JPH0230656A - Magnesia-calcia refractory - Google Patents

Magnesia-calcia refractory

Info

Publication number
JPH0230656A
JPH0230656A JP63179368A JP17936888A JPH0230656A JP H0230656 A JPH0230656 A JP H0230656A JP 63179368 A JP63179368 A JP 63179368A JP 17936888 A JP17936888 A JP 17936888A JP H0230656 A JPH0230656 A JP H0230656A
Authority
JP
Japan
Prior art keywords
refractory
magnesia
calcia
zirconium silicide
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63179368A
Other languages
Japanese (ja)
Inventor
Kunio Tsunetsugu
恒次 邦男
Masao Oguchi
征男 小口
Tatsuo Kawakami
川上 辰男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Refractories Corp
Original Assignee
Kawasaki Refractories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Refractories Co Ltd filed Critical Kawasaki Refractories Co Ltd
Priority to JP63179368A priority Critical patent/JPH0230656A/en
Publication of JPH0230656A publication Critical patent/JPH0230656A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve heat-resistant spalling properties by blending refractory aggregate consisting of magnesia and calcia with one or more selected from a group of zirconium silicide such as Zr2Si. CONSTITUTION:25-90wt.% magnesia (MgO) is blended with 75-10wt.% calcia (CaO) to give refractory aggregate having <=5mm particle diameter. Then 100pts. wt. refractory aggregate is blended with 0.5-10pts.wt. one or more selected from a group of zirconium silicide such as Zr2Si, Zr3Si2, Zr5Si3 or Zr5Si4 having 0.1-5mm particle size and optionally a nonaqueous binder such as paraffin, molded and burnt at 1,400-1,700 deg.C to give magnesia-calcia refractory.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、耐スポーリング性に優れたマグネシア−カル
シア質耐火物に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a magnesia-calcia refractory having excellent spalling resistance.

従来技術とその問題点 転炉、製鋼炉、セメントロータリーキルンなどの各種の
炉の内張材としては、ドロマイト質耐火物が広く使用さ
れてきた。しかしながら、近年操業条件の苛酷化、具体
的には、炉の大型化、操業温度の上昇、吹錬時間の短縮
などに伴って、耐スポーリング性、耐熱衝撃性などによ
り優れた耐火物の出現が要求されるようになってきてい
る。
Prior art and its problems Dolomite refractories have been widely used as lining materials for various furnaces such as converters, steelmaking furnaces, and cement rotary kilns. However, in recent years, as operating conditions have become more severe, including larger furnaces, higher operating temperatures, and shorter blowing times, refractories with superior spalling resistance and thermal shock resistance have emerged. is increasingly required.

この様な情勢に対応して、例えば、マグネシア原料を主
成分とする塩基性耐火物が開発されている。この耐火物
は、高塩基性スラグに対する耐溶損性には優れているも
のの、熱衝撃に弱い、スラグが浸透し易い、耐火物組織
が変化し易い、構造スポーリングに起因する亀裂により
損傷されるなどの欠点がある。
In response to this situation, for example, basic refractories containing magnesia raw materials as a main component have been developed. Although this refractory has excellent erosion resistance against highly basic slag, it is susceptible to thermal shock, is easily penetrated by slag, is susceptible to changes in the refractory structure, and is damaged by cracks caused by structural spalling. There are drawbacks such as.

マグネシア(MgO)とカルシア(Ca O)との併用
により、耐スポーリング性を改善する試みもなされてい
る。この耐火物においては、CaOにより、MgOの結
晶成長が抑制されて、耐スポーリング性が向上するもの
と期待されている。また、CaO自身のフラックス化促
進作用により、これが耐火物内に浸透してくるスラグと
反応してスラグを高融点化させ、耐火物内部へのスラグ
浸透を防止する。この場合、耐火物の損傷が、スポーリ
ング律速から溶損律速に変わるので、耐火物の寿命が延
長されるものと有望視されている。
Attempts have also been made to improve the spalling resistance by using magnesia (MgO) and calcia (CaO) in combination. In this refractory, CaO suppresses MgO crystal growth and is expected to improve spalling resistance. Further, due to the flux promoting action of CaO itself, it reacts with the slag penetrating into the refractory, increases the melting point of the slag, and prevents the slag from penetrating into the refractory. In this case, damage to the refractory changes from spalling rate-limiting to erosion rate-limiting, so it is expected that the life of the refractory will be extended.

しかしながら、CaOを使用する場合には、耐火物が過
焼結を起こし易く、過焼結を起こした耐火物は、高弾性
体となって、応力に対する変形世が小さくなるため、応
力発生時に変形することなく、亀裂を生じ易くなり、耐
熱スポーリング性が低下する。
However, when CaO is used, the refractory is prone to oversintering, and the oversintered refractory becomes a highly elastic body and has a small deformation resistance to stress, so it deforms when stress occurs. Without this, cracks are likely to occur and heat spalling resistance decreases.

問題点を解決するための手段 本発明者は、上記の如き技術の現状に鑑みて種々研究を
重ねた結果、M g O−Ca O系耐火物に特定量の
けい化ジルコニウムを配合することにより、従来技術の
問題点を大巾に軽減し得ることを見出した。
Means for Solving the Problems As a result of various studies in view of the current state of the technology as described above, the present inventor has found that by blending a specific amount of zirconium silicide into MgO-CaO-based refractories. It has been found that the problems of the prior art can be greatly alleviated.

すなわち、本発明は、マグネシア25〜90重量%とカ
ルシア75〜10重量%とからなる耐火骨材100重量
部にZr25iSZr3 Si2、Zr5Si3および
Zr5Si4からなるけい化ジルコニウムの群から選ば
れた少なくとも一種0.5〜10重量部を配合したこと
を特徴とするマグネシア−カルシア質耐火物を提供する
ものである。
That is, the present invention provides 100 parts by weight of a refractory aggregate consisting of 25-90% by weight of magnesia and 75-10% by weight of calcia, and at least 0.0% of at least one type selected from the group of zirconium silicides consisting of Zr25iSZr3Si2, Zr5Si3 and Zr5Si4. The present invention provides a magnesia-calcia refractory characterized by containing 5 to 10 parts by weight of the magnesia-calcia refractory.

本発明において使用する耐火骨材としては、天然ドロマ
イトクリンカ−1合成ドロマイトクリンカー1焼結マグ
ネシアクリンカ−1電融マグネシアクリンカ−1焼結マ
グライムクリンカー、電融マグライムクリンカーなどが
挙げられる。本発明においては、これら耐火骨材の一種
または二種以上を使用して、M g 025〜90重量
%(以下単に%とする)とCa075〜10%の割合と
なるように調整する。MgOの割合が25%未満の場合
には、耐消化性が不十分となるとともに、耐スラグ性が
低下する。一方、MgOの割合が90%を上回る場合に
は、耐スポーリング性および耐スラグ溶損性が低下する
。耐火骨材の粒径は、通常511101以下程度、より
好ましくは3mm以下程度である。耐火骨材は、必要な
らば、常法にしたがって、粒度調整を行ない、適宜の粒
度分布の配合物として使用することも差し支えない。
Examples of the refractory aggregate used in the present invention include natural dolomite clinker-1 synthetic dolomite clinker-1 sintered magnesia clinker-1 fused magnesia clinker-1 sintered magnesia clinker, fused magnesia clinker, and the like. In the present invention, one or more of these refractory aggregates are used to adjust the ratio of M g 025 to 90% by weight (hereinafter simply referred to as %) and Ca 075 to 10%. When the proportion of MgO is less than 25%, the digestion resistance becomes insufficient and the slag resistance decreases. On the other hand, when the proportion of MgO exceeds 90%, the spalling resistance and the slag erosion resistance decrease. The particle size of the refractory aggregate is usually about 511,101 mm or less, more preferably about 3 mm or less. If necessary, the refractory aggregate may be used as a blend having an appropriate particle size distribution by adjusting the particle size according to a conventional method.

本発明で使用するけい化ジルコニウムは、Zr2 Si
、Zr3 Si2、Zr5 Si3およびZr5Si4
からなるけい化ジルコニウムの群から選ばれた少なくと
も一種である。これ以外の低融点のけい化ジルコニウム
、例えば、ZrSi  (融点1520℃)、Zr5i
2(融点1360℃)などは、耐火物の使用温度で液相
を形成するので、使用し得ない。けい化ジルコニウムの
粒度は、0.1〜5a+m程度とする。粒子径が0.1
mm未満の場合には、耐火物使用時にけい化ジルコニウ
ムの粒子内に発生する亀裂が小さくなり、耐熱衝撃性が
十分に発揮されない。また、浸透したスラグとの反応性
が高くなって、浸蝕速度が速くなり、耐蝕性が低下する
。一方、けい化ジルコニウムの粒子径が、5mmを上回
る場合には、耐火物成形時に他の材料粒子とのなじみが
不良となり、成形困難となる。耐火骨材100重量部(
以下単に部とする)に対するけい化ジルコニウムの配合
量は、0.5〜10部とする。けい化ジルコニウムの配
合量が、0.5部未満の場合には、耐火物中に発生する
マイクロクラックの量が不十分となって、耐スポーリン
グ性向上の効果が十分に改善されないとともに、浸透し
てきたスラグの高粘性化および高融点化という効果も十
分に発揮されない。一方、けい化ジルコニウムの配合量
が、10部を上回る場合には、焼結不良による組織の多
孔質化が促進され、耐蝕性が低下する傾向が認められる
The zirconium silicide used in the present invention is Zr2Si
, Zr3 Si2, Zr5 Si3 and Zr5Si4
At least one member selected from the group of zirconium silicides consisting of Other low melting point zirconium silicides, such as ZrSi (melting point 1520°C), Zr5i
2 (melting point: 1360°C) cannot be used because it forms a liquid phase at the temperature at which the refractory is used. The particle size of zirconium silicide is approximately 0.1 to 5 a+m. Particle size is 0.1
If it is less than mm, the cracks that occur in the particles of zirconium silicide during use as a refractory will become small, and thermal shock resistance will not be sufficiently exhibited. In addition, the reactivity with the penetrated slag increases, the corrosion rate increases, and the corrosion resistance decreases. On the other hand, if the particle size of zirconium silicide exceeds 5 mm, it will not fit well with other material particles during refractory molding, making molding difficult. 100 parts by weight of fireproof aggregate (
The amount of zirconium silicide (hereinafter simply referred to as parts) is 0.5 to 10 parts. If the amount of zirconium silicide is less than 0.5 part, the amount of microcracks generated in the refractory will be insufficient, and the effect of improving spalling resistance will not be sufficiently improved, and the penetration will be reduced. The effects of increasing the viscosity and melting point of the slag, which have been achieved, are not fully demonstrated. On the other hand, when the amount of zirconium silicide exceeds 10 parts, the structure tends to become porous due to poor sintering, and corrosion resistance tends to decrease.

本発明の耐火物は、耐火骨材にけい化ジルコニウム粉末
を配合し、さらに常法に従って、タール、液状フェノー
ル樹脂、ポリプロピレン、ポリウレタン、パラフィン、
ワックスなどの公知の非水系バインダーを添加し、混練
し、成形および焼成することにより得られる。非水系バ
インダーの添加から焼成にいたる工程は、常法どおりな
ので詳述しないが、焼成は、1400〜1700℃程度
で行なうことが好ましい。
The refractory of the present invention is produced by blending zirconium silicide powder into a refractory aggregate, and further adding tar, liquid phenol resin, polypropylene, polyurethane, paraffin, etc. according to a conventional method.
It is obtained by adding a known non-aqueous binder such as wax, kneading, molding and baking. The steps from addition of the non-aqueous binder to firing are the same as usual and will not be described in detail, but the firing is preferably carried out at about 1400 to 1700°C.

発明の効果 本発明耐火物によれば、以下の如き効果が奏される。Effect of the invention According to the refractory of the present invention, the following effects are achieved.

(1)耐熱スポーリング性に著るしく優れている。(1) Extremely excellent heat spalling resistance.

これは、主に以下の如き理由によるものと推測される。This is presumed to be mainly due to the following reasons.

(イ)けい化ジルコニウム粒子は、焼成時に粒子内に多
数の亀裂を生成する。この亀裂が応力伝播を阻止するの
で、その結果、耐熱スポーリング性が向上する。
(a) Zirconium silicide particles generate many cracks within the particles during firing. This crack prevents stress propagation, resulting in improved heat spalling resistance.

(ロ)けい化ジルコニウム粒子(Zr2Siを例にとる
)は、焼成時に、下式に示す様に、表面から酸化される
(b) During firing, zirconium silicide particles (take Zr2Si as an example) are oxidized from the surface as shown in the following formula.

zr2S1+302→Zr0211S102+ZrO2
この際生ずる体積膨脂により、けい化ジルコニウム粒子
の周囲に亀裂が発生し、上記(イ)の場合と同様に、耐
熱スポーリング性が向上する。
zr2S1+302→Zr0211S102+ZrO2
Due to the volume expansion that occurs at this time, cracks are generated around the zirconium silicide particles, and as in the case (a) above, the heat spalling resistance is improved.

(2)耐構造スポーリング性にも著しく優れている。す
なわち、けい化ジルコニウムが、使用時に耐火物内に浸
透してくるスラグと反応して、これを高融点化および高
粘性化させるので、スラグのそれ以上の浸透を抑制し、
耐構造スポーリング性を向上させるのである。
(2) It also has excellent structural spalling resistance. In other words, zirconium silicide reacts with the slag that permeates into the refractory during use, increasing the melting point and increasing the viscosity of the refractory, thereby suppressing further permeation of the slag.
This improves structural spalling resistance.

実施例 以下に実施例および比較例を示し、本発明の特徴とする
ところをより一層明確にする。
EXAMPLES Examples and comparative examples are shown below to further clarify the features of the present invention.

実施例1 第1表に示す割合(重量部)で各原料を配合し、バイン
ダーとしてポリウレタン2重世部を加えて混練し、JI
S並形れんが形状に成形し、1650℃で焼成して、本
発明耐火物を得た。
Example 1 Each raw material was blended in the proportions (parts by weight) shown in Table 1, and 2 parts of polyurethane was added as a binder and kneaded.
The refractories of the present invention were obtained by molding into the shape of S-sized bricks and firing at 1650°C.

得られた耐火物の各種の物性を下記の方法により測定し
た。
Various physical properties of the obtained refractory were measured by the following methods.

■、気孔率・・・JIS  R2205■、嵩比重・・
・JIS  R2205■、圧縮強さ・・・JIS  
R2206■1曲げ強さく1400℃)・・・JIS 
 R2206また、得られた耐火物を電気炉内に挿入し
、1200℃で15分間保持→空冷15分間からなる加
熱およ゛び冷却サイクルを繰返し、耐火物に剥落が認め
られるまでの回数を調べて、耐スポーリング性を判定し
た。
■, Porosity...JIS R2205■, Bulk specific gravity...
・JIS R2205■, compressive strength...JIS
R2206■1 Bending strength 1400℃)...JIS
R2206 In addition, the obtained refractory was inserted into an electric furnace, and the heating and cooling cycle consisting of holding at 1200°C for 15 minutes → air cooling for 15 minutes was repeated, and the number of times until flaking was observed in the refractory was determined. The spalling resistance was determined.

さらに、CaO/5i02比=2のスラグを使用して、
得られた耐火物を1700℃で8時間のロータリースラ
グテストに供し、比較例品の侵蝕量を100として、相
対的侵蝕量を測定した。
Furthermore, using a slag with a CaO/5i02 ratio of 2,
The obtained refractories were subjected to a rotary slag test at 1700° C. for 8 hours, and the relative amount of corrosion was measured, setting the amount of corrosion of the comparative example product as 100.

これらの結果を第2表に示す。These results are shown in Table 2.

第2表に示す結果から、本発明による耐火物が、優れた
耐熱スポーリング性および耐構造スポーリング性(耐ス
ラグ性)を備えていることが、明らかである。
From the results shown in Table 2, it is clear that the refractory according to the present invention has excellent heat spalling resistance and structural spalling resistance (slag resistance).

(以上)(that's all)

Claims (1)

【特許請求の範囲】[Claims] (1)マグネシア25〜90重量%とカルシア75〜1
0重量%とからなる耐火骨材100重量部にZr_2S
i、Zr_3Si_2、Zr_5Si_3およびZr_
5Si_4からなるけい化ジルコニウムの群から選ばれ
た少なくとも一種0.5〜10重量部を配合したことを
特徴とするマグネシア−カルシア質耐火物。
(1) 25-90% by weight of magnesia and 75-1% by weight of calcia
Zr_2S is added to 100 parts by weight of fireproof aggregate consisting of 0% by weight.
i, Zr_3Si_2, Zr_5Si_3 and Zr_
A magnesia-calcia refractory comprising 0.5 to 10 parts by weight of at least one selected from the group of zirconium silicides consisting of 5Si_4.
JP63179368A 1988-07-18 1988-07-18 Magnesia-calcia refractory Pending JPH0230656A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63179368A JPH0230656A (en) 1988-07-18 1988-07-18 Magnesia-calcia refractory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63179368A JPH0230656A (en) 1988-07-18 1988-07-18 Magnesia-calcia refractory

Publications (1)

Publication Number Publication Date
JPH0230656A true JPH0230656A (en) 1990-02-01

Family

ID=16064633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63179368A Pending JPH0230656A (en) 1988-07-18 1988-07-18 Magnesia-calcia refractory

Country Status (1)

Country Link
JP (1) JPH0230656A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002020425A1 (en) * 2000-09-08 2002-03-14 Forschungszentrum Karlsrube Gmbh Moulding compound, use thereof and a method for producing an oxide-ceramic sintered body
CN115322001A (en) * 2022-09-15 2022-11-11 江阴誉球耐火材料有限公司 High-temperature-resistant iron runner castable and preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002020425A1 (en) * 2000-09-08 2002-03-14 Forschungszentrum Karlsrube Gmbh Moulding compound, use thereof and a method for producing an oxide-ceramic sintered body
US7208037B2 (en) 2000-09-08 2007-04-24 Forschungszentrum Karlsruhe, Gmbh Molding compound, use thereof and a method for producing an oxide-ceramic sintered body
CN115322001A (en) * 2022-09-15 2022-11-11 江阴誉球耐火材料有限公司 High-temperature-resistant iron runner castable and preparation method thereof
CN115322001B (en) * 2022-09-15 2023-07-07 江阴誉球耐火材料有限公司 High-temperature-resistant iron runner castable and preparation method thereof

Similar Documents

Publication Publication Date Title
JPH01278469A (en) Magnesia-calcia based refractory
JPH05330904A (en) Highly spalling-resistant magnesia carbon brick
JP2003238250A (en) Yttria refractory
JPS6060985A (en) Refractory composition for ladle lining
JP3343297B2 (en) Fired refractory brick for lining
JPH03170363A (en) Magnesia-calcia-based refractory
JPH0230656A (en) Magnesia-calcia refractory
TW200427651A (en) Batch composition for producing a refractory ceramic moulded body, moulded body formed therefrom and use thereof
JPH09142916A (en) Spinel-containing refractory
JPH06128023A (en) Basic brick
JP2014084269A (en) Castable refractory for nonferrous metal refining vessel and precast block using the same
JPH046150A (en) Magnesia-chrome refractories
JPH05117019A (en) Basic refractory brick
JPH07267720A (en) Production of basic brick
JP4058649B2 (en) Basic brick for rotary kiln
JPH02141480A (en) Castable refractory
JPH042655A (en) Burned high-alumina refractory brick
JPS63103869A (en) Zro2 base monolithic refractories
JP2004123501A (en) Refractory brick
JPH0412053A (en) Magnesia-calcia refractory
JP2003342080A (en) Castable chromia refractory and precast block manufactured using the same
JP2003306388A (en) Electromelted spinel raw material and refractory material using the same
JPH0834666A (en) Refractory for steel making
JP2006076863A (en) Magnesia-chrome-boron nitride unfired refractory
JP2765458B2 (en) Magnesia-carbon refractories