JPH09142916A - Spinel-containing refractory - Google Patents

Spinel-containing refractory

Info

Publication number
JPH09142916A
JPH09142916A JP7300034A JP30003495A JPH09142916A JP H09142916 A JPH09142916 A JP H09142916A JP 7300034 A JP7300034 A JP 7300034A JP 30003495 A JP30003495 A JP 30003495A JP H09142916 A JPH09142916 A JP H09142916A
Authority
JP
Japan
Prior art keywords
spinel
mgo
corrosion resistance
magnesia
electromelted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7300034A
Other languages
Japanese (ja)
Inventor
Nobutaka Watanabe
信孝 渡辺
Hiromasa Ishii
宏昌 石井
Kimiaki Sasaki
王明 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Refractories Corp
Original Assignee
Kawasaki Refractories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Refractories Co Ltd filed Critical Kawasaki Refractories Co Ltd
Priority to JP7300034A priority Critical patent/JPH09142916A/en
Publication of JPH09142916A publication Critical patent/JPH09142916A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a spinel-containing refractory having excellent corrosion resistance and excellent spalling resistance by incorporating a prescribed quantity of a MgO-enriched electromelted spinel containing MgO and Al2 O3 in a specific ratio. SOLUTION: The MgO-enriched electromelted spinel constituted so as to cover the whole or a part of the surface of a magnesia particle containing 55-85% MgO and 45-15% Al2 O3 and forming a solid solution of Al2 O3 on the surface with a spinel composition is prepared. Next, a raw material containing 5-100% MgO-enriched electromelted spinel and the balance a basic raw material (e.g. electromelted magnesia) with alumina fine powder is prepared, molded and fired to produce the spinel-containing refractory. As a result, the deterioration of the corrosion resistance is prevented by increasing the content of MgO and at the same time, the spalling resistance is improved by uniformly dispersing the spinel in spite of small content of Al2 O3 . The resultant spinel-containing refractory is suitable for the lining of a vessel for molten metal refining.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、溶融金属精錬用容
器の内張に用いるスピネル含有耐火物に関し、特に耐食
性を低下させることなく、耐スポーリング性に優れたス
ピネル含有耐火物に関する。
TECHNICAL FIELD The present invention relates to a spinel-containing refractory used for lining a vessel for refining molten metal, and more particularly to a spinel-containing refractory having excellent spalling resistance without lowering corrosion resistance.

【0002】[0002]

【従来技術】従来、スピネル含有耐火物として、マグネ
シアとスピネルとを併用したマグネシア・スピネルれん
ががセメントロータリーキルン、ストッパースリーブな
どに使用されており、又、ドロマイトれんが、マグクロ
れんがが主に使用されているVOD鍋においても最近に
なってマグネシア・スピネルれんがも一部使用され始め
た。
2. Description of the Related Art Conventionally, as a refractory material containing spinel, magnesia / spinel bricks, which are a combination of magnesia and spinel, have been used in cement rotary kilns, stopper sleeves, etc., and dolomite bricks and magcro bricks are mainly used. Recently, some magnesia spinel bricks have also started to be used in VOD pots.

【0003】このVOD鍋の損傷としては、スラグ成分
との反応による溶損の他にスラグ浸透による構造スポー
リングによる損傷、及び熱スポーリングによる損傷が挙
げられるが、これらの損傷を少なくするために、耐食性
に優れたマグネシアれんがの耐熱スポーリング性を高め
る手段として、マグネシアに理論組成スピネル(MgO
28%、Al2 3 72%)を添加したマグネシア・ス
ピネルれんがが使用されるようになったのである。
Damages of this VOD pot include damage due to reaction with slag components, damage due to structural spalling due to slag infiltration, and damage due to thermal spalling. In order to reduce these damages. As a means to enhance the heat-resistant spalling resistance of magnesia bricks with excellent corrosion resistance, magnesia has a theoretical composition spinel (MgO
28% and Al 2 O 3 72%) were added to the magnesia spinel bricks.

【0004】[0004]

【発明が解決しようとする課題】ところで、このマグネ
シア・スピネルれんがは耐火物として耐食性が高く、し
かも、耐スポーリング性も高いものであるが、更に高い
耐食性と耐スポーリング性を賦与することが求められて
いる。
By the way, this magnesia spinel brick has high corrosion resistance as a refractory material and high spalling resistance, but it is possible to impart higher corrosion resistance and spalling resistance. It has been demanded.

【0005】しかしながら、研究を重ねた結果、マグネ
シア・スピネルれんがの耐食性はマグネシアが多い程よ
くなるが、マグネシアを多くすると耐スポーリング性は
低下することが分かった。又、マグネシア・スピネルれ
んがの耐食性はれんがのAl 2 3 含有量に影響され、
Al2 3 含有量が多いほど耐食性が悪くなることが分
かった。
However, as a result of repeated research,
The more the shear resistance of shear spinel bricks, the more magnesia
However, if magnesia is increased, the spalling resistance will increase.
It turned out to drop. Also, magnesia spinel
Corrosion resistance of bricks Al of bricks TwoOThreeAffected by the content,
AlTwoOThreeIt can be seen that the higher the content, the worse the corrosion resistance.
won.

【0006】つまり、マグネシア・スピネルれんがのマ
グネシアを多くして耐食性を高めようとすれば耐スポー
リング性が低下し、スピネルを多くして耐スポーリング
性を高めようとすれば耐食性が低下するという問題があ
るのである。
That is, if the magnesia of magnesia-spinel brick is increased to increase the corrosion resistance, the spalling resistance decreases, and if the spinel is increased to increase the spalling resistance, the corrosion resistance decreases. There is a problem.

【0007】そして、マグネシアリッチ電融スピネルを
用いることにより、耐スポーリング性を低下させること
なく耐食性を高められることを発見し、本発明を完成す
るにいたったのである。
The inventors have discovered that the use of magnesia-rich electrofused spinel can enhance the corrosion resistance without lowering the spalling resistance, and have completed the present invention.

【0008】即ち、本発明は、耐スポーリング性を低下
させることなく耐食性を高めることができるスピネル含
有耐火物を提供することを目的とする。
[0008] That is, an object of the present invention is to provide a spinel-containing refractory which can enhance corrosion resistance without lowering spalling resistance.

【0009】[0009]

【課題を解決するための手段】上記の目的を達成するた
め、本発明に係るスピネル含有耐火物は、MgO55〜
85%、Al2 3 15〜45%のMgOリッチ電融ス
ピネルを5〜100%以上含有させたものである。
In order to achieve the above object, the spinel-containing refractory material according to the present invention comprises MgO55-
85%, Al 2 O 3 15 to 45% MgO rich electrofused spinel is contained at 5 to 100% or more.

【0010】本発明において使用されるMgOリッチ電
融スピネルはAl2 3 を固溶したマグネシア(Mg
O)粒子の表面の全部又は一部がスピネル組成で覆われ
たものであり、その組成は、耐食性を重視して、MgO
55〜85%、Al2 3 15〜45%であることが好
ましい。より好ましくはMgO65〜85%、Al2
3 15〜35%である。
The MgO rich electrode used in the present invention
Molten spinel is AlTwoOThreeSolid solution of magnesia (Mg
O) All or part of the surface of the particles is covered with the spinel composition.
The composition is MgO with emphasis on corrosion resistance.
55-85%, AlTwoOThree15-45% is preferred
Good. More preferably MgO 65-85%, AlTwoO
ThreeIt is 15 to 35%.

【0011】Al2 3 の含有量が15未満になる場
合、即ち、MgOの含有量が85%を上回る場合には耐
食性を高める上では有利になるものの、マグネシア粒子
を取り巻くスピネル層の生成が困難になるので好ましく
ない。又、Al2 3 の含有量が45%を上回る時、即
ち、MgOの含有量が55%未満の場合には耐食性を低
下させるおそれがあるので好ましくない。
When the content of Al 2 O 3 is less than 15, that is, when the content of MgO exceeds 85%, it is advantageous for enhancing the corrosion resistance, but the formation of the spinel layer surrounding the magnesia particles is generated. It is difficult because it is difficult. Further, when the content of Al 2 O 3 exceeds 45%, that is, when the content of MgO is less than 55%, corrosion resistance may be deteriorated, which is not preferable.

【0012】このMgOリッチ電融スピネルは、理論組
成スピネルに比べてAl2 3 の含有量が少ないので、
同じ配合量であれば耐食性を損なうことが少なく、耐食
性を高める上で有利になる。
Since this MgO-rich electrofused spinel has a smaller content of Al 2 O 3 than the theoretical composition spinel,
If the amount is the same, the corrosion resistance is less likely to be impaired, which is advantageous in enhancing the corrosion resistance.

【0013】又、理論組成スピネルを使用する場合に比
べて、Al2 3 の使用量が少なくてもスピネルが均一
に分散し易く、耐スポーリグ性、特に耐熱スポーリング
性を高めることができる。
Further, as compared with the case of using the theoretical composition spinel, the spinel is easily dispersed uniformly even if the amount of Al 2 O 3 used is small, and the spalling resistance, especially the heat-resistant spalling resistance can be enhanced.

【0014】本発明においては、MgOリッチ電融スピ
ネルの使用量は5〜100%であることが好ましく、こ
のMgOリッチ電融スピネルの使用量が5%未満である
場合は、スピネルの添加により耐スポーリング性が高め
られる効果が十分に得られないので好ましくない。
In the present invention, the amount of the MgO-rich electrofused spinel used is preferably 5 to 100%. When the amount of the MgO-rich electrofused spinel used is less than 5%, the addition of the spinel can improve the resistance. It is not preferable because the effect of improving the spalling property cannot be sufficiently obtained.

【0015】このMgOリッチ電融スピネルの使用量が
5%以上で100%未満である場合には、残部は耐食性
を低下させないための塩基性原料と、耐火物の焼結性を
高めるためのアルミナ微粉とで構成することが好まし
く、この塩基性原料としては電融マグネシア、焼結マグ
ネシア、ドロマイトクリンカー、電融スピネル、焼結ス
ピネルなどをその例として挙げることができる。このス
ピネルは理論組成でもMgOリッチ組成でもよい。アル
ミナ微粉の添加量は0.5〜5%が好ましく、0.5%
未満では焼結性を高める効果が不十分になるので好まし
くなく、5%を上回ると耐食性を低下させる恐れがある
ので好ましくない。なお、アルミナ微粉の粒径は、分散
性を高めるために45μm以下とすることが好ましく、
更に好ましくは20μm以下とすることが好ましい。
When the amount of this MgO-rich electrofused spinel used is 5% or more and less than 100%, the balance is a basic raw material for not lowering the corrosion resistance and alumina for improving the sinterability of the refractory. It is preferably composed of fine powder, and examples of this basic raw material include electrofused magnesia, sintered magnesia, dolomite clinker, electrofused spinel, and sintered spinel. This spinel may have a theoretical composition or a MgO rich composition. The amount of fine alumina powder added is preferably 0.5 to 5%, and 0.5%
If it is less than 5%, the effect of enhancing the sinterability becomes insufficient, and if it exceeds 5%, the corrosion resistance may decrease, which is not preferable. The particle size of the alumina fine powder is preferably 45 μm or less in order to improve dispersibility,
More preferably, the thickness is 20 μm or less.

【0016】[0016]

【発明の実施の形態】後掲する表1に示すように、電融
マグネシア8〜93%、MgOリッチ電融スピネル(M
gO/Al2 3 =70/30)5〜90%、アルミナ
微粉2%を表1の実施例1ないし実施例6の各欄に示す
配合比(%)で配合し、同一条件で混練し、成形した
後、1800℃で焼成して、実施例1ないし実施例6に
係るれんがを得た。
BEST MODE FOR CARRYING OUT THE INVENTION As shown in Table 1 below, electrofused magnesia 8 to 93%, MgO rich electrofused spinel (M
gO / Al 2 O 3 = 70/30) 5 to 90% and alumina fine powder 2% at the compounding ratio (%) shown in each column of Example 1 to Example 6 in Table 1 and kneading under the same conditions. After molding, the bricks were fired at 1800 ° C. to obtain bricks according to Examples 1 to 6.

【0017】又、同様に、表1に示すように、電融マグ
ネシア68〜95%、電融スピネル(理論組成)0〜3
0%、アルミナ微粉2%を表1の比較例1ないし比較例
4の各欄に示す配合比(%)で配合し、実施例1ないし
実施例6と同一条件で混練し、成形した後、1800℃
で焼成して、比較例1ないし比較例4に係るれんがを得
た。
Similarly, as shown in Table 1, electrofused magnesia 68 to 95%, electrofused spinel (theoretical composition) 0 to 3
0% and 2% of alumina fine powder were blended at the blending ratio (%) shown in each column of Comparative Example 1 to Comparative Example 4 in Table 1, kneaded under the same conditions as in Examples 1 to 6 and molded, 1800 ° C
Baking was performed to obtain bricks according to Comparative Examples 1 to 4.

【0018】なお、各実施例及び各比較例の構成原料の
粒度構成は同じである。
The particle size composition of the constituent raw materials in each example and each comparative example is the same.

【0019】[0019]

【表1】 [Table 1]

【0020】これら実施例1ないし実施例6及び比較例
1ないし比較例4を、高周波炉内張り法に従って、高周
波炉に内張りし、侵食剤として鋼と合成スラグ(CaO
50%、Al2 3 40%、SiO2 10%)とをその
中で溶解して1750℃に4時間保持し、各れんがの溶
損量で耐食性を評価し、表1及び図1に示す結果を得
た。
These Examples 1 to 6 and Comparative Examples 1 to 4 were lined in a high frequency furnace according to the high frequency furnace lining method, and steel and synthetic slag (CaO) were used as an erosion agent.
50%, Al 2 O 3 40%, SiO 2 10%) were melted therein and held at 1750 ° C. for 4 hours, and the corrosion resistance was evaluated by the amount of erosion loss of each brick. I got the result.

【0021】図1において、縦軸は溶損指数、横軸はれ
んが組成物全体中のAl2 3 含有量(%)、●印は実
施例、○印は比較例をそれぞれ示し、●印又は○印に添
えた数字は実施例又は比較例の番号を示す。
In FIG. 1, the vertical axis represents the melting loss index, the horizontal axis represents the Al 2 O 3 content (%) in the entire brick composition, the ● symbol represents the example, and the ○ symbol represents the comparative example. Alternatively, the number attached to the circle indicates the number of the example or comparative example.

【0022】表1及び図1から、MgOリッチスピネル
を用いた各実施例においても、理論組成スピネルを用い
た各比較例においても、Al2 3 の使用量が多くなる
と溶損量が増加する傾向が見られるが、Al2 3 の使
用量が同じであれば理論組成スピネルを用いた比較例に
比べてMgOリッチスピネルを用いた各実施例の方が溶
損量が少なく、耐食性に優れていることが分かる。
From Table 1 and FIG. 1, the melt loss increases as the amount of Al 2 O 3 used increases in each of the examples using MgO rich spinel and the comparative examples using theoretical composition spinel. Although there is a tendency, when the amount of Al 2 O 3 used is the same, the amount of erosion loss is smaller and the corrosion resistance is superior in each of the examples using MgO rich spinel as compared with the comparative example using the theoretical composition spinel. I understand that.

【0023】次に、30mm×50mm×250mmの
直方形の実施例1ないし実施例6及び比較例1ないし比
較例4をそれぞれ1550℃の溶銑中に90秒間浸漬し
た後、取り出して20分間放冷するという操作を繰り返
し、これら実施例1ないし実施例6及び比較例1ないし
比較例4の表面に剥落が認められるまでの繰り返し回数
で耐スポーリング性の評価をし、表1及び図2に示す結
果を得た。
Next, 30 mm × 50 mm × 250 mm rectangular parallelepiped Examples 1 to 6 and Comparative Examples 1 to 4 were each immersed in hot metal at 1550 ° C. for 90 seconds, then taken out and allowed to cool for 20 minutes. The above operation was repeated, and the spalling resistance was evaluated by the number of repetitions until the surface was peeled off in Examples 1 to 6 and Comparative Examples 1 to 4 and shown in Table 1 and FIG. I got the result.

【0024】図2において、縦軸は剥落に至るまでの回
数、横軸はれんが組成物全体中のAl2 3 含有量
(%)、●印は実施例、○印は比較例をそれぞれ示し、
●印又は○印に添えた数字は実施例又は比較例の番号を
示す。
In FIG. 2, the vertical axis represents the number of times until peeling, the horizontal axis represents the Al 2 O 3 content (%) in the entire brick composition, the ● mark represents an example, and the ○ mark represents a comparative example. ,
The numbers attached to the ● or ○ marks indicate the numbers of the examples or comparative examples.

【0025】表1及び図2から、Al2 3 の使用量が
同じであれば、理論組成スピネルを用いた比較例に比べ
てMgOリッチスピネルを用いた各実施例の方が繰り返
し回数が多く、耐熱スポーリング性に優れていることが
分かる。
From Table 1 and FIG. 2, if the amount of Al 2 O 3 used is the same, each of the examples using MgO-rich spinel has a larger number of repetitions than the comparative example using the theoretical composition spinel. It can be seen that the heat-resistant spalling property is excellent.

【0026】要するに、Al2 3 の使用量が同じであ
れば、理論組成スピネルを用いた比較例に比べてMgO
リッチスピネルを用いた各実施例の方が耐食性及び耐熱
スポーリング性にも優れているのであり、耐食性を低下
させることなく、耐スポーリング性に優れたスピネル含
有耐火物が得られているのである。
In short, if the amount of Al 2 O 3 used is the same, MgO is higher than that of the comparative example using the theoretical composition spinel.
Since each example using the rich spinel is also superior in corrosion resistance and heat-resistant spalling resistance, a spinel-containing refractory having excellent spalling resistance is obtained without lowering corrosion resistance. .

【0027】[0027]

【発明の効果】以上に説明したように、本発明のスピネ
ル含有耐火物は、MgO55〜85%、Al2 3 15
〜45%のMgOリッチ電融スピネルを5〜100%含
有させたので、MgOの配合率を多くして耐食性の低下
を防止できると同時に、Al23 の配合量が少ないに
もかかわらずスピネルを均一に分散させて耐スポーリン
グ性を高めることができる。
As described above, the spinel-containing refractory material of the present invention contains MgO 55-85%, Al 2 O 3 15
Since 45% to 45% of MgO-rich electrofused spinel was contained, it is possible to prevent the deterioration of corrosion resistance by increasing the mixing ratio of MgO, and at the same time, even though the mixing amount of Al 2 O 3 is small, the spinel Can be uniformly dispersed to improve spalling resistance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例と比較例との耐食性を比較して
示す耐食性特性図である。
FIG. 1 is a corrosion resistance characteristic diagram showing a comparison of corrosion resistance between an example of the present invention and a comparative example.

【図2】本発明の実施例と比較例との耐熱スポーリング
性を比較して示す耐熱スポーリング性特性図である。
FIG. 2 is a heat-resistant spalling property chart showing the heat-resistant spalling properties of Examples and Comparative Examples of the present invention in comparison.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 MgO55〜85%、Al2 3 15〜
45%のMgOリッチ電融スピネルを5〜100%含有
させたスピネル含有耐火物。
1. MgO 55-85%, Al 2 O 3 15-
A spinel-containing refractory material containing 5 to 100% of 45% MgO-rich electrofused spinel.
【請求項2】 MgOリッチ電融スピネルの含有量が5
%以上で100%未満であり、残部が塩基性原料とアル
ミナ微粉とからなる請求項1に記載のスピネル含有耐火
物。
2. The content of MgO-rich electrofused spinel is 5
% Or more and less than 100%, and the balance is a basic raw material and alumina fine powder, The spinel-containing refractory material according to claim 1.
JP7300034A 1995-11-17 1995-11-17 Spinel-containing refractory Pending JPH09142916A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7300034A JPH09142916A (en) 1995-11-17 1995-11-17 Spinel-containing refractory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7300034A JPH09142916A (en) 1995-11-17 1995-11-17 Spinel-containing refractory

Publications (1)

Publication Number Publication Date
JPH09142916A true JPH09142916A (en) 1997-06-03

Family

ID=17879914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7300034A Pending JPH09142916A (en) 1995-11-17 1995-11-17 Spinel-containing refractory

Country Status (1)

Country Link
JP (1) JPH09142916A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100262976B1 (en) * 1997-12-30 2000-08-01 신승근 Stamp refractory of spinel for repair of induction furnace
JP2010126374A (en) * 2008-11-25 2010-06-10 Ngk Insulators Ltd Method for producing magnesium oxide-spinel composite oxide
KR20160079239A (en) * 2014-12-26 2016-07-06 주식회사 포스코 Refractory for installation producing alloy steel containing manganese and manufacturing method thereof
JP2017512738A (en) * 2014-03-18 2017-05-25 サン−ゴバン サントル ドゥ ルシェルシェ エ デトゥードゥ ユーロペン Fusion particles of magnesium aluminate rich in magnesium
KR20190052668A (en) 2016-09-26 2019-05-16 다테호 가가쿠 고교 가부시키가이샤 Magnesium oxide-containing spinel powder and method for producing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100262976B1 (en) * 1997-12-30 2000-08-01 신승근 Stamp refractory of spinel for repair of induction furnace
JP2010126374A (en) * 2008-11-25 2010-06-10 Ngk Insulators Ltd Method for producing magnesium oxide-spinel composite oxide
JP2017512738A (en) * 2014-03-18 2017-05-25 サン−ゴバン サントル ドゥ ルシェルシェ エ デトゥードゥ ユーロペン Fusion particles of magnesium aluminate rich in magnesium
KR20160079239A (en) * 2014-12-26 2016-07-06 주식회사 포스코 Refractory for installation producing alloy steel containing manganese and manufacturing method thereof
KR20190052668A (en) 2016-09-26 2019-05-16 다테호 가가쿠 고교 가부시키가이샤 Magnesium oxide-containing spinel powder and method for producing the same
US10766783B2 (en) 2016-09-26 2020-09-08 Tateho Chemical Industries Co., Ltd. Magnesium oxide-containing spinel powder and method for producing same

Similar Documents

Publication Publication Date Title
JPH09142916A (en) Spinel-containing refractory
JP2022161032A (en) Castable refractory and molten steel ladle
JP5448144B2 (en) Mug brick
JP4960541B2 (en) Magnesia-alumina-titania brick
JPH11147758A (en) Production of refractory material
JPH10203862A (en) Magnesium-chromium brick fired at high temperature
JPH06144939A (en) Basic castable refractory
JP4347952B2 (en) Basic amorphous refractories using magnesia calcia clinker
JP2765458B2 (en) Magnesia-carbon refractories
JP2003306388A (en) Electromelted spinel raw material and refractory material using the same
JP2004106014A (en) Refractory for continuous casting
JPH06172044A (en) Castable refractory of alumina spinel
JP2872670B2 (en) Irregular refractories for lining of molten metal containers
JPS63103869A (en) Zro2 base monolithic refractories
JPH07291716A (en) Basic refractory
JP2000191364A (en) Shaped magnesia-chrome refractory
JPH0748167A (en) Magnesia refractory raw material and refractory
JPH05117019A (en) Basic refractory brick
JPH0230656A (en) Magnesia-calcia refractory
JPH0782002A (en) Magnesia refractory composition
JPH11147776A (en) Amorphous refractory
JPH06107451A (en) Refractory
JP2003183082A (en) Amorphous refractory material and amorphous refractory
JPH06345521A (en) Starting material for magnesian refractory and refractory
JP2962927B2 (en) Carbon-containing irregular refractories