of fee payment: 11

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090206

Year of fee payment: 11