JPH05148017A - Production of carbon fiber-reinforced carbon material for general purpose - Google Patents

Production of carbon fiber-reinforced carbon material for general purpose

Info

Publication number
JPH05148017A
JPH05148017A JP3310926A JP31092691A JPH05148017A JP H05148017 A JPH05148017 A JP H05148017A JP 3310926 A JP3310926 A JP 3310926A JP 31092691 A JP31092691 A JP 31092691A JP H05148017 A JPH05148017 A JP H05148017A
Authority
JP
Japan
Prior art keywords
fibers
softening point
pitch
carbon fiber
impregnated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3310926A
Other languages
Japanese (ja)
Other versions
JP3288408B2 (en
Inventor
Kozo Yumitate
立 浩 三 弓
Masaru Sato
藤 勝 佐
Noriyoshi Fukuda
田 典 良 福
Ko Takeuchi
内 香 竹
Hirotoshi Nakayama
山 裕 敏 中
Mamoru Imuda
守 伊牟田
Akihito Sakai
井 昭 仁 酒
Hiroshi Nakatani
谷 浩 中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd, Kawasaki Steel Corp filed Critical Kawasaki Heavy Industries Ltd
Priority to JP31092691A priority Critical patent/JP3288408B2/en
Publication of JPH05148017A publication Critical patent/JPH05148017A/en
Application granted granted Critical
Publication of JP3288408B2 publication Critical patent/JP3288408B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide a production process for a high-performance but inexpensive C/C composite for general purposes through simple procedures by using, as a filler, carbon fibers of a mixture thereof with chopped fibers or milled fibers, which are randomly oriented by twisting carbon yarn. CONSTITUTION:Carbon yarn is twisted to be oriented randomly, and the yarn is impregnated with a thermosetting resin and/or a thermoplastic resin to produce prepregs, The prepregs are formed and carbonized to give a sintered product. The product is impregnated with substantially quinoline-insoluble component-free pitch of high softening point of 150 to 250 deg.C and made infusible in air at 200 to 350 deg.C, then carbonized in an inert atmosphere at 800 to 1,200 deg.C, further impregnated with the pitch of high softening point until the bulk density reaches more than 1.5g/cm<3>, and infusion and carbonization treatments are repeated, finally graphitized at 1,500 to 2,500 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、汎用炭素繊維強化炭素
材料の製造法に関し、さらに詳しくは、強化繊維(フィ
ラー)として炭素繊維ヤーンに撚りをかけてランダムに
配向させた炭素繊維、または該炭素繊維とチョップド繊
維、ミルド繊維の混合物を用いた炭素繊維強化炭素材料
の製造法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a general-purpose carbon fiber reinforced carbon material, and more specifically, carbon fibers obtained by twisting carbon fiber yarns as reinforcing fibers (fillers) and randomly orienting them. The present invention relates to a method for producing a carbon fiber reinforced carbon material using a mixture of carbon fiber, chopped fiber and milled fiber.

【0002】[0002]

【従来の技術】炭素をマトリックスとし、炭素繊維で強
化した炭素複合材料は、炭素繊維強化炭素材料(以下、
C/C−コンポジットという)と呼ばれ、このC/C−
コンポジットは機械特性、耐熱特性、耐蝕性、摩擦、制
動特性に優れており、この特性を利用して、ロケットノ
ズル、スペースシャトルのノーズおよびリーディングエ
ッジ、航空機のブレーキディスクなどの宇宙航空機器部
材として実用化されている。最近では、原子炉や核融合
炉用第一壁材料および骨、関節などの医療用材料やター
ビン材料としての実用化も進められている。
2. Description of the Related Art Carbon composite materials in which carbon is used as a matrix and are reinforced with carbon fibers are carbon fiber reinforced carbon materials (hereinafter referred to as
C / C-composite), and this C / C-
Composites have excellent mechanical properties, heat resistance, corrosion resistance, friction, and braking properties, and are utilized as aerospace equipment components such as rocket nozzles, space shuttle nose and leading edges, and aircraft brake discs. Has been converted. Recently, commercialization has been promoted as a first wall material for nuclear reactors and fusion reactors, and medical materials such as bones and joints and turbine materials.

【0003】このように優れた特性を有するC/C−コ
ンポジットは、種々の製造法があるが、炭素繊維のト
ウ、クロス、フェルトなどに、フェノール樹脂等の熱硬
化性樹脂を含浸させてプリプレグをつくり、これらを積
層、硬化させて成型体とし、さらに不活性雰囲気中で炭
化処理して焼成体を得た後、引き続きこの焼成体にフラ
ン樹脂のような熱硬化性樹脂やタールピッチのような熱
可塑性樹脂を含浸し炭化処理するという緻密化処理を8
〜15回繰り返し、C/C−コンポジットとする方法が
一般的である。
Although there are various manufacturing methods for the C / C-composite having such excellent characteristics, carbon fiber tow, cloth, felt and the like are impregnated with a thermosetting resin such as a phenol resin to prepare a prepreg. To obtain a fired body by carbonizing it in an inert atmosphere, and then apply a thermosetting resin such as furan resin or tar pitch to the fired body. Densification treatment of impregnating with a different thermoplastic resin and carbonizing
It is common to repeat the process 15 to 15 times to obtain a C / C-composite.

【0004】また、C/C−コンポジットの製造に使用
される炭素繊維の織り方は、繊維の配向方向で大別し
て、(1)一方向積層材料などの繊維の1次元配向、
(2)クロス積層材料、斜交積層材料などの繊維の2次
元配向、(3)2次元配向させた積層材料の厚さ方向
に、垂直糸を配向させた3次元配向の3種類に分類でき
る。
Further, the weaving method of carbon fibers used for the production of C / C-composites is roughly classified according to the orientation direction of the fibers, and (1) one-dimensional orientation of fibers such as unidirectional laminated material,
(2) Two-dimensional orientation of fibers such as cross laminated material and cross laminated material, and (3) Three-dimensional orientation in which vertical yarns are oriented in the thickness direction of the two-dimensionally oriented laminated material. ..

【0005】[0005]

【発明が解決しようとする課題】このうち1次元および
2次元配向材料の場合には、層間強度が繊維の配向方向
と比較して大幅に劣る弱点があり、C/C−コンポジッ
トの製造過程で層状割れが起きて、良好な炭素材料が得
られなかったり、十分な強度が発現しないという問題点
がある。この1次元および2次元配向の場合、プリプレ
グを積層し引き続いて硬化させるプロセスにおいて、か
なり厳密な温度コントロールが必要であり、またこのプ
ロセス自体工程が複雑であり、多大の労力と時間を必要
としている。また3次元配向の場合は、3次元配向材料
自身、繊維の体積充填率が1次元、2次元に比較して低
いものとなり、その結果としてC/C−コンポジットの
強度が出ないという問題点もある。さらに、3次元配向
材料は非常に高価でもある。
Among these, the one-dimensional and two-dimensional oriented materials have a weak point that the interlaminar strength is significantly inferior to that of the orientation direction of the fiber, and thus, in the manufacturing process of the C / C-composite. There are problems that a layered crack occurs, a good carbon material cannot be obtained, or sufficient strength is not exhibited. In the case of this one-dimensional and two-dimensional orientation, a fairly strict temperature control is required in the process of laminating the prepregs and subsequent curing, and the process itself is complicated, which requires a lot of labor and time. .. Further, in the case of three-dimensional orientation, the volume filling factor of the three-dimensional orientation material itself and the fiber becomes lower than that of the one-dimensional and two-dimensional materials, and as a result, the strength of the C / C-composite does not appear. is there. Moreover, three-dimensional alignment materials are also very expensive.

【0006】本発明の目的は、フィラーとして炭素繊維
ヤーンに撚りをかけてランダムに配向させた炭素繊維、
または該炭素繊維とチョップド繊維、ミルド繊維の混合
物を用い、簡単なプロセスで高性能、かつ安価な汎用C
/C−コンポジットの製造法を提供することにある。
It is an object of the present invention to twist carbon fiber yarn as a filler and randomly orient it,
Or, using a mixture of the carbon fiber, chopped fiber, and milled fiber, a high-performance and inexpensive general-purpose C with a simple process
/ C-composite manufacturing method.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に本発明の第1の態様によれば、炭素繊維ヤーンに撚り
をかけてランダムに配向させ、この繊維に熱硬化性樹脂
および/または熱可塑性樹脂を含浸させてプリプレグを
つくり、これを成型し次いで炭化処理を行なって焼成体
とし、この焼成体に実質的にキノリン不溶分を含まない
軟化点が150〜250℃の高軟化点ピッチを含浸さ
せ、引き続き空気中で200〜350℃で不融化した
後、不活性雰囲気下で800〜1200℃で炭化処理を
行ない、さらにカサ密度が1.5g/cm3 以上になるまで
前記高軟化点ピッチの含浸、不融化および炭化処理を繰
り返し、最後に1500〜2500℃で黒鉛化処理する
ことを特徴とする汎用炭素繊維強化炭素材料の製造法が
提供される。
In order to achieve the above object, according to a first aspect of the present invention, a carbon fiber yarn is twisted and randomly oriented, and a thermosetting resin and / or A prepreg is made by impregnating a thermoplastic resin, molded, and then carbonized to obtain a fired body, which has a high softening point pitch of 150 to 250 ° C. which does not substantially contain quinoline insoluble matter. And then infusible in air at 200 to 350 ° C., then carbonized at 800 to 1200 ° C. in an inert atmosphere, and further softened until the bulk density becomes 1.5 g / cm 3 or more. A method for producing a general-purpose carbon fiber-reinforced carbon material is provided, which comprises repeating point pitch impregnation, infusibilization, and carbonization treatment, and finally performing graphitization treatment at 1500 to 2500 ° C.

【0008】また、本発明の第2の態様によれば、炭素
繊維ヤーンに撚りをかけてランダムに配向させ、この繊
維にチョップド繊維および/またはミルド繊維を混合し
て強化繊維とし、この強化繊維に熱硬化性樹脂および/
または熱可塑性樹脂を含浸させてプリプレグをつくり、
これを成型し次いで炭化処理を行なって焼成体とし、こ
の焼成体に実質的にキノリン不溶分を含まない軟化点が
150〜250℃の高軟化点ピッチを含浸させ、引き続
き空気中で200〜350℃で不融化した後、不活性雰
囲気下で800〜3000℃で加熱処理を行ない、さら
にカサ密度が1.5g/cm3 以上になるまで前記高軟化点
ピッチの含浸、不融化および加熱処理を繰り返すことを
特徴とする汎用炭素繊維強化炭素材料の製造法が提供さ
れる。
According to the second aspect of the present invention, the carbon fiber yarn is twisted and randomly oriented, and chopped fiber and / or milled fiber is mixed with this fiber to obtain a reinforcing fiber. Thermosetting resin and /
Or make a prepreg by impregnating with a thermoplastic resin,
This is molded and then carbonized to obtain a fired body, and the fired body is impregnated with a high softening point pitch having a softening point of 150 to 250 ° C. substantially free of quinoline insoluble matter, and then 200 to 350 in air. After infusibilizing at ℃, heat treatment at 800 ~ 3000 ℃ in an inert atmosphere, further impregnation, infusibilization and heat treatment of the high softening point pitch until the bulk density becomes 1.5 g / cm 3 or more. A method for producing a general-purpose carbon fiber reinforced carbon material is provided which is characterized by repeating.

【0009】以下に本発明をさらに詳細に説明する。本
発明にフィラーとして用いられるランダムに配合させた
炭素繊維は、ポリアクリロニトリル系、レーヨン系、ピ
ッチ系のいずれであってもよい。また高強度糸(引っ張
り強度:200kg/mm2以上)、高弾性糸(引っ張り弾性
率:30t/mm 2 以上)のいずれであってもよい。これら
炭素繊維ヤーンを0.5〜2m長さに切断し、このヤー
ンの一方を固定し他方を回転することによって炭素繊維
ヤーンに撚りをかけ、ランダムに配向させた繊維が得ら
れる。
The present invention will be described in more detail below. Book
Randomly blended to be used as filler in invention
Carbon fibers are polyacrylonitrile-based, rayon-based, pigment
It may be any type of switch. Also high strength yarn (pull
Strength: 200kg / mm2Above), high elasticity yarn (tensile elasticity)
Rate: 30t / mm 2Any of the above). these
The carbon fiber yarn is cut into 0.5 to 2 m length,
Carbon fiber by fixing one side and rotating the other
The yarn is twisted to obtain randomly oriented fibers.
Be done.

【0010】また、切断した炭素繊維ヤーンに撚りを与
えると共に長手方向に張力を加え、瞬時に張力を解放す
ることによって立体的なランダムに配向させた繊維が得
られる。これらのランダムに配向させた繊維を図1〜4
に例示する。なお、本発明においては、炭素繊維ヤーン
に撚りをかけてランダムに配向させたものであればこれ
らの形状に限定されるものではない。
Further, by twisting the cut carbon fiber yarn, applying tension in the longitudinal direction, and instantaneously releasing the tension, three-dimensionally randomly oriented fibers can be obtained. These randomly oriented fibers are shown in FIGS.
For example. In the present invention, the carbon fiber yarn is not limited to these shapes as long as it is twisted and randomly oriented.

【0011】さらに、本発明の第2の態様で用いられる
チョップド繊維(切りきざんだ繊維。ミルド繊維より細
かいこともありうる。)、ミルド繊維(すりつぶした繊
維)もポリアクリロニトリル系、レーヨン系、ピッチ系
のいずれであってもいいし、高強度糸、高弾性糸、さら
には汎用グレード(引っ張り強度:70kg/mm2)のもの
もよい。チョップド繊維は0.5〜6mmの繊維長のも
の、ミルド繊維は50〜500μmの繊維長のものが望
ましい。
Further, chopped fibers (chopped fibers, which may be finer than milled fibers) and milled fibers (ground fibers) used in the second embodiment of the present invention are also polyacrylonitrile-based, rayon-based, and pitch-based. Any type of yarn, high strength yarn, high elasticity yarn, and general-purpose grade (tensile strength: 70 kg / mm 2 ) may be used. The chopped fiber preferably has a fiber length of 0.5 to 6 mm, and the milled fiber preferably has a fiber length of 50 to 500 μm.

【0012】本発明の第2の態様においては、炭素繊維
ヤーンに撚りをかけてランダムに配向させた繊維に、チ
ョップド繊維および/またはミルド繊維を混合して強化
繊維(フィラー)とする。この混合は(1)ランダムに
配向させた繊維とチョップド繊維では混合比率(=ラン
ダム繊維:チョップド繊維)=100:5〜40(重量
比)(2)ランダムに配向させた繊維とミルド繊維では
混合比率(=ランダム繊維:チョップド繊維)=10
0:5〜40(重量比)(3)ランダムに配向させた繊
維とチョップド繊維とミルド繊維では混合比率(=ラン
ダム繊維:(チョップド繊維+ミルド繊維))=10
0:5〜40(重量比)、{チョップド繊維:ミルド繊
維=100:0〜100(重量比)}とする。チョップ
ド繊維、ミルド繊維を混合する目的は、これら繊維がラ
ンダムに配向された繊維間に介在し、いわゆるブリッジ
を形成したり成形体中のポアーを埋めることで最終製品
のカサ密度の増加と強度向上につながること、また焼成
過程において発生ガスの通り道となり、かなり速い焼成
速度でも割れやふくれのない良品が得られることにあ
る。混合比率が上記以外では目的とする効果が得られな
い。
In the second aspect of the present invention, the carbon fiber yarn is twisted and randomly oriented, and chopped fibers and / or milled fibers are mixed to form reinforcing fibers (fillers). This mixing is (1) mixing ratio of randomly oriented fibers and chopped fibers (= random fibers: chopped fibers) = 100: 5 to 40 (weight ratio) (2) mixing of randomly oriented fibers and milled fibers Ratio (= random fiber: chopped fiber) = 10
0: 5 to 40 (weight ratio) (3) Mixing ratio of randomly oriented fibers, chopped fibers and milled fibers (= random fiber: (chopped fiber + milled fiber)) = 10
0: 5 to 40 (weight ratio), {chopped fiber: milled fiber = 100: 0 to 100 (weight ratio)}. The purpose of mixing chopped fiber and milled fiber is to intercalate these randomly oriented fibers, forming so-called bridges and filling pores in the molded product to increase the bulk density and strength of the final product. In addition, it also serves as a passage for the gas generated during the firing process, and a good product with no cracks or blisters can be obtained even at a considerably high firing rate. If the mixing ratio is other than the above, the desired effect cannot be obtained.

【0013】また、本発明の第1の態様および第2の態
様においてマトッリックスとなる炭素材の原料は、フェ
ノール、エポキシ、フラン、ポリフェニレン、ポリイミ
ドのような熱硬化性樹脂でも、タールピッチ、石油ピッ
チのような熱可塑性樹脂でもよい。
Further, in the first and second aspects of the present invention, the raw material of the carbon material which becomes the matrix is a thermosetting resin such as phenol, epoxy, furan, polyphenylene or polyimide, tar pitch, petroleum It may be a thermoplastic resin such as pitch.

【0014】フェノール樹脂のような熱硬化性樹脂を用
いる場合には、本発明の第1の態様ではランダムに配向
させた炭素繊維、また本発明の第2の態様では前記混合
炭素繊維に樹脂を含浸させてプリプレグとし、これをそ
のまま成型するという通常の方法でよい。
When a thermosetting resin such as a phenol resin is used, in the first aspect of the present invention, the randomly oriented carbon fibers are used, and in the second aspect of the present invention, the mixed carbon fibers are loaded with the resin. A usual method of impregnating into a prepreg and molding it as it is may be used.

【0015】含浸の方法としては、真空含浸法、加圧含
浸法、浸漬含浸法などいずれでもよい。成型方法として
は、プレス成型、オートクレーブ成型などいずれでもよ
い。
The impregnation method may be any of a vacuum impregnation method, a pressure impregnation method, a dipping impregnation method and the like. The molding method may be press molding, autoclave molding, or the like.

【0016】樹脂を硬化させるには、100〜300℃
の温度が必要であり、この硬化処理は成型体を保持した
まま行なう。即ちこの成型体を上下および側面から治具
によって締め付けて固定させ、硬化時におけるプリプレ
グのスプリングバックを防ぐ必要がある。樹脂の硬化が
十分に完了すれば、この治具を取り除くが、硬化に要す
る温度と時間は100〜300℃、30分〜2時間でよ
く、従来のクロス等の2次元配向繊維の硬化に要する時
間(200〜400時間)と比較して格段に短い時間で
硬化が完了する。
To cure the resin, 100 to 300 ° C.
Temperature is required, and this curing treatment is performed while holding the molded body. That is, it is necessary to prevent the spring back of the prepreg during curing by fixing the molded body from above and below and from the side by tightening it with a jig. When the curing of the resin is sufficiently completed, the jig is removed, but the temperature and time required for the curing are 100 to 300 ° C. and 30 minutes to 2 hours, and it is necessary to cure the conventional two-dimensional oriented fiber such as cloth. Curing is completed in a remarkably short time as compared with the time (200 to 400 hours).

【0017】このようにして得られた硬化体は引き続い
て800〜1200℃で炭化処理され焼成体(1次焼成
体)とするが、この処理に要する時間は20〜40時間
という短時間でよく、割れや膨れの全く存在しない良品
の1次焼成体を得ることができる。
The cured product thus obtained is subsequently carbonized at 800 to 1200 ° C. to obtain a fired product (primary fired product). The time required for this treatment may be as short as 20 to 40 hours. It is possible to obtain a non-defective primary fired body having no cracks or swelling.

【0018】ピッチのような熱可塑性樹脂を用いる場合
には、本発明の第1の態様ではランダムに配向させた炭
素繊維、本発明の第2の態様では前記混合炭素繊維を予
め型に入れ、これを治具によって保持−固定して、溶融
させたピッチに浸し含浸処理させ、成型されたプリプレ
グとする。含浸の方法として、浸漬含浸法、真空含浸
法、加圧含浸法などいずれの方法でもよい。この成型さ
れたプリプレグを引き続いて800〜1200℃で炭化
処理し1次焼成体とすることができる。
When a thermoplastic resin such as pitch is used, randomly oriented carbon fibers are used in the first aspect of the present invention, and the mixed carbon fibers are put in a mold in the second aspect of the present invention. This is held and fixed by a jig, dipped in a molten pitch and impregnated to obtain a molded prepreg. As the impregnation method, any method such as an immersion impregnation method, a vacuum impregnation method, or a pressure impregnation method may be used. This molded prepreg can be subsequently carbonized at 800 to 1200 ° C to obtain a primary fired body.

【0019】ピッチは炭化過程で溶融する現象を考慮に
いれて、治具によって保持−固定された炭素繊維を溶融
させたピッチに浸し、次いでこの炭素繊維をピッチに浸
したまま800〜1200℃で炭化処理するという方法
もある。熱可塑性樹脂を用いて、1次焼成体を得る場合
の炭化処理に要する時間は熱硬化性樹脂の場合と同様に
20〜40時間という時間でよく、割れや膨れの全く存
在しない良品の1次焼成体を得ることができる。
In consideration of the phenomenon that the pitch melts in the carbonization process, the carbon fiber held and fixed by a jig is dipped in the molten pitch, and then the carbon fiber is dipped in the pitch at 800 to 1200 ° C. There is also a method of carbonizing. The time required for the carbonization treatment when a primary fired body is obtained using a thermoplastic resin may be 20 to 40 hours as in the case of a thermosetting resin, and is a primary product of a non-defective product with no cracks or swelling. A fired body can be obtained.

【0020】このようにして得られたC/C−コンポジ
ットの1次焼成体はカサ密度、強度が十分ではなく、高
密度、高強度のC/C−コンポジットを得るために、さ
らに常法による含浸処理、炭化処理を適宜繰り返す必要
がある(緻密化処理)。この含浸処理に使用する含浸材
は安価なタールピッチおよび石油系ピッチが望ましい。
含浸材としては、タールピッチの方が望ましい。これ
は、タールピッチは芳香族性に富み、炭化率、真比重が
大きい理由による。
The primary fired body of the C / C-composite obtained in this way is not sufficient in bulk density and strength, and in order to obtain a high-density and high-strength C / C-composite, a conventional method is used. It is necessary to appropriately repeat the impregnation treatment and the carbonization treatment (densification treatment). As the impregnating material used for this impregnation treatment, inexpensive tar pitch and petroleum pitch are desirable.
Tar pitch is more preferable as the impregnating material. This is because tar pitch is rich in aromaticity, has a high carbonization rate, and has a large true specific gravity.

【0021】ここで、前記ピッチは実質的にキノリン不
溶分を含有しないこと、さらには軟化点が150〜25
0℃の範囲であることが重要である。ピッチ中のキノリ
ン不溶分は固体粒子であり、この粒子が炭素材中の気孔
を閉塞させ、従って含浸操作における含浸材の浸透速度
を著しく小さくするからである。
Here, the pitch contains substantially no quinoline insoluble matter, and further, the softening point is 150 to 25.
It is important to be in the range of 0 ° C. The quinoline insoluble matter in the pitch is a solid particle, and this particle closes the pores in the carbonaceous material, and therefore significantly reduces the permeation rate of the impregnating material in the impregnation operation.

【0022】さらに、軟化点は150〜250℃の高軟
化点ピッチが望ましい。ピッチは、通常軟化点が高くな
ればなる程、炭化における炭化収率が大きくなるので、
炭化収率の大きいピッチを用いることによって緻密化回
数を少なくすることができる。軟化点が150℃未満の
ピッチは、炭化収率が小さく、所定の密度のC/C−コ
ンポジットを得るために8〜15回の緻密化処理をしな
くてはならず、C/C−コンポジットが高価なものとな
る。一方、軟化点が250℃超のピッチは、ピッチ含浸
温度において粘度が高く十分な浸透性が得られない。
Further, the softening point is preferably a high softening point pitch of 150 to 250.degree. Since the higher the softening point of the pitch, the higher the carbonization yield in carbonization,
By using a pitch with a high carbonization yield, the number of densifications can be reduced. A pitch having a softening point of less than 150 ° C. has a low carbonization yield and must be densified 8 to 15 times to obtain a C / C-composite having a predetermined density. Will be expensive. On the other hand, pitch having a softening point of more than 250 ° C. has a high viscosity at the pitch impregnation temperature, and sufficient permeability cannot be obtained.

【0023】また、C/C−コンポジットの内部までピ
ッチを均一に含浸するためには、ピッチが十分に低い粘
度(0.5poise 以下、フローテスターによる)を呈す
る温度を選ぶ必要があり、通常この含浸温度はピッチの
軟化点より100℃高い温度である。即ち、本発明で
は、含浸温度は250〜350℃程度が好ましく、しか
もこの温度では、ピッチが熱的に安定で、熱によって特
性が変化することはない。
In order to uniformly impregnate the pitch to the inside of the C / C-composite, it is necessary to select a temperature at which the pitch has a sufficiently low viscosity (0.5 poise or less, according to a flow tester). The impregnation temperature is 100 ° C. higher than the softening point of the pitch. That is, in the present invention, the impregnation temperature is preferably about 250 to 350 ° C., and at this temperature, the pitch is thermally stable and the characteristics do not change due to heat.

【0024】このピッチ含浸処理した後、空気中で20
0〜350℃で不融化処理を行う。この不融化処理は含
浸されたピッチの酸化処理であり、この不融化処理を施
すことによって、次の炭化処理における炭化収率が大き
くなる。不融化温度が、200℃未満であれば酸化反応
が十分に進まず不融化の効果が認められない。
After this pitch impregnation treatment, 20
Infusibilization is performed at 0 to 350 ° C. This infusibilization treatment is an oxidation treatment of the impregnated pitch, and by performing this infusibilization treatment, the carbonization yield in the next carbonization treatment increases. If the infusibilization temperature is less than 200 ° C., the oxidation reaction does not proceed sufficiently and the infusibilizing effect is not recognized.

【0025】一方、不融化温度が350℃超であれば、
酸化反応が進みすぎてC/C−コンポジットの特性に悪
影響を及ぼす。
On the other hand, if the infusibilization temperature exceeds 350 ° C.,
The oxidation reaction proceeds too much and adversely affects the properties of the C / C-composite.

【0026】本発明の第1の態様では、引き続いて炭化
処理を行うが、通常の処理温度である800〜1200
℃で行う。この高軟化点ピッチ含浸−不融化−炭化処理
を2〜4回繰り返してカサ密度1.5g/cm3 以上の値を
有するC/C−コンポジットを得ることができる。
In the first embodiment of the present invention, the carbonization treatment is subsequently carried out, but the usual treatment temperature is 800 to 1200.
Perform at ℃. This high softening point pitch impregnation-infusibilization-carbonization treatment can be repeated 2 to 4 times to obtain a C / C-composite having a bulk density of 1.5 g / cm 3 or more.

【0027】本発明の第1の態様によるC/C−コンポ
ジットの製造法は、このようにして得られたカサ密度
1.5g/cm3 以上のC/C−コンポジットを、最後に1
500〜2500℃で黒鉛化処理することに特徴があ
る。ここでカサ密度1.5g/cm3 以上のものでなければ
ならない理由は、カサ密度が1.5g/cm3 未満の低密度
のC/C−コンポジットは気孔が多いために元々強度が
出ないし、またこれを1500〜2500℃で処理して
も強度が出ないからである。黒鉛化処理は1500〜2
500℃が好ましい。黒鉛化を施すことによって、強度
の増加とC/C−コンポジットに潤滑性が付与される。
The method for producing a C / C-composite according to the first aspect of the present invention is a method for producing a C / C-composite having a bulk density of 1.5 g / cm 3 or more, and finally adding 1
It is characterized in that it is graphitized at 500 to 2500 ° C. Here, the reason why the bulk density must be 1.5 g / cm 3 or more is that the low density C / C-composite having a bulk density of less than 1.5 g / cm 3 originally has no strength because it has many pores. Moreover, even if this is treated at 1500 to 2500 ° C., the strength does not appear. Graphitization is 1500-2
500 ° C is preferred. The graphitization provides increased strength and lubricity to the C / C-composite.

【0028】このようにして得られたC/C−コンポジ
ットは、カサ密度1.5〜1.8g/cm3 、曲げ強度10
〜20kg/mm2、圧縮強度8〜14kg/mm2の特性を有し、
等方性のC/C−コンポジットである。本発明の第1の
態様で得られたC/C−コンポジットは等方性の特性を
有することから、特にブレーキ材としての適用に向いて
いる。
The C / C-composite thus obtained has a bulk density of 1.5 to 1.8 g / cm 3 and a bending strength of 10
〜20kg / mm 2 , has a compression strength of 8-14kg / mm 2 ,
It is an isotropic C / C-composite. The C / C-composite obtained in the first aspect of the present invention has isotropic characteristics, and thus is particularly suitable for application as a brake material.

【0029】本発明の第2の態様においては、前記不融
化に引き続いて加熱処理(炭化−黒鉛化処理)を行う
が、通常の処理温度である800〜3000℃で行う。
この高軟化点ピッチ含浸−不融化−800〜3000℃
の加熱処理を合計2〜4回繰り返してカサ密度1.5g/
cm3 以上の値を有するC/C−コンポジットを得ること
が出来る。
In the second aspect of the present invention, the heat treatment (carbonization-graphitization treatment) is carried out subsequent to the infusibilization, but it is carried out at a normal treatment temperature of 800 to 3000 ° C.
This high softening point pitch impregnation-infusibilization-800-3000 ° C
The heat treatment of 2 to 4 times is repeated for a total bulk density of 1.5 g /
It is possible to obtain C / C-composites with values of cm 3 and above.

【0030】このようにして本発明の第2の態様で得ら
れたC/C−コンポジットは、カサ密度1.5〜1.8
g/cm3 、曲げ強度15〜30kg/mm2、圧縮強度10〜2
0kg/mm2の特性を有し、等方性のC/C−コンポジット
である。本発明の第2の態様で得られたC/C−コンポ
ジットは等方性の特性を有することから、特にブレーキ
材としての適用に向いている。
The C / C-composite thus obtained according to the second aspect of the present invention has a bulk density of 1.5 to 1.8.
g / cm 3 , bending strength 15 to 30 kg / mm 2 , compression strength 10 to 2
It is an isotropic C / C-composite having a characteristic of 0 kg / mm 2 . The C / C-composite obtained in the second aspect of the present invention has isotropic characteristics, and thus is particularly suitable for application as a brake material.

【0031】[0031]

【実施例】【Example】

以下に本発明を実施例に基づき具体的に説明する。 The present invention will be specifically described below based on examples.

【0032】(実施例1)高強度タイプのポリアクリロ
ニトリル系炭素繊維(PAN系、引張強度300kg/m
m2、繊維径8μm、12Kのヤーン)を1mの長さに切
断し、このヤーンの一方を固定し他方を回転させて炭素
繊維に撚りをかけ、ランダムに配向させた繊維を得た。
この炭素繊維300gをフェノール系の樹脂に含浸さ
せ、プリプレグを得た。このプリプレグを12cm×1
2cm×5cm(長さ×幅×高さ)の金型に入れ、上か
ら圧力をかけて成型し、このまま150℃で2時間保持
して樹脂を硬化させた。成型体を金型から取り出し、窒
素雰囲気中で30℃/hrの昇温速度で1000℃処理
した。得られた1次焼成体はカサ密度1.25g/cm3
炭素繊維体積含有率(Vf)56%であった。
(Example 1) High-strength type polyacrylonitrile-based carbon fiber (PAN-based, tensile strength 300 kg / m
m 2, fiber diameter 8 [mu] m, 12K yarn) was cut to a length of 1 m, one fixed and rotating the other of the yarn twisted carbon fiber to obtain a fiber containing an oriented randomly.
300 g of this carbon fiber was impregnated with a phenolic resin to obtain a prepreg. This prepreg is 12 cm x 1
It was placed in a mold of 2 cm × 5 cm (length × width × height), pressure was applied from above to mold, and the resin was cured by holding it at 150 ° C. for 2 hours as it was. The molded body was taken out of the mold and treated at 1000 ° C. in a nitrogen atmosphere at a temperature rising rate of 30 ° C./hr. The obtained primary fired body had a bulk density of 1.25 g / cm 3 ,
The carbon fiber volume content (Vf) was 56%.

【0033】次に、この1次焼成体にタールピッチ(軟
化点200℃、キノリン不溶分trace 、軟化点の測定は
フローテスターによる)を15kg/cm2の加圧下、330
℃で含浸した後、この成型体を300℃で2時間空気中
で保持して不融化処理を施した。引き続き、窒素雰囲気
中20℃/hrの昇温温度で1000℃まで炭化処理し
た。この高軟化点ピッチ含浸−不融化−炭化処理を合計
3回繰り返した後、最終2000℃で黒鉛化処理し、カ
サ密度1.58g/cm3 、曲げ強度12kg/mm2(加圧方
向)のC/C−コンポジットを得た。
Next, tar pitch (softening point 200 ° C., quinoline insoluble matter trace, softening point was measured by a flow tester) was applied to this primary fired body under a pressure of 15 kg / cm 2 at 330
After impregnation at 0 ° C, the molded body was held in air at 300 ° C for 2 hours for infusibilization treatment. Subsequently, carbonization treatment was performed in a nitrogen atmosphere at a temperature rising rate of 20 ° C./hr up to 1000 ° C. This high softening point pitch impregnation-infusibilization-carbonization treatment was repeated 3 times in total, and then graphitization treatment was performed at the final 2000 ° C. to obtain a bulk density of 1.58 g / cm 3 and a bending strength of 12 kg / mm 2 (pressurizing direction). A C / C-composite was obtained.

【0034】この特性試験における試験片は、50×1
0×1.5mm(長さ×幅×厚み)の直方体であり、カ
サ密度は試験片の乾燥重量および寸法から求めた体積よ
り求めた。曲げ強度は3点曲げ試験法を用い、支点間距
離40mmとしオートグラフにおけるクロスヘッド速度
は1mm/minとした。ナイフエッジの規格はJISK69
11に定められたもので、支点エッジ先端の曲率半径は
2mm、加圧くさび先端の曲率半径は5mmである。測
定試験数は3個である。
The test piece in this characteristic test is 50 × 1.
It is a rectangular parallelepiped of 0 × 1.5 mm (length × width × thickness), and the bulk density was obtained from the dry weight of the test piece and the volume obtained from the dimensions. The bending strength was determined by using the 3-point bending test method, the distance between fulcrums was 40 mm, and the crosshead speed in the autograph was 1 mm / min. Knife edge standard is JISK69
The radius of curvature of the tip of the fulcrum edge is 2 mm, and the radius of curvature of the tip of the pressure wedge is 5 mm. The number of measurement tests is three.

【0035】(実施例2)実施例1で示したランダムに
配向させた炭素繊維300gを12cm×12cm×5
cm(長さ×幅×高さ)のsus製の枠に入れて、上か
ら締め付けてプリフォームとした。このプリフォームを
含浸槽に入れ、220℃に溶融させたタールピッチ(軟
化点80.5℃、ベンゼン不溶分15.8wt%、キノ
リン不溶分3.5wt%)を5mmHgの真空下において含
浸槽に注入し、炭素繊維にピッチを含浸させた。引き続
いて常圧下において昇温速度200℃/hrで窒素ガス
雰囲気中炭素繊維をピッチ中に浸したまま600℃まで
炭化し、さらにこの温度で1時間保持した。次に含浸槽
より成型体を取り出した後、窒素ガス雰囲気中300℃
/hrの昇温速度で1000℃まで昇温し、1次焼成体
を得た。得られた1次焼成体はカサ密度1.20g/c
m3 、Vf52%であった。
(Example 2) 300 g of the randomly oriented carbon fiber shown in Example 1 was added to 12 cm x 12 cm x 5 cm.
It was put in a sus frame having a size of cm (length × width × height) and tightened from above to obtain a preform. This preform was placed in an impregnation tank, and tar pitch (softening point 80.5 ° C, benzene insoluble content 15.8 wt%, quinoline insoluble content 3.5 wt%) melted at 220 ° C was placed in the impregnation tank under a vacuum of 5 mmHg. It was injected and carbon fibers were impregnated with pitch. Subsequently, under normal pressure, carbon fibers were immersed in pitch in a nitrogen gas atmosphere at a heating rate of 200 ° C./hr to carbonize up to 600 ° C., and further held at this temperature for 1 hour. Next, after taking out the molded body from the impregnation tank, 300 ° C in a nitrogen gas atmosphere.
The temperature was raised to 1000 ° C. at a heating rate of / hr to obtain a primary fired body. The obtained primary fired body has a bulk density of 1.20 g / c.
It was m 3, Vf52%.

【0036】この1次焼成体を実施例1と同様の緻密化
処理(高軟化点ピッチ含浸−不融化−炭化処理)した
後、最終2000℃で黒鉛化処理してカサ密度1.63
g/cm3 、曲げ強度15kg/mm2(加圧方向)のC/C−コ
ンポジットを得た。このC/C−コンポジットの加圧方
向と垂直方向の曲げ強度を測定した。加圧方向の曲げ強
度は15kg/mm2で垂直方向の曲げ強度は14.5kg/mm2
となり等方性であることが示された。
This primary fired body was densified in the same manner as in Example 1 (high softening point pitch impregnation-infusibilization-carbonization treatment), and finally graphitized at 2000 ° C. to give a bulk density of 1.63.
A C / C-composite having g / cm 3 and bending strength of 15 kg / mm 2 (pressurizing direction) was obtained. The bending strength of this C / C-composite in the direction perpendicular to the pressing direction was measured. Bending strength in the pressing direction is 15kg / mm 2 and bending strength in the vertical direction is 14.5kg / mm 2
It was shown to be isotropic.

【0037】(実施例3)高弾性タイプのピッチ系炭素
繊維(メソフェーズピッチ系、引張弾性率30t/mm2
繊維径15μm、6Kのヤーン)を1,5mの長さに切
断し、このヤーンの一方を固定し他方を回転させて炭素
繊維に撚りをかけ、ランダムに配向させた炭素繊維を得
た。この炭素繊維300gをフェノール系の樹脂に含浸
させ、プリプレグを得た。このプリプレグを12cm×
12cm×5cm(長さ×幅×高さ)の金型に入れ、上
から圧力をかけて成型し、圧力をかけたまま150℃で
2時間保持して樹脂を硬化させた。次にこの成型体を金
型から取り出し、窒素雰囲気中で50℃/hrの昇温速
度で1000℃処理した。得られた1次焼成体はカサ密
度1.31g/cm3 、炭素繊維体積含有率(Vf)52%
であった。
(Example 3) Pitch-based carbon fiber of high elasticity type (mesophase pitch-based, tensile elastic modulus 30 t / mm 2 ,
Yarn having a fiber diameter of 15 μm and 6K) was cut into a length of 1,5 m, and one of the yarns was fixed and the other was rotated to twist the carbon fibers to obtain randomly oriented carbon fibers. 300 g of this carbon fiber was impregnated with a phenolic resin to obtain a prepreg. This prepreg is 12 cm x
It was placed in a mold of 12 cm × 5 cm (length × width × height), pressure was applied from above to mold, and the resin was cured by keeping it at 150 ° C. for 2 hours. Next, this molded body was taken out of the mold and treated at 1000 ° C. in a nitrogen atmosphere at a temperature rising rate of 50 ° C./hr. The obtained primary fired body had a bulk density of 1.31 g / cm 3 and a carbon fiber volume content (Vf) of 52%.
Met.

【0038】次に、この1次焼成体に石油系ピッチ(軟
化点210℃、キノリン不溶分trace )を20kg/cm2
加圧下、350℃で含浸した後、300℃で2時間不融
化処理を施した。引き続き窒素雰囲気中25℃/hrの
昇温速度で1000℃まで炭化処理した。この高軟化点
ピッチ含浸−不融化−炭化処理を合計3回繰り返した
後、最終2200℃で黒鉛化処理し、カサ密度1.65
g/cm3 、曲げ強度18kg/mm2(加圧方向)のC/C−コ
ンポジットを得た。
Next, this primary fired product was impregnated with petroleum pitch (softening point 210 ° C., quinoline insoluble matter trace) at 350 ° C. under a pressure of 20 kg / cm 2 , and then infusibilized at 300 ° C. for 2 hours. Was applied. Subsequently, carbonization treatment was performed in a nitrogen atmosphere at a temperature rising rate of 25 ° C./hr up to 1000 ° C. This high softening point pitch impregnation-infusibilization-carbonization treatment was repeated 3 times in total, and then graphitization treatment was carried out at the final 2200 ° C. to give a bulk density of 1.65.
A C / C-composite having g / cm 3 and bending strength of 18 kg / mm 2 (pressurizing direction) was obtained.

【0039】(比較例1)二次元配向させた繊維径8μ
mの炭素繊維(PAN系、引張強度300kg/mm2)の平
織面状織物を実施例1と同様にフェノール系樹脂に含浸
させプリプレグを得た。このプリプレグを20枚積層し
てオートクレーブ成型を行なった。この成型体を昇温速
度30℃/hrで1000℃処理した結果、層間で剥離
して良品が得られなかった。
(Comparative Example 1) Two-dimensionally oriented fiber diameter 8 μ
A plain woven surface woven fabric of m carbon fiber (PAN type, tensile strength 300 kg / mm 2 ) was impregnated with phenol type resin in the same manner as in Example 1 to obtain a prepreg. 20 sheets of this prepreg were laminated and subjected to autoclave molding. As a result of treating this molded body at 1000 ° C. at a temperature rising rate of 30 ° C./hr, peeling occurred between layers and a good product was not obtained.

【0040】(比較例2)実施例1において、緻密化処
理における含浸材であるタールピッチを変える以外は全
く同一条件でC/C−コンポジットを製造した。含浸材
として軟化点90℃、キノリン不溶分trace のタールピ
ッチを用いた。得られたC/C−コンポジットのカサ密
度は1.32g/cm3、曲げ強度は2.5kg/mm2と低いも
のであった。
Comparative Example 2 A C / C-composite was produced under the same conditions as in Example 1, except that the tar pitch, which is the impregnating material in the densification treatment, was changed. Tar pitch of quinoline insoluble matter trace was used as the impregnating material. The obtained C / C-composite had a low bulk density of 1.32 g / cm 3 and a bending strength of 2.5 kg / mm 2 .

【0041】(実施例4)高強度タイプのポリアクリロ
ニトリル系炭素繊維(PAN系、引張強度300kg/m
m2、繊維径8μm、12Kのヤーン)を1mの長さに切
断し、このヤーンの一方を固定し他方を回転させて炭素
繊維に撚りをかけ、ランダムに配向させた繊維を得た。
この繊維250gに長さ3mmのチョップド繊維(ピッ
チ系、引張強度100kg/mm2、繊維径12μm)を50
g添加し、混合してフィラーとした。このフィラーをフ
ェノール系の樹脂に含浸させ、プリプレグを得た。この
プリプレグを12cm×12cm×5cm(長さ×幅×
高さ)の金型に入れ、上から圧力をかけて成型し、この
まま150℃で2時間保持して樹脂を硬化させた。成型
体を金型から取り出し、窒素雰囲気中で30℃/hrの
昇温速度で1000℃処理した。得られた1次焼成体は
カサ密度1.29g/cm3 、炭素繊維体積含有率(Vf)
55%であった。
Example 4 High-strength type polyacrylonitrile-based carbon fiber (PAN-based, tensile strength 300 kg / m
m 2, fiber diameter 8 [mu] m, 12K yarn) was cut to a length of 1 m, one fixed and rotating the other of the yarn twisted carbon fiber to obtain a fiber containing an oriented randomly.
50 g of this 3 g length chopped fiber (pitch type, tensile strength 100 kg / mm 2 , fiber diameter 12 μm) is added to 250 g of this fiber.
g was added and mixed to obtain a filler. This filler was impregnated with a phenolic resin to obtain a prepreg. This prepreg is 12 cm x 12 cm x 5 cm (length x width x
(Height), and the resin was cured by keeping it at 150 ° C. for 2 hours. The molded body was taken out of the mold and treated at 1000 ° C. in a nitrogen atmosphere at a temperature rising rate of 30 ° C./hr. The obtained primary fired body had a bulk density of 1.29 g / cm 3 and a carbon fiber volume content (Vf).
It was 55%.

【0042】次に、1次焼成体にタールピッチ(軟化点
200℃、キノリン不溶分trace 、軟化点の測定はフロ
ーテスターによる)を18kg/cm2の加圧下、330℃で
含浸した後、この成型体を300℃で2時間空気中で保
持して不融化処理を施した。引き続き、窒素雰囲気中2
0℃/hrの昇温速度で2000℃まで炭化−黒鉛化処
理した。この高軟化点ピッチ含浸−不融化−炭化−黒鉛
化処理を合計3回繰り返し、カサ密度1.63g/cm3
曲げ強度21.0kg/mm2(加圧方向)のC/C−コンポ
ジットを得た。
Then, the primary fired body was impregnated with tar pitch (softening point 200 ° C., quinoline insoluble matter trace, softening point was measured by flow tester) at 330 ° C. under a pressure of 18 kg / cm 2 , and The molded body was held in air at 300 ° C. for 2 hours for infusibilization treatment. 2 in a nitrogen atmosphere
The carbonization-graphitization treatment was performed up to 2000 ° C. at a heating rate of 0 ° C./hr. This high softening point pitch impregnation-insolubilization-carbonization-graphitization treatment was repeated a total of 3 times to obtain a bulk density of 1.63 g / cm 3 ,
A C / C-composite having a bending strength of 21.0 kg / mm 2 (pressurizing direction) was obtained.

【0043】この特性試験における試験片は50×10
×1.5mm(長さ×幅×厚み)の直方体であり、カサ
密度は試験片の乾燥重量および寸法から求めた体積より
求めた。曲げ強度は3点曲げ試験法を用い、支点間距離
40mmとしオートグラフにおけるクロスヘッド速度は
1mm/minとした。ナイフエッジの規格はJISK691
1に定められたもので、支点エッジ先端の曲率半径は2
mm、加圧くさび先端の曲率半径5mmである。測定試
験数は3個である。
The test piece in this characteristic test is 50 × 10.
It is a rectangular parallelepiped of x 1.5 mm (length x width x thickness), and the bulk density was obtained from the dry weight of the test piece and the volume obtained from the dimensions. The bending strength was determined by using the 3-point bending test method, the distance between fulcrums was 40 mm, and the crosshead speed in the autograph was 1 mm / min. Knife edge standard is JISK691
The radius of curvature of the tip of the fulcrum edge is 2
mm, the radius of curvature of the tip of the pressure wedge is 5 mm. The number of measurement tests is three.

【0044】(実施例5)実施例4で示したランダムに
配向した繊維とチョップド繊維の混合炭素繊維300g
を12cm×12cm×5cm(長さ×幅×高さ)のs
us製の枠に入れて、上から締め付けてプリフォームと
した。このプリフォームを含浸槽に入れ、220℃に溶
融させたタールピッチ(軟化点82.8℃、ベンゼン不
溶分16.5wt%、キノリン不溶分trace )を6mmHg
の真空下において含浸槽に注入し、炭素繊維にピッチを
含浸させた。引き続いて常圧下において昇温速度220
℃/hrで窒素ガス雰囲気中炭素繊維をピッチ中に浸し
たまま600℃まで炭化し、さらにこの温度で1時間保
持した。次に含浸槽より成型体を取り出した後、窒素ガ
ス雰囲気中300℃/hrの昇温速度で1000℃まで
昇温し、1次焼成体を得た。得られた1次焼成体はカサ
密度1.25g/cm3 、炭素繊維体積含有率(Vf)53
%であった。
(Example 5) 300 g of mixed carbon fibers of randomly oriented fibers and chopped fibers shown in Example 4
S of 12 cm x 12 cm x 5 cm (length x width x height)
It was put in a us-made frame and tightened from above to obtain a preform. This preform was placed in an impregnation tank and tar pitch (softening point 82.8 ° C, benzene insoluble matter 16.5 wt%, quinoline insoluble matter trace) melted at 220 ° C was 6 mmHg.
Was injected into the impregnation tank under vacuum to impregnate the carbon fibers with pitch. Subsequently, the temperature rise rate 220 under normal pressure.
The carbon fiber was carbonized to 600 ° C. while being immersed in the pitch in a nitrogen gas atmosphere at a temperature of ° C./hr, and further maintained at this temperature for 1 hour. Next, after taking out the molded body from the impregnation tank, the temperature was raised to 1000 ° C. at a temperature rising rate of 300 ° C./hr in a nitrogen gas atmosphere to obtain a primary fired body. The obtained primary fired body had a bulk density of 1.25 g / cm 3 and a carbon fiber volume content (Vf) of 53.
%Met.

【0045】この1次焼成体を実施例4と同様の緻密化
処理(高軟化点ピッチ含浸−不融化−炭化−黒鉛化処
理)してカサ密度1.65g/cm3 、曲げ強度19.0kg
/mm2(加圧方向)のC/C−コンポジットを得た。この
C/C−コンポジットの加圧方向と垂直方向の曲げ強度
を測定した。加圧方向の曲げ強度は19.0kg/mm2で垂
直方向の曲げ強度は18.5kg/mm2となり等方性である
ことが示された。
This primary fired body was densified in the same manner as in Example 4 (high softening point pitch impregnation-infusibilization-carbonization-graphitization treatment) to give a bulk density of 1.65 g / cm 3 and a bending strength of 19.0 kg.
A C / C-composite of / mm 2 (pressurizing direction) was obtained. The bending strength of this C / C-composite in the direction perpendicular to the pressing direction was measured. Bending strength of the pressure direction was shown to vertical bending strength 19.0 kg / mm 2 is 18.5 kg / mm 2 becomes isotropic.

【0046】(実施例6)高弾性タイプのピッチ系炭素
繊維(メソフェーズピッチ系、引張弾性率40t/mm2
繊維径16μm、6Kのヤーン)を1.7mの長さに切
断し、このヤーンの一方を固定し他方を回転させて炭素
繊維に撚りをかけ、ランダムに配向させた炭素繊維を得
た。この炭素繊維260gに長さ200μmのミルド繊
維(ピッチ系、引張強度100kg/mm2、繊維径12μ
m)40gを混合し強化繊維とした。この混合繊維をフ
ェノール系の樹脂に含浸させ、プリプレグを得た。この
プリプレグを12cm×12cm×5cm(長さ×幅×
高さ)の金型に入れ、上から圧力をかけて成型し、圧力
をかけたまま150℃で2時間保持して樹脂を硬化させ
た。次にこの成型体を金型から取り出し、窒素雰囲気中
で100℃/hrの昇温速度で1000℃処理した。得
られた1次焼成体はカサ密度1.33g/cm3 、炭素繊維
体積含有率(Vf)53%であった。
(Example 6) Pitch-based carbon fiber of high elasticity type (mesophase pitch-based, tensile elastic modulus 40 t / mm 2 ,
A yarn having a fiber diameter of 16 μm and 6K) was cut into a length of 1.7 m, and one of the yarns was fixed and the other was rotated to twist the carbon fibers to obtain randomly oriented carbon fibers. This carbon fiber (260 g) has a length of 200 μm milled fiber (pitch type, tensile strength 100 kg / mm 2 , fiber diameter 12 μm
m) 40 g was mixed to obtain a reinforcing fiber. The mixed fiber was impregnated with a phenolic resin to obtain a prepreg. This prepreg is 12 cm x 12 cm x 5 cm (length x width x
(Height), and pressure was applied from above to mold, and the resin was cured by holding the pressure at 150 ° C. for 2 hours. Next, this molded body was taken out from the mold and treated at 1000 ° C. in a nitrogen atmosphere at a temperature rising rate of 100 ° C./hr. The obtained primary fired body had a bulk density of 1.33 g / cm 3 and a carbon fiber volume content (Vf) of 53%.

【0047】次に、この1次焼成体に石油系ピッチ(軟
化点210℃、キノリン不溶分trace )を20kg/cm2
加圧下、350℃で含浸した後、300℃で2時間不融
化処理を施した。
Next, this primary fired body was impregnated with petroleum pitch (softening point 210 ° C., quinoline insoluble matter trace) at 350 ° C. under a pressure of 20 kg / cm 2 , and then infusibilized at 300 ° C. for 2 hours. Was applied.

【0048】引き続き窒素雰囲気中25℃/hrの昇温
速度で1000℃まで炭化処理した。この高軟化点ピッ
チ含浸−不融化−炭化処理を合計3回繰り返した後、最
終2200℃で黒鉛化処理し、カサ密度1.75g/c
m3 、曲げ強度22kg/mm2(加圧方向)のC/C−コン
ポジットを得た。
Subsequently, carbonization was performed up to 1000 ° C. at a temperature rising rate of 25 ° C./hr in a nitrogen atmosphere. This high softening point pitch impregnation-infusibilization-carbonization treatment was repeated 3 times in total, and then graphitized at the final temperature of 2200 ° C. to give a bulk density of 1.75 g / c
A C / C-composite having m 3 and a bending strength of 22 kg / mm 2 (pressurizing direction) was obtained.

【0049】(比較例3)二次元配向させた繊維径7μ
mの炭素繊維(PAN系、引張強度360kg/mm2)の平
織面状織物を実施例4と同様にフェノール系樹脂に含浸
させプリプレグを得た。このプリプレグを30枚積層し
てオートクレーブ成型を行った。この成型体を昇温速度
40℃/hrで1000℃処理した結果、層間で剥離し
て良品が得られなかった。
Comparative Example 3 Two-dimensionally oriented fiber diameter 7 μm
A plain woven surface woven fabric of m carbon fiber (PAN type, tensile strength 360 kg / mm 2 ) was impregnated with phenol resin in the same manner as in Example 4 to obtain a prepreg. 30 sheets of this prepreg were laminated and subjected to autoclave molding. As a result of subjecting this molded body to 1000 ° C. at a temperature rising rate of 40 ° C./hr, peeling occurred between layers, and a good product was not obtained.

【0050】(比較例4)実施例4において、緻密化処
理における含浸材であるタールピッチを変える以外は全
く同一条件でC/C−コンポジットを製造した。含浸材
として軟化点93℃、キノリン不溶分trace のタールピ
ッチを用いた。得られたC/C−コンポジットのカサ密
度は1.35g/cm3、曲げ強度は6.5kg/mm2と低いも
のであった。
Comparative Example 4 A C / C-composite was produced under exactly the same conditions as in Example 4, except that the tar pitch as the impregnating material in the densification treatment was changed. As the impregnating material, tar pitch having a softening point of 93 ° C. and quinoline insoluble matter trace was used. The obtained C / C-composite had a low bulk density of 1.35 g / cm 3 and a bending strength of 6.5 kg / mm 2 .

【0051】(比較例5)実施例4において、チョップ
ド繊維を添加しないで、ランダムに配向した繊維だけを
強化繊維とする以外は全く同一条件でC/C−コンポジ
ットを製造した。得られたC/C−コンポジットのカサ
密度は1.45g/cm3 、曲げ強度は9.5kg/mm2と低い
ものであった。
Comparative Example 5 A C / C-composite was produced under exactly the same conditions as in Example 4, except that chopped fibers were not added and only randomly oriented fibers were used as reinforcing fibers. The obtained C / C-composite had a low bulk density of 1.45 g / cm 3 and a bending strength of 9.5 kg / mm 2 .

【0052】[0052]

【発明の効果】本発明は以上説明したように構成されて
いるので、本発明により、フィラーとして炭素繊維ヤー
ンに撚りをかけてランダムに配向させた繊維、または該
炭素繊維とチョップド繊維、ミルド繊維の混合繊維を用
いることによって、簡単なプロセスで生産性良く、しか
も安価に、高強度、等方性のC/C−コンポジットが得
られるので、この発明の産業への波及効果は非常に大き
い。
Since the present invention is constituted as described above, according to the present invention, a carbon fiber yarn as a filler is twisted and randomly oriented, or the carbon fiber, chopped fiber and milled fiber. By using the mixed fiber of (3), a high-strength, isotropic C / C-composite can be obtained by a simple process with good productivity and at low cost, so that the industrial effect of the present invention is very large.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明で用いられる炭素繊維ヤーンに撚りをか
けてランダムに配向させた繊維の1例を示す模式図であ
る(放射枝状形状)。
FIG. 1 is a schematic view showing an example of fibers in which a carbon fiber yarn used in the present invention is twisted and randomly oriented (radial branch shape).

【図2】本発明で用いられる炭素繊維ヤーンに撚りをか
けてランダムに配向させた繊維の他の例を示す模式図で
ある(放射枝状形状)。
FIG. 2 is a schematic view showing another example of fibers in which carbon fiber yarns used in the present invention are twisted and randomly oriented (radial branch shape).

【図3】本発明で用いられる炭素繊維ヤーンに撚りをか
けてランダムに配向させた繊維の1例を示す模式図であ
る(団塊状集合体)。
FIG. 3 is a schematic view showing an example of fibers in which carbon fiber yarns used in the present invention are twisted and randomly oriented (nodular aggregate).

【図4】本発明で用いられる炭素繊維ヤーンに撚りをか
けてランダムに配向させた繊維の1例を示す模式図であ
る(二重撚り繊維束)。
FIG. 4 is a schematic view showing an example of fibers in which carbon fiber yarns used in the present invention are twisted and randomly oriented (double-twisted fiber bundle).

【符号の説明】[Explanation of symbols]

1 炭素繊維 2 炭素繊維ヤーン 3 二重撚り繊維束 1 carbon fiber 2 carbon fiber yarn 3 double-twisted fiber bundle

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 // B29B 11/16 7722−4F 15/08 7722−4F (72)発明者 佐 藤 勝 千葉県千葉市川崎町1番地 川崎製鉄株式 会社技術研究本部内 (72)発明者 福 田 典 良 千葉県千葉市川崎町1番地 川崎製鉄株式 会社技術研究本部内 (72)発明者 竹 内 香 千葉県千葉市川崎町1番地 川崎製鉄株式 会社技術研究本部内 (72)発明者 中 山 裕 敏 岐阜県各務原市川崎町1番地 川崎重工業 株式会社岐阜工場内 (72)発明者 伊牟田 守 岐阜県各務原市川崎町1番地 川崎重工業 株式会社岐阜工場内 (72)発明者 酒 井 昭 仁 岐阜県各務原市川崎町1番地 川崎重工業 株式会社岐阜工場内 (72)発明者 中 谷 浩 岐阜県各務原市川崎町1番地 川崎重工業 株式会社岐阜工場内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Office reference number FI technical display location // B29B 11/16 7722-4F 15/08 7722-4F (72) Inventor Masaru Sato Chiba 1 Kawasaki-cho, Chiba City, Technical Research Division, Kawasaki Steel Co., Ltd. (72) Inventor Noriyoshi Fukuda, 1 Kawasaki-machi, Chiba City, Chiba Prefecture Technical Research Division, Kawasaki Steel Co., Ltd. (72) Inventor, Takeshi Uchika Chiba, Chiba Prefecture Ichikawasaki-cho 1 Kawasaki Steel Co., Ltd. Technical Research Division (72) Inventor Hirotoshi Nakayama 1 Kawasaki-cho, Kakamigahara-shi, Gifu Prefecture Kawasaki Heavy Industries, Ltd. Gifu factory (72) Inventor Mamoru Imuta Kawasaki-cho, Kagamihara-shi, Gifu Prefecture No. 1 Kawasaki Heavy Industries, Ltd. Gifu Factory (72) Inventor Akihito Sakai No. 1 Kawasaki-cho, Kakamigahara City, Gifu Prefecture Kawasaki Heavy Industries Ltd. Gifu Factory (72) Invention Mid-Hiroshi Tani Gifu Prefecture Kakamigahara Kawasaki-cho, address 1 Kawasaki Heavy Industries, Ltd., Gifu in the factory

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】炭素繊維ヤーンに撚りをかけてランダムに
配向させ、この繊維に熱硬化性樹脂および/または熱可
塑性樹脂を含浸させてプリプレグをつくり、これを成型
し次いで炭化処理を行なって焼成体とし、この焼成体に
実質的にキノリン不溶分を含まない軟化点が150〜2
50℃の高軟化点ピッチを含浸させ、引き続き空気中で
200〜350℃で不融化した後、不活性雰囲気下で8
00〜1200℃で炭化処理を行ない、さらにカサ密度
が1.5g/cm3 以上になるまで前記高軟化点ピッチの含
浸、不融化および炭化処理を繰り返し、最後に1500
〜2500℃で黒鉛化処理することを特徴とする汎用炭
素繊維強化炭素材料の製造法。
1. A carbon fiber yarn is twisted and randomly oriented, and this fiber is impregnated with a thermosetting resin and / or a thermoplastic resin to prepare a prepreg, which is molded and then carbonized to be fired. The calcined body has a softening point of 150 to 2 which is substantially free of quinoline insoluble matter.
It is impregnated with a high softening point pitch of 50 ° C., subsequently infusible at 200 to 350 ° C. in air, and then 8 in an inert atmosphere.
Carbonization treatment is carried out at 00 to 1200 ° C., and further impregnation of the high softening point pitch, infusibilization and carbonization treatment are repeated until the bulk density becomes 1.5 g / cm 3 or more, and finally 1500
A method for producing a general-purpose carbon fiber reinforced carbon material, characterized by performing graphitization at 2,500 ° C.
【請求項2】炭素繊維ヤーンに撚りをかけてランダムに
配向させ、この繊維にチョップド繊維および/またはミ
ルド繊維を混合して強化繊維とし、この強化繊維に熱硬
化性樹脂および/または熱可塑性樹脂を含浸させてプリ
プレグをつくり、これを成型し次いで炭化処理を行なっ
て焼成体とし、この焼成体に実質的にキノリン不溶分を
含まない軟化点が150〜250℃の高軟化点ピッチを
含浸させ、引き続き空気中で200〜350℃で不融化
した後、不活性雰囲気下で800〜3000℃で加熱処
理を行ない、さらにカサ密度が1.5g/cm3 以上になる
まで前記高軟化点ピッチの含浸、不融化および加熱処理
を繰り返すことを特徴とする汎用炭素繊維強化炭素材料
の製造法。
2. A carbon fiber yarn is twisted and randomly oriented, and chopped fibers and / or milled fibers are mixed with the fibers to form reinforcing fibers, and the reinforcing fibers are thermosetting resins and / or thermoplastic resins. To form a prepreg, which is then carbonized to obtain a fired body, and the fired body is impregnated with a high softening point pitch having a softening point of substantially 150 to 250 ° C. which does not substantially contain quinoline insoluble matter. Then, after infusibilizing in air at 200 to 350 ° C., heat treatment is performed at 800 to 3000 ° C. in an inert atmosphere, and further, the high softening point pitch is adjusted until the bulk density becomes 1.5 g / cm 3 or more. A method for producing a general-purpose carbon fiber reinforced carbon material, which comprises repeating impregnation, infusibilization and heat treatment.
JP31092691A 1991-11-26 1991-11-26 Manufacturing method of general-purpose carbon fiber reinforced carbon material Expired - Fee Related JP3288408B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31092691A JP3288408B2 (en) 1991-11-26 1991-11-26 Manufacturing method of general-purpose carbon fiber reinforced carbon material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31092691A JP3288408B2 (en) 1991-11-26 1991-11-26 Manufacturing method of general-purpose carbon fiber reinforced carbon material

Publications (2)

Publication Number Publication Date
JPH05148017A true JPH05148017A (en) 1993-06-15
JP3288408B2 JP3288408B2 (en) 2002-06-04

Family

ID=18011052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31092691A Expired - Fee Related JP3288408B2 (en) 1991-11-26 1991-11-26 Manufacturing method of general-purpose carbon fiber reinforced carbon material

Country Status (1)

Country Link
JP (1) JP3288408B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06116030A (en) * 1992-09-30 1994-04-26 Hitachi Ltd Carbon fiber reinforced carbon composite material
CN106192115A (en) * 2016-09-19 2016-12-07 西安航天复合材料研究所 A kind of preparation method of carbon fiber stitching thread
CN110128160A (en) * 2019-04-22 2019-08-16 湖南东映碳材料科技有限公司 A method of highly-conductive hot carbon carbon composite is prepared with the two-dimension netted object of pitch fibers precursor
US10549503B2 (en) * 2011-07-28 2020-02-04 Mitsubishi Chemical Corporation Carbon fiber-reinforced carbon composite and method of manufacturing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06116030A (en) * 1992-09-30 1994-04-26 Hitachi Ltd Carbon fiber reinforced carbon composite material
US10549503B2 (en) * 2011-07-28 2020-02-04 Mitsubishi Chemical Corporation Carbon fiber-reinforced carbon composite and method of manufacturing the same
CN106192115A (en) * 2016-09-19 2016-12-07 西安航天复合材料研究所 A kind of preparation method of carbon fiber stitching thread
CN110128160A (en) * 2019-04-22 2019-08-16 湖南东映碳材料科技有限公司 A method of highly-conductive hot carbon carbon composite is prepared with the two-dimension netted object of pitch fibers precursor
CN110128160B (en) * 2019-04-22 2021-05-11 湖南东映碳材料科技有限公司 Method for preparing high-thermal-conductivity carbon-carbon composite material from two-dimensional network of pitch fiber precursors

Also Published As

Publication number Publication date
JP3288408B2 (en) 2002-06-04

Similar Documents

Publication Publication Date Title
EP1908740B1 (en) CARBON-FIBER-REINFORCED SiC COMPOSITE MATERIAL AND SLIDE MEMBER
US5665464A (en) Carbon fiber-reinforced carbon composite material and process for the preparation thereof
EP0297695B1 (en) Process for fabricating carbon/carbon fibre composite
US4101354A (en) Coating for fibrous carbon material in boron containing composites
JP2519042B2 (en) Carbon-carbon composite material manufacturing method
JP3288408B2 (en) Manufacturing method of general-purpose carbon fiber reinforced carbon material
US4164601A (en) Coating for fibrous carbon material in boron containing composites
US5935359A (en) Process for producing carbonaceous preform
JP2002255664A (en) C/c composite material and production method therefor
JPH05139832A (en) Production of carbon material
KR940010099B1 (en) Process for producing carbon/carbon composite using coaltar-phenol resin
JPH0524875B2 (en)
JPS62252371A (en) Manufacture of carbon fiber reinforced carbon composite material
JP2001181062A (en) Carbon fiber-reinforced carbon composite material impregnated with resin and method for producing the same
JPH0561223B2 (en)
JP4420371B2 (en) Manufacturing method of screw member made of C / C material
JPH0255393B2 (en)
JPH0524874B2 (en)
KR940006433B1 (en) Process for the preparation of carbon/carbon composite
JPH08245273A (en) Production of carbon fiber reinforced carbon composite material
JPH0455991B2 (en)
JP2762461B2 (en) Method for producing carbon fiber reinforced carbon composite
JPH03197362A (en) Production of carbon fiber-reinforced carbon composite material
JPH01145375A (en) Production of carbon fiber-reinforced carbonaceous composite
JPH03197363A (en) Production of carbon fiber-reinforced carbon composite material

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020212

LAPS Cancellation because of no payment of annual fees