JP2003183082A - Amorphous refractory material and amorphous refractory - Google Patents

Amorphous refractory material and amorphous refractory

Info

Publication number
JP2003183082A
JP2003183082A JP2001381623A JP2001381623A JP2003183082A JP 2003183082 A JP2003183082 A JP 2003183082A JP 2001381623 A JP2001381623 A JP 2001381623A JP 2001381623 A JP2001381623 A JP 2001381623A JP 2003183082 A JP2003183082 A JP 2003183082A
Authority
JP
Japan
Prior art keywords
powder
amorphous refractory
refractory
alumina
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001381623A
Other languages
Japanese (ja)
Inventor
Tomohiko Hara
智彦 原
Toru Yamagishi
徹 山岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichias Corp
Original Assignee
Nichias Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichias Corp filed Critical Nichias Corp
Priority to JP2001381623A priority Critical patent/JP2003183082A/en
Publication of JP2003183082A publication Critical patent/JP2003183082A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an amorphous refractory material capable of improving spalling resistance without damaging slag erosion resistance, and also provide an amorphous refractory excellent in slag erosion and spalling resistances. <P>SOLUTION: This amorphous refractory material includes refractory aggregate, nickel oxide or nickel powder, partially stabilized zirconia powder and a hydraulic binder. The amorphous refractory is obtained by adding water to the above refractory material to make a kneaded material, and then firing the formed kneaded material. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、不定形耐火物原料
および不定形耐火物に関し、特に高炉、転炉、電気炉、
キュポラ、加熱炉、焼却炉並びに高温溶融物を処理する
排出樋及び受鍋などの窯炉において、内張りに用いられ
る不定形耐火物原料および不定形耐火物に関する。
TECHNICAL FIELD The present invention relates to an amorphous refractory raw material and an amorphous refractory, and more particularly to a blast furnace, a converter, an electric furnace,
The present invention relates to an amorphous refractory raw material and an amorphous refractory used for lining in a kiln such as a cupola, a heating furnace, an incinerator, and a discharge gutter and a pan for treating a high-temperature melt.

【0002】[0002]

【従来の技術】従来から、上記に挙げたような用途で
は、内張りとして不定形耐火物が多用されている。ま
た、不定形耐火物の耐スラグ浸食性を向上させるため
に、不定形耐火物原料に酸化クロムを添加することも行
われているが、使用時に六価クロムが生成するため、環
境保全の観点から改善が望まれている。
2. Description of the Related Art Conventionally, in the above-mentioned applications, an amorphous refractory material is often used as an inner lining. In addition, in order to improve the slag erosion resistance of amorphous refractories, chromium oxide is also added to the amorphous refractory raw material, but hexavalent chromium is generated at the time of use. Improvement is desired.

【0003】このような背景から、近年、酸化クロムを
添加しない不定形耐火物が開発されており、例えば、特
開2001−80969号公報には、ニッケル−アルミ
ナ系材料で構成される不定形耐火物が、特開2000−
281455号公報には、アルミナ−ジルコニア系材料
で構成される不定形耐火物がそれぞれ開示される。
Against this background, in recent years, amorphous refractories without addition of chromium oxide have been developed. For example, in Japanese Unexamined Patent Publication No. 2001-80969, an amorphous refractory composed of a nickel-alumina-based material is used. The object is JP 2000-
Japanese Unexamined Patent Publication No. 281455 discloses an amorphous refractory made of an alumina-zirconia-based material.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、アルミ
ナ系材料は、化学的には比較的安定であるものの、α−
Al23の熱膨張係数は8.8×10-6と無機材料の中
では比較的大きく、耐スポーリング性に対してはやや不
利な点があり、例えば、操業が間欠的に行われるガス化
溶融炉に施工された場合、加熱・冷却サイクルを繰り返
し受けることによる亀裂や剥離の発生が懸念される。
However, although the alumina-based material is relatively stable chemically, α-
The coefficient of thermal expansion of Al 2 O 3 is 8.8 × 10 −6 , which is relatively large among inorganic materials, and has some disadvantages with respect to spalling resistance. For example, operation is performed intermittently. When installed in a gasification melting furnace, there is a concern that cracks and peeling may occur due to repeated heating and cooling cycles.

【0005】本発明は、このような点に鑑みてなされた
ものであって、耐スラグ浸食性を損なうことなく耐スポ
ーリング性を向上させることができる不定形耐火物原
料、並びに耐スラグ浸食性及び耐スポーリング性に優れ
た不定形耐火物を提供することを目的とする。
The present invention has been made in view of the above points, and has an amorphous refractory material capable of improving spalling resistance without impairing slag erosion resistance, and slag erosion resistance. And an amorphous refractory having excellent spalling resistance.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、耐火骨材と、酸化ニッケル粉末又はニッ
ケル粉末と、部分安定化ジルコニア粉末と、水硬性結合
材とを含むことを特徴とする不定形耐火物原料、並びに
前記不定形耐火物原料に水を加え混練物とし、成形した
該混練物を焼成して得られることを特徴とする不定形耐
火物を提供する。
In order to achieve the above object, the present invention comprises a refractory aggregate, nickel oxide powder or nickel powder, partially stabilized zirconia powder, and a hydraulic binder. The present invention provides a characteristic amorphous refractory material, and an amorphous refractory material obtained by adding water to the irregular refractory material to prepare a kneaded product and firing the molded kneaded product.

【0007】[0007]

【発明の実施の形態】以下、本発明に関して詳細に説明
する。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below.

【0008】本発明に係る不定形耐火物原料は、耐火骨
材と、セラミックス微粉末と、酸化ニッケル粉末または
ニッケル粉末と、部分安定化ジルコニア粉末と、水硬性
結合材とを必須成分として含む。
The amorphous refractory raw material according to the present invention contains, as essential components, refractory aggregates, ceramic fine powder, nickel oxide powder or nickel powder, partially stabilized zirconia powder, and hydraulic binder.

【0009】本発明において用いられる耐火骨材として
は、アルミナ質耐火骨材、炭化珪素質耐火骨材またはこ
れらの混合物が挙げられる。このうち、アルミナ質耐火
骨材は、酸化ニッケル粉末またはニッケル粉末と反応し
てスピネル型アルミナ−酸化ニッケル化合物を生成し、
不定形耐火物の耐スラグ浸食性を高めるため好ましい。
Examples of the refractory aggregate used in the present invention include alumina-based refractory aggregates, silicon carbide-based refractory aggregates, and mixtures thereof. Of these, the alumina refractory aggregate reacts with nickel oxide powder or nickel powder to produce a spinel-type alumina-nickel oxide compound,
It is preferable because it enhances the slag erosion resistance of the amorphous refractory.

【0010】なお、耐火骨材として炭化珪素質耐火骨材
のみを用いる場合は、後述するセラミックス微粉末とし
てアルミナ質微粉末が含まれるものを用いると、このア
ルミナ質微粉末と酸化ニッケル粉末またはニッケル粉末
とでスピネル型アルミナ−酸化ニッケル化合物を生成
し、同様に得られる耐火物の耐スラグ浸食性が高くなり
好ましい。
When only silicon carbide type refractory aggregate is used as the refractory aggregate, if alumina fine powder is contained as the ceramic fine powder described later, the fine alumina powder and nickel oxide powder or nickel are used. A powder is preferable because it produces a spinel-type alumina-nickel oxide compound and the refractory obtained in the same manner has high slag erosion resistance.

【0011】アルミナ質耐火骨材の材質としては、例え
ば、高純度アルミナ、アルミナシリカ、ムライト、ボー
キサイトおよびシャモットより選択される1種または2
種以上が挙げられる。ここで、アルミナシリカとは主に
アルミナ成分とシリカ成分とからなる組成物を広義に含
むものであり、ムライトとはアルミナ成分とシリカ成分
とを所定の配合割合で含むムライト質となっているもの
をいう。
The material of the alumina refractory aggregate is, for example, one or two selected from high purity alumina, alumina silica, mullite, bauxite and chamotte.
There are more than one species. Here, the alumina-silica broadly includes a composition mainly composed of an alumina component and a silica component, and the mullite is a mullite that contains the alumina component and the silica component in a predetermined mixing ratio. Say.

【0012】上記アルミナ質耐火骨材は、アルミナ質以
外に他の成分が含まれていてもよいが、アルミナ質をよ
り高い割合で含むものが耐熱性(耐火性)の点から好ま
しい。
The above-mentioned alumina-based refractory aggregate may contain other components in addition to the alumina-based material, but those containing a higher proportion of the alumina-based material are preferable from the viewpoint of heat resistance (fire resistance).

【0013】また、炭化珪素質耐火骨材の材質として
は、例えば、純度80%以上の耐火物用炭化珪素が挙げ
られる。
The material of the silicon carbide refractory aggregate is, for example, silicon carbide for refractory having a purity of 80% or more.

【0014】上記アルミナ質耐火骨材又は炭化珪素質耐
火骨材は、1種又は2種以上組み合わせて用いることが
できる。
The above-mentioned alumina refractory aggregate or silicon carbide refractory aggregate can be used alone or in combination of two or more kinds.

【0015】耐火骨材としては、粒径が50μmを越え
るものが用いられ、この範囲内の粒径のものであればど
のようなものでもよい。なお、粒径の異なるものを組み
合わせて用いると、得られる不定形耐火物の内部組織が
緻密化すると共に、オイル効果により混練物の流動性が
向上して施工部位に流し込み易くなるため好ましい。
As the refractory aggregate, those having a particle diameter of more than 50 μm are used, and any material having a particle diameter within this range may be used. It is preferable to use a mixture of particles having different particle diameters because the obtained amorphous refractory material has a dense internal structure, and the kneading property of the kneaded material is improved by the oil effect, so that the kneaded material is easily poured into the construction site.

【0016】例えば、耐火骨材として、粒径が1mmを
越えて7mm以下である粗粒材と、粒径が0.15mm
を越えて1mm以下である微粒材と、粒径が50μmを
越えて0.15mm以下である粉末材とを混合したもの
が好ましい。こういった粒径の違う耐火骨材を組み合せ
ると、不定形耐火物中において、骨格を形成する粗粒材
同士の空隙に微粒材が入り込み、さらに、粉末材が粗粒
材及び微粒材間の空隙に入り込むため、得られる不定形
耐火物の緻密性が高められる。また、粉末材は、混練物
の流動性を高める潤滑材としても作用し、混練物の流動
性が向上して施工部位に流し込み易くなる。
For example, as the refractory aggregate, a coarse-grained material having a particle diameter of more than 1 mm and not more than 7 mm and a particle diameter of 0.15 mm
It is preferable to mix a fine particle material having a particle diameter of more than 1 mm and less than 1 mm with a powder material having a particle diameter of more than 50 μm and less than 0.15 mm. When such refractory aggregates with different grain sizes are combined, fine particles enter the voids between the coarse particles forming the skeleton in the irregular-shaped refractory, and further, the powder material is used between the coarse particles and the fine particles. Since it enters into the voids, the denseness of the obtained irregular shaped refractory can be improved. In addition, the powder material also acts as a lubricant that enhances the fluidity of the kneaded material, improves the fluidity of the kneaded material, and is easily poured into the construction site.

【0017】耐火骨材は、一般的な不定形耐火物と同様
に、不定形耐火物原料中に48〜80質量%の割合で含
まれることが好ましい。なお、耐火骨材が、上述した粗
粒材と微粒材と粉末材とから構成される場合、不定形耐
火物原料中に、粗粒材は好ましくは25〜45質量%、
さらに好ましくは28〜40質量%、微粒材は好ましく
は15〜35質量%、さらに好ましくは20〜30質量
%、粉末材は好ましくは4〜25質量%、さらに好まし
くは5〜22質量%の量で含まれればよい。粗粒材、微
粒材及び粉末材が上記比率で配合されると、得られる耐
火物の内部組織が緻密化すると共に、混練物の流動性が
向上して施工部位に流し込み易くなる。
The refractory aggregate is preferably contained in the amorphous refractory raw material in a proportion of 48 to 80% by mass, similarly to a general irregular refractory material. When the refractory aggregate is composed of the above-mentioned coarse-grained material, fine-grained material, and powdered material, the coarse-grained material is preferably 25 to 45% by mass in the amorphous refractory raw material.
More preferably 28 to 40 mass%, fine particle material preferably 15 to 35 mass%, more preferably 20 to 30 mass%, powder material preferably 4 to 25 mass%, more preferably 5 to 22 mass%. Should be included in. When the coarse-grained material, the fine-grained material and the powdered material are blended in the above proportions, the internal structure of the obtained refractory material is densified, and the fluidity of the kneaded material is improved so that the kneaded material is easily poured into the construction site.

【0018】本発明において用いられるセラミックス微
粉末は、不定形耐火物原料に水を添加し混練した混練物
の施工性を向上させるため、すなわち、混練物の流動性
及び保水性を高くし、粘性を低くするためのものであ
る。セラミックス微粉末としては、例えば、アルミナ
質、シリカ、チタニア、ジルコニア及び炭化珪素等の微
粉末が挙げられる。
The ceramic fine powder used in the present invention is used for improving the workability of a kneaded product obtained by adding water to an amorphous refractory raw material and kneading it, that is, increasing the fluidity and water retention of the kneaded product and increasing the viscosity. To lower the. Examples of the ceramic fine powder include fine powders of alumina, silica, titania, zirconia, silicon carbide and the like.

【0019】アルミナ質微粉末の材質としては、上記ア
ルミナ質耐火骨材と同様のものが挙げられ、例えば、高
純度アルミナ、アルミナシリカ、ムライト、ボーキサイ
ト及びシャモットより選択される1種又は2種以上が挙
げられる。アルミナ質微粉末は、アルミナ質以外に他の
成分が含まれていてもよいが、アルミナ質をより高い割
合で含むものが耐熱性(耐火性)の点から好ましい。炭
化珪素微粉末の材質としては、上記炭化珪素質耐火骨材
と同様のものが挙げられ、例えば、純度80%以上の耐
火物用炭化珪素が挙げられる。
Examples of the material of the alumina fine powder include the same materials as the above-mentioned alumina refractory aggregates. For example, one or more selected from high purity alumina, alumina silica, mullite, bauxite and chamotte. Is mentioned. The fine alumina powder may contain other components in addition to the fine alumina powder, but it is preferable that the fine alumina powder contains the fine alumina powder in a higher proportion from the viewpoint of heat resistance (fire resistance). Examples of the material of the silicon carbide fine powder include the same materials as the above-mentioned silicon carbide refractory aggregates, and examples thereof include silicon carbide for refractories having a purity of 80% or more.

【0020】セラミックス微粉末のうち、アルミナ質微
粉末は、混練物に流動性を付与すると共に、酸化ニッケ
ル粉末またはニッケル粉末と反応することにより、不定
形耐火物の耐スラグ浸食性を高めるスピネル型アルミナ
−酸化ニッケル化合物を生成するため好ましい。また、
シリカ微粉末は混練物に流動性及び保水性を付与すると
共に、不定形耐火物の加熱後の強度を十分にするため好
ましい。さらに、アルミナ質微粉末とシリカ微粉末とを
混合使用することにより、混練物の流動性及び保水性が
高く、さらにはアルミナ質微粉末がスピネル型アルミナ
−酸化ニッケル化合物を生成すると共に、シリカ微粉末
が耐火物の加熱後の強度を十分にするためより好まし
い。上記セラミックス微粉末は、1種又は2種以上組み
合わせて用いることができる。
Among the ceramic fine powders, the alumina fine powder is a spinel type fine powder which imparts fluidity to the kneaded product and enhances the slag erosion resistance of the amorphous refractory by reacting with the nickel oxide powder or the nickel powder. Preferred because it produces an alumina-nickel oxide compound. Also,
Silica fine powder is preferable because it imparts fluidity and water retention to the kneaded product and also ensures sufficient strength after heating of the amorphous refractory material. Further, by mixing and using the alumina fine powder and the silica fine powder, the kneaded product has high fluidity and water retention, and further, the alumina fine powder produces a spinel type alumina-nickel oxide compound and silica fine powder. A powder is more preferable because it has sufficient strength after heating the refractory. The ceramic fine powder may be used alone or in combination of two or more.

【0021】セラミックス微粉末の平均粒径は0.1〜
50μm、好ましくは0.1〜30μm、さらに好まし
くは0.1〜10μmである。平均粒径が上記範囲内に
あると、得られる不定形耐火物の内部組織が緻密化する
と共に、混練物の流動性が向上し施工部位に流し込み易
くなる。
The average particle size of the ceramic fine powder is 0.1 to
The thickness is 50 μm, preferably 0.1 to 30 μm, more preferably 0.1 to 10 μm. When the average particle size is within the above range, the internal structure of the obtained amorphous refractory material is densified, the fluidity of the kneaded material is improved, and the kneaded material is easily poured into the construction site.

【0022】セラミックス微粉末は耐火骨材の粉末材よ
りも小さいため、不定形耐火物の焼成の際に耐火骨材間
のあらゆる隙間に容易に入り込むことができる。従っ
て、セラミックス微粉末としてアルミナ質微粉末を用い
た場合、これら隙間内で酸化ニッケル粉末またはニッケ
ル粉末と反応して耐スラグ浸食性に富むスピネル型アル
ミナ−酸化ニッケル化合物を生成し、一般的に該隙間で
生じ易いスラグによる浸食をより効果的に抑制できる。
Since the fine ceramic powder is smaller than the powder material of the refractory aggregate, it can easily penetrate into any gaps between the refractory aggregates when firing the irregular refractory material. Therefore, when the alumina fine powder is used as the ceramic fine powder, it reacts with the nickel oxide powder or the nickel powder in these gaps to produce a spinel-type alumina-nickel oxide compound rich in slag erosion resistance. Erosion due to slag that tends to occur in the gap can be more effectively suppressed.

【0023】セラミックス微粉末は、不定形耐火物原料
中に好ましくは12〜27質量%、さらに好ましくは1
4〜27質量%の量で含まれる。セラミックス微粉末の
配合量が12質量%未満であると、不定形耐火物原料の
混練物の流動性及び保水性が十分でないため好ましくな
い。特に、アルミナ質微粉末において、配合量が12質
量%未満ではスピネル型アルミナ−酸化ニッケル化合物
が十分に生成しないおそれがある。なお、この状態の混
練物に対して、流動性及び保水性を付与するために混練
水量を多くすると、耐火骨材とセラミックス微粉末とが
分離し易くなるため好ましくない。また、セラミックス
微粉末の配合量が27質量%を越えると、不定形耐火物
原料の混練物に振動を加えた際の流動性は向上するが、
混練物の粘性が増加しすぎて施工性が悪化するため好ま
しくない。
The ceramic fine powder is preferably 12 to 27% by mass in the raw material for the amorphous refractory material, and more preferably 1% by mass.
It is contained in an amount of 4 to 27% by mass. If the content of the ceramic fine powder is less than 12% by mass, fluidity and water retention of the kneaded material of the amorphous refractory raw material are not sufficient, which is not preferable. Particularly, in the fine alumina powder, if the blending amount is less than 12% by mass, the spinel-type alumina-nickel oxide compound may not be sufficiently formed. If the amount of kneading water is increased to impart fluidity and water retention to the kneaded product in this state, the refractory aggregate and the ceramic fine powder are easily separated, which is not preferable. If the amount of the ceramic fine powder blended exceeds 27% by mass, the fluidity of the kneaded material of the amorphous refractory raw material when vibration is applied is improved,
It is not preferable because the viscosity of the kneaded material increases too much and the workability deteriorates.

【0024】セラミックス微粉末がアルミナ質微粉末及
びシリカ微粉末の併用系である場合、不定形耐火物原料
におけるアルミナ質微粉末の配合量は好ましくは8〜2
6.5質量%、さらに好ましくは10〜25質量%、シ
リカ微粉末の配合量は好ましくは0.5〜10質量%、
さらに好ましくは1.5〜7質量%の量である。アルミ
ナ質微粉末及びシリカ微粉末の配合量が上記範囲内にあ
ると、流動性、保水性及び粘性のバランスに優れた混練
物が得られる。
When the ceramic fine powder is a combination system of alumina fine powder and silica fine powder, the compounding amount of the fine alumina powder in the amorphous refractory raw material is preferably 8 to 2.
6.5% by mass, more preferably 10 to 25% by mass, the compounding amount of silica fine powder is preferably 0.5 to 10% by mass,
More preferably, the amount is 1.5 to 7% by mass. When the amount of the fine alumina powder and fine silica powder is within the above range, a kneaded product having an excellent balance of fluidity, water retention and viscosity can be obtained.

【0025】本発明において用いられる酸化ニッケル粉
末又はニッケル粉末は、不定形耐火物に耐スラグ浸食性
を付与するために配合される成分である。このうち酸化
ニッケル粉末としては、例えば、触媒、ガラス着色、ほ
うろう、陶磁器釉薬及びフェライト材等に用いられ、ニ
ッケル換算で75質量%以上の粉末が挙げられる。ま
た、ニッケル粉末としては、例えば、水酸化ニッケル、
塩化ニッケル及び炭酸ニッケル等のニッケル化合物や金
属ニッケル等を含む粉末が挙げられ、酸化雰囲気中での
加熱により酸化ニッケルを生成するものであればよい。
ここで、酸化雰囲気中での加熱とは、例えば、混練成形
物の空気中での焼成工程における加熱や、乾燥だき、又
は焼成後の不定形耐火物を炉内で使用する際における加
熱等が挙げられる。
The nickel oxide powder or nickel powder used in the present invention is a component blended to impart slag erosion resistance to the amorphous refractory. Among them, the nickel oxide powder is, for example, used in catalysts, glass coloring, enamels, ceramic glazes, ferrite materials, and the like, and 75 mass% or more of powder in terms of nickel can be mentioned. Further, as the nickel powder, for example, nickel hydroxide,
Powders containing nickel compounds such as nickel chloride and nickel carbonate, and metallic nickel may be used, as long as they generate nickel oxide by heating in an oxidizing atmosphere.
Here, the heating in an oxidizing atmosphere means, for example, heating in a firing process of the kneaded molded product in air, drying, or heating when the amorphous refractory after firing is used in a furnace. Can be mentioned.

【0026】酸化ニッケル粉末又はニッケル粉末は、平
均粒径が0.1〜100μm、好ましくは0.3〜30
μmのものが用いられる。平均粒径が該範囲内にある
と、酸化ニッケル又はニッケル粉末が焼成等の際に酸化
されて生成した酸化ニッケルが、アルミナ質微粉末又は
アルミナ質骨材と反応して効果的にスピネル型アルミナ
−酸化ニッケル化合物を生成し、不定形耐火物の耐スラ
グ浸食性が高くなるため好ましい。
The nickel oxide powder or nickel powder has an average particle size of 0.1 to 100 μm, preferably 0.3 to 30.
The one with μm is used. When the average particle size is within the range, nickel oxide or nickel oxide produced by oxidation of nickel powder during firing or the like reacts with fine alumina powder or fine alumina aggregate to effectively form spinel alumina. -A nickel oxide compound is generated, and slag erosion resistance of amorphous refractory becomes high, which is preferable.

【0027】酸化ニッケル粉末又はニッケル粉末は、N
iO換算の質量が、不定形耐火物原料中に好ましくは
0.7〜18質量%、さらに好ましくは1〜15質量
%、特に好ましくは1.5〜5質量%、さらに特に好ま
しくは1.8〜4.5質量%の量で含まれる。上記配合
量が0.7質量%未満であると、得られる不定形耐火物
の耐スラグ浸食性が十分に向上しないため好ましくな
い。但し、上記配合量が0.7質量%以上1.8質量%
未満であると、配合量が微量で品質の安定性が低下する
おそれがあるため、施工時の品質の安定性を重視する場
合には、上記配合量が1.8質量%以上であることがよ
り好ましい。また、上記配合量が18質量%を越える
と、耐スラグ浸食性の改善作用が一定以上向上しないた
め不経済であると共に、焼成時に成形体が大きく膨張し
施工体に亀裂を生じ易くなるため好ましくない。
The nickel oxide powder or nickel powder is N
The mass in terms of iO is preferably 0.7 to 18% by mass, more preferably 1 to 15% by mass, particularly preferably 1.5 to 5% by mass, and further particularly preferably 1.8 in the amorphous refractory raw material. Contained in an amount of ˜4.5% by weight. If the blending amount is less than 0.7% by mass, the slag erosion resistance of the obtained amorphous refractory product is not sufficiently improved, which is not preferable. However, the blending amount is 0.7% by mass or more and 1.8% by mass.
If the amount is less than the above, the compounding amount may be small and the stability of quality may be deteriorated. Therefore, when importance is attached to the stability of quality during construction, the compounding amount may be 1.8% by mass or more. More preferable. Further, when the content is more than 18% by mass, it is uneconomical because the effect of improving the slag erosion resistance does not improve to a certain extent or more, which is uneconomical, and the molded body largely expands during firing, and cracks are likely to occur in the working body, which is preferable. Absent.

【0028】本発明において用いられる部分安定化ジル
コニア粉末は、不定形耐火物の耐スポーリング性を向上
させるために配合される成分である。なお、その機構
は、耐火材に発生した熱応力によって生じたクラックの
先端付近で準安定正方晶が単斜晶に相転移(マルテンサ
イト変態)し、破壊エネルギーを吸収・分散すると考え
られる。部分安定化ジルコニア粉末としては、ジルコニ
ア粉末にCaOまたはMgOを1〜10%、好ましくは
2〜5%添加する事で、部分的に安定化したジルコニア
であればよい。また、部分安定化ジルコニア粉末は、平
均粒径が1〜45μm、好ましくは5〜20μmのもの
が用いられる。平均粒径が該範囲内にあると、不定形耐
火物のマトリックス中に均一に分散し易いため、破壊エ
ネルギーを吸収し易く、少ない添加量で耐スポーリング
性を向上させる効果があるとともに、混練物の流動性が
良好となり好ましい。
The partially stabilized zirconia powder used in the present invention is a component added to improve the spalling resistance of the amorphous refractory. The mechanism is considered to be that the metastable tetragonal phase transitions to the monoclinic phase (martensite transformation) near the tip of the crack generated by the thermal stress generated in the refractory material, and the fracture energy is absorbed and dispersed. The partially-stabilized zirconia powder may be zirconia partially stabilized by adding 1 to 10%, preferably 2 to 5% of CaO or MgO to the zirconia powder. The partially stabilized zirconia powder has an average particle size of 1 to 45 μm, preferably 5 to 20 μm. When the average particle diameter is within the range, it is easy to uniformly disperse in the matrix of the irregular shaped refractory, so that it is easy to absorb the breaking energy, and the effect of improving the spalling resistance with a small addition amount, and kneading This is preferable because the fluidity of the product is good.

【0029】部分安定化ジルコニア粉末は、不定形耐火
物原料中に好ましくは2〜10質量%、さらに好ましく
は2〜6質量%、特に好ましくは3〜5質量%含まれ
る。配合量が2質量%未満であると、耐スポーリング性
の向上に寄与できない。また、配合量が10質量%を超
えると、焼成後の不定形耐火物の強度低下が著しくな
り、好ましくない。
The partially-stabilized zirconia powder is contained in the raw material for the amorphous refractory preferably in an amount of 2 to 10% by mass, more preferably 2 to 6% by mass, and particularly preferably 3 to 5% by mass. If the blending amount is less than 2% by mass, it cannot contribute to the improvement of spalling resistance. On the other hand, if the blending amount exceeds 10% by mass, the strength of the amorphous refractory after firing will be significantly reduced, which is not preferable.

【0030】本発明において用いられる水硬性結合材と
しては、特に限定されないが、例えば、水硬性アルミ
ナ、アルミナセメント等が挙げられる。このうち水硬性
アルミナは、CaOを含まないため、得られる不定形耐
火物を高温下で繰り返し使用しても耐スラグ浸食性が特
に低下し難くなると共に、アルミナ成分が酸化ニッケル
粉末またはニッケル粉末と反応してスピネル型アルミナ
−酸化ニッケル化合物を生成するため好ましい。水硬性
結合材は、平均粒径が1〜20μm、好ましくは10〜
15μmである。平均粒径が上記範囲内にあると、施工
可能な流動性を混練後30分以上保つことができるため
好ましい。
The hydraulic binder used in the present invention is not particularly limited, but examples thereof include hydraulic alumina and alumina cement. Of these, hydraulic alumina does not contain CaO, so that even if the obtained amorphous refractory is repeatedly used at high temperature, the slag erosion resistance becomes particularly difficult to decrease, and the alumina component becomes nickel oxide powder or nickel powder. It is preferable because it reacts to form a spinel-type alumina-nickel oxide compound. The hydraulic binder has an average particle size of 1 to 20 μm, preferably 10 to
It is 15 μm. When the average particle size is within the above range, it is possible to maintain workable fluidity for 30 minutes or more after kneading, which is preferable.

【0031】水硬性結合材は、不定形耐火物原料中に好
ましくは2〜10質量%、さらに好ましくは2〜5質量
%の量で含まれる。水硬性結合材の配合量が2質量%未
満であると施工時の気温が低い場合に硬化不良を生じる
ことがあるため、また、10質量%を越えると施工時の
気温が高い場合に硬化が早すぎて混練時における流動性
が急激に低下するおそれがあるため好ましくない。
The hydraulic binder is contained in the amorphous refractory raw material in an amount of preferably 2 to 10% by mass, more preferably 2 to 5% by mass. If the compounding amount of the hydraulic binder is less than 2% by mass, curing failure may occur when the working temperature is low, and if it exceeds 10% by mass, the curing may occur when the working temperature is high. It is not preferable because the fluidity at the time of kneading may be sharply reduced too early.

【0032】本発明に係る不定形耐火物原料には、さら
に、有機繊維や分散剤を適宜配合してもよい。有機繊維
としては、例えば、ポリプロピレン、アクリル、レーヨ
ン、ナイロン及びビニロン等が挙げられ、これらを1種
又は2種以上組み合わせて用いることができる。有機繊
維を配合すると、急速加熱時の施工体の爆裂を防止でき
るため好ましい。有機繊維の配合量は、一般的な不定形
耐火物と同様でかまわず、耐火骨材、酸化ニッケル粉末
又はニッケル粉末のNiO換算の重量、セラミックス微
粉末及び水硬性結合材の合計量100質量部に対し、
0.04〜0.1質量部が好ましい。
The amorphous refractory raw material according to the present invention may be further blended with an organic fiber or a dispersant as appropriate. Examples of the organic fiber include polypropylene, acrylic, rayon, nylon, and vinylon, and these can be used alone or in combination of two or more. It is preferable to add an organic fiber, because it is possible to prevent the construction body from exploding during rapid heating. The blending amount of the organic fibers may be the same as that of a general irregular shaped refractory, and the refractory aggregate, the nickel oxide powder or the weight of NiO of nickel powder, the total amount of the ceramic fine powder and the hydraulic binder is 100 parts by mass. As opposed to
0.04 to 0.1 part by mass is preferable.

【0033】分散剤としては、例えば、金属キレート化
合物、アルカリ金属炭酸塩、芳香族スルホン酸ホルマリ
ン縮合塩等が挙げられ、これらを1種又は2種以上組み
合わせて用いることができる。分散剤を配合すると、低
水量での混練物の流動性が向上し、混練が可能となるた
め好ましい。分散剤の配合量は、耐火骨材、酸化ニッケ
ル粉末又はニッケル粉末のNiO換算の質量、セラミッ
クス微粉末及び水硬性結合材の合計量100質量部に対
し、0.05〜0.5質量部である。分散剤の配合量
が、上記範囲内であると、不定形耐火物原料の混練物の
流動性が長く維持されるため好ましい。
Examples of the dispersant include metal chelate compounds, alkali metal carbonates, condensed salts of aromatic sulfonic acid formalin, and the like, and these can be used alone or in combination of two or more. It is preferable to add a dispersant, since the fluidity of the kneaded product with a low amount of water is improved and kneading becomes possible. The blending amount of the dispersant is 0.05 to 0.5 parts by mass with respect to 100 parts by mass of the refractory aggregate, the mass of nickel oxide powder or nickel powder in terms of NiO, the total amount of the ceramic fine powder and the hydraulic binder. is there. It is preferable that the blending amount of the dispersant is within the above range because the fluidity of the kneaded product of the amorphous refractory raw material is maintained for a long time.

【0034】本発明に係る不定形耐火物原料は、上記耐
火骨材、酸化ニッケル粉末又はニッケル粉末、セラミッ
クス微粉末及び水硬性結合材、さらに必要により有機繊
維又は分散剤等を規定量にて配合し、均一に混合して得
られる。これら諸原料は、一回で又は複数回に分けて混
合してもよく、複数回に分けて混合する場合は混合する
順序を問わない。
The amorphous refractory raw material according to the present invention contains the above-mentioned refractory aggregate, nickel oxide powder or nickel powder, ceramics fine powder and hydraulic binder, and if necessary, organic fiber or dispersant in a specified amount. And uniformly mixed to obtain. These raw materials may be mixed once or a plurality of times, and when mixing a plurality of times, the order of mixing does not matter.

【0035】上記本発明に係る不定形耐火物原料は、少
なくともセラミックス微粉末がアルミナ質微粉末を含む
ことが好ましく、さらにセラミックス微粉末がアルミナ
質微粉末を含み且つ耐火骨材がアルミナ質耐火骨材を含
むことがより好ましい。不定形耐火物原料中にアルミナ
質微粉末が含まれていると、アルミナ質微粉末が不定形
耐火物の焼成の際に耐火骨材間の隙間に容易に入り込
み、焼成の際又は溶融炉等を使用する際に、該隙間で酸
化ニッケル粉末またはニッケル粉末と反応して耐スラグ
浸食性に富むスピネル型アルミナ−酸化ニッケル化合物
を生成することができる。したがって、一般的に該隙間
で生じ易いスラグによる浸食を効果的に抑制できる。そ
の結果、得られる耐火物の耐スラグ浸食性がより高くな
る。また、アルミナ質微粉末に加えさらにアルミナ質耐
火骨材が含まれると、アルミナ質耐火骨材が特に粉末材
である場合には、粉末材が粗粒材や微粒材で形成される
空隙においてスピネル型アルミナ−酸化ニッケル化合物
を生成するため、耐スラグ浸食性がより高くなり好まし
い。
In the amorphous refractory raw material according to the present invention, at least the ceramic fine powder preferably contains the alumina fine powder, and the ceramic fine powder contains the alumina fine powder and the refractory aggregate is the alumina refractory bone. It is more preferable to include a material. If the amorphous refractory raw material contains fine alumina powder, the fine alumina powder easily enters the gaps between the refractory aggregates when firing the amorphous refractory, and during firing or in a melting furnace, etc. When using, the spinel type alumina-nickel oxide compound having a high slag erosion resistance can be produced by reacting with the nickel oxide powder or the nickel powder in the gap. Therefore, it is possible to effectively suppress the erosion due to the slag that generally tends to occur in the gap. As a result, the slag erosion resistance of the obtained refractory material becomes higher. Further, when the alumina-based refractory aggregate is further included in addition to the alumina-based fine powder, when the alumina-based refractory aggregate is a powder material, the spinel is formed in the void formed by the coarse-grained material or the fine-grained material. Since a type alumina-nickel oxide compound is generated, the slag erosion resistance becomes higher, which is preferable.

【0036】また、本発明は不定形耐火物を提供する
が、本発明の不定形耐火物は上記の不定形耐火物原料に
水を加えて混練物とし、該混練物を成形した混練成形物
を空気中で焼成することにより得られる。加える水量や
焼成条件は、不定形耐火物原料の組成に応じて適宜選択
される。
The present invention also provides an amorphous refractory material. The amorphous refractory material of the present invention is a kneaded product obtained by adding water to the above-mentioned amorphous refractory raw material to prepare a kneaded product, and molding the kneaded product. Is obtained by firing in air. The amount of water to be added and the firing conditions are appropriately selected according to the composition of the amorphous refractory raw material.

【0037】得られる不定形耐火物は、上記において詳
述したように、スピネル型アルミナ−酸化ニッケル化合
物を含み、耐スラグ性に優れたものとなる。また、部分
安定化ジルコニアの存在により、耐スポーリング性にも
優れたものとなる。
As described in detail above, the amorphous refractory obtained contains a spinel type alumina-nickel oxide compound and has excellent slag resistance. Further, due to the presence of the partially stabilized zirconia, the spalling resistance becomes excellent.

【0038】[0038]

【実施例】以下に実施例及び比較例を挙げて本発明を更
に説明するが、本発明はこれにより何ら制限されるもの
ではない。
EXAMPLES The present invention will be further described below with reference to Examples and Comparative Examples, but the present invention is not limited thereto.

【0039】(実施例1〜2、比較例1)粒径が1mm
を越えて7mm以下であるアルミナ質耐火骨材の粗粒材
34.0重量部、粒径が0.15mmを越えて1mm以
下であるアルミナ質耐火骨材の微粒材30.0重量部、
粒径が50μmを越えて0.15mm以下であるアルミ
ナ質耐火骨材の粉末材11.5重量部、平均粒径2μm
のアルミナ微粉末11.0重量部、平均粒径0.6μm
のシリカ微粉末0.5重量部、平均粒径1μmの酸化ニ
ッケル粉末4重量部、平均粒径10μmの水硬性アルミ
ナ粉末3.5重量部、分散剤0.1重量部及び有機繊維
0.04重量部を共通して含み、これにCaO部分安定
化ジルコニア粉末5.0重量部(実施例1)、MgO部
分安定化ジルコニア粉末5.0重量部(実施例2)また
は単斜晶ジルコニア粉末5.0重量部(比較例1)を添
加した混合物に、水5重量部を加えてミキサーで6分間
混練した。
(Examples 1 and 2, Comparative Example 1) Particle size is 1 mm
34.0 parts by weight of coarse particles of alumina refractory aggregate having a diameter of more than 7 mm and less than 3 mm, 30.0 parts by weight of fine particles of alumina refractory aggregate having a particle diameter of more than 0.15 mm and less than 1 mm,
11.5 parts by weight of a powder material of alumina refractory aggregate having a particle size of more than 50 μm and 0.15 mm or less, average particle size 2 μm
Fine powder of alumina of 11.0 parts by weight, average particle size of 0.6 μm
0.5 parts by weight of silica fine powder, 4 parts by weight of nickel oxide powder having an average particle size of 1 μm, 3.5 parts by weight of hydraulic alumina powder having an average particle size of 10 μm, 0.1 part by weight of a dispersant, and 0.04 of an organic fiber. 5 parts by weight of CaO partially stabilized zirconia powder (Example 1), 5.0 parts by weight of MgO partially stabilized zirconia powder (Example 2) or monoclinic zirconia powder 5 5 parts by weight of water was added to the mixture containing 0.0 parts by weight (Comparative Example 1), and the mixture was kneaded with a mixer for 6 minutes.

【0040】得られた混練物を鋳込んで下記に示す各試
験用の形状に成形し、20℃、湿度80%にて24時間
養生した後、110℃で24時間乾燥し、さらに140
0℃で5時間焼成して不定形耐火物からなる試験片を得
た。得られた試験片について、耐スポーリング性(曲げ
強さ)及び耐スラグ浸食性を評価した。各結果を表1に
併記した。
The kneaded product thus obtained was cast into a shape for each test shown below, aged at 20 ° C. and 80% humidity for 24 hours, then dried at 110 ° C. for 24 hours, and further 140
It was fired at 0 ° C. for 5 hours to obtain a test piece composed of an amorphous refractory material. The test pieces obtained were evaluated for spalling resistance (flexural strength) and slag erosion resistance. The results are also shown in Table 1.

【0041】(耐スポーリング性)40mm×40mm
×160mmの試験片を、1300℃で30分間の加熱
と30分間の空冷とを1サイクルとし、これを2サイク
ル繰り返した後、曲げ強度を測定した。そして、この熱
サイクルを施す前の曲げ強度と比較し、強度の低下率を
求めた。
(Spalling resistance) 40 mm × 40 mm
A test piece having a size of 160 mm was heated at 1300 ° C. for 30 minutes and air cooled for 30 minutes as one cycle, and this cycle was repeated for two cycles, and then the bending strength was measured. Then, the rate of decrease in strength was determined by comparing with the bending strength before the heat cycle.

【0042】(耐スラグ浸食性)耐スラグ浸食性を評価
するために、下記に示す(1)坩堝浸食試験及び(2)
回転浸食試験を行った。
(Slag erosion resistance) In order to evaluate the slag erosion resistance, the following (1) crucible erosion test and (2) are shown.
A rotary erosion test was performed.

【0043】(1)坩堝浸食試験 図1に示すように、一辺が70mmの立方体で、上面に
直径30mmで深さ35mmの円筒状の空所11が開口
した試験片10に溶融スラグ20を注入し、全体を15
00℃で5時間加熱した。そして、冷却後、試験片10
を空所11の直径に沿って2つに切断し、残存スラグ高
さ(H)、浸食部30の幅(W)及び深さ(D)を測定
した。
(1) Crucible erosion test As shown in FIG. 1, a molten slag 20 is poured into a test piece 10 which is a cube having a side of 70 mm and a cylindrical space 11 having a diameter of 30 mm and a depth of 35 mm opened on the upper surface. And the whole is 15
Heated at 00 ° C. for 5 hours. Then, after cooling, the test piece 10
Was cut into two along the diameter of the void 11 and the residual slag height (H), the width (W) and the depth (D) of the eroded portion 30 were measured.

【0044】(2)回転浸食試験 図2及び図3に示すように、断面台形状の試験片(台形
面の上底55mm、台形面の下底130mm、台形面の
高さ65mm、台形柱の高さ114mm)40の6個を
傾斜面41同士を接合させ、上底側の矩形面42の6面
で六角柱状の空所43Dを形成するように組み合わせて
固定し、外観が六角柱状の試験体45を構成した。そし
て、試験体45を横に倒した状態で回転装置の円筒状回
転部(高さ195mm、直径400mm)50に装着
し、空所43に溶融スラグ20を保持し、バーナー60
の火炎(LPG:O2=1:6)を吹き付けた状態で、
1500℃にて8時間、6rpmの回転速度で連続回転
させた。8時間経過後、試験体45を個々の試験片40
にバラし、図2に示すように上底側矩形面42の長手方
向の中心線abから下底側矩形面の長手方向の中心線c
dに沿って切断した。そして、図4に示すように、切断
面abcdにおけるスラグによる浸食部Aの平均深さ及
び面積を測定し、下記式により浸食率を算出した。浸食
率(%)=(浸食部Aの面積/試験前における断面の全
面積)×100
(2) Rotational erosion test As shown in FIGS. 2 and 3, a test piece having a trapezoidal cross section (upper base 55 mm of trapezoidal surface, lower bottom 130 mm of trapezoidal surface, trapezoidal surface height 65 mm, trapezoidal pillar The height of 114 mm) 40 pieces were joined together with the inclined surfaces 41, and fixed by combining them so as to form a hexagonal column-shaped space 43D on the six sides of the upper bottom rectangular surface 42. The body 45 was constructed. Then, the test body 45 is laid down sideways and mounted on the cylindrical rotating part (height 195 mm, diameter 400 mm) 50 of the rotating device, the molten slag 20 is held in the space 43, and the burner 60 is installed.
With the flame (LPG: O 2 = 1: 6) of
It was continuously rotated at a rotation speed of 6 rpm at 1500 ° C. for 8 hours. After the lapse of 8 hours, the test piece 45 is attached to the individual test piece 40.
2, from the center line ab in the longitudinal direction of the upper bottom side rectangular surface 42 to the center line c in the longitudinal direction of the lower bottom side rectangular surface.
Cut along d. Then, as shown in FIG. 4, the average depth and area of the eroded portion A due to slag on the cut surface abcd were measured, and the erosion rate was calculated by the following formula. Erosion rate (%) = (area of erosion part A / total area of cross section before test) × 100

【0045】尚、(1)坩堝浸食試験及び(2)回転浸
食試験に用いた溶融スラグ20の化学組成(株式会社理
学製蛍光X線分析装置による)は、表2に示す通りであ
る。
The chemical composition of the molten slag 20 used in the (1) crucible erosion test and (2) rotary erosion test (by a fluorescent X-ray analyzer manufactured by Rigaku Co., Ltd.) is as shown in Table 2.

【0046】[0046]

【表1】 [Table 1]

【0047】[0047]

【表2】 [Table 2]

【0048】表1から明らかなように、本発明に従う実
施例1及び実施例2の試験片は、部分安定化ジルコニア
粉末を用いない比較例1の試験片に比べて、耐スポーリ
ング性が大幅に向上しており、更に耐スラグ浸食性も向
上している。
As is apparent from Table 1, the test pieces of Examples 1 and 2 according to the present invention have a significantly higher spalling resistance than the test piece of Comparative Example 1 in which the partially stabilized zirconia powder is not used. And the slag erosion resistance is also improved.

【0049】[0049]

【発明の効果】以上説明したように、本発明によれば、
耐スラグ浸食性及び耐スポーリング性に優れた不定形耐
火物が得られる。
As described above, according to the present invention,
An amorphous refractory having excellent slag erosion resistance and spalling resistance can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】坩堝浸食試験に用いた試験片を示す上面図
(A)及び断面図(B)である。
FIG. 1 is a top view (A) and a sectional view (B) showing a test piece used in a crucible erosion test.

【図2】回転浸食試験に用いた試験片を示す斜視図であ
る。
FIG. 2 is a perspective view showing a test piece used in a rotary erosion test.

【図3】回転浸食試験に用いた回転装置の構造を示す模
式図である。
FIG. 3 is a schematic diagram showing a structure of a rotating device used in a rotary erosion test.

【図4】回転浸食試験において、浸食率を説明するため
の図である。
FIG. 4 is a diagram for explaining an erosion rate in a rotary erosion test.

【符号の説明】[Explanation of symbols]

10 試験片 20 溶融スラグ 30 浸食部 40 試験片 43 空所 50 回転部 60 バーナー 10 test pieces 20 Molten slag 30 Erosion part 40 test pieces 43 vacant place 50 rotating parts 60 burners

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G033 AA01 AA02 AA06 AA07 AA24 AB02 AB09 BA01 4K051 AA01 AA02 AA03 AA05 AA06 BE03    ─────────────────────────────────────────────────── ─── Continued front page    F term (reference) 4G033 AA01 AA02 AA06 AA07 AA24                       AB02 AB09 BA01                 4K051 AA01 AA02 AA03 AA05 AA06                       BE03

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 耐火骨材と、酸化ニッケル粉末又はニッ
ケル粉末と、部分安定化ジルコニア粉末と、水硬性結合
材とを含むことを特徴とする不定形耐火物原料。
1. An amorphous refractory raw material comprising a refractory aggregate, nickel oxide powder or nickel powder, partially stabilized zirconia powder, and a hydraulic binder.
【請求項2】 請求項1に記載の不定形耐火物原料にお
いて、セラミックス微粉末がさらに含まれることを特徴
とする不定形耐火物原料。
2. The amorphous refractory raw material according to claim 1, further comprising ceramic fine powder.
【請求項3】 請求項1または2に記載の不定形耐火物
原料において、前記酸化ニッケル粉末又はニッケル粉末
をNiO換算で0.7〜18重量%、前記部分安定化ジ
ルコニア粉末を2〜10重量%含むことを特徴とする不
定形耐火物原料。
3. The amorphous refractory raw material according to claim 1, wherein the nickel oxide powder or the nickel powder is 0.7 to 18% by weight in terms of NiO, and the partially stabilized zirconia powder is 2 to 10% by weight. % Refractory raw material characterized by containing%.
【請求項4】 請求項1〜3いずれかに記載の不定形耐
火物において、前記酸化ニッケル粉末又はニッケル粉末
の平均粒径は0.1〜100μm、前記部分安定化ジル
コニア粉末の平均粒径は1〜45μmであることを特徴
とする不定形耐火物原料。
4. The amorphous refractory material according to claim 1, wherein the nickel oxide powder or nickel powder has an average particle diameter of 0.1 to 100 μm, and the partially stabilized zirconia powder has an average particle diameter of 0.1 to 100 μm. An amorphous refractory raw material characterized by being 1 to 45 μm.
【請求項5】 請求項1〜4いずれかに記載の不定形耐
火物において、前記耐火骨材がアルミナ質耐火骨材を含
み、且つ前記セラミックス微粉末がアルミナ質微粉末を
含むことを特徴とする不定形耐火物原料。
5. The amorphous refractory material according to any one of claims 1 to 4, wherein the refractory aggregate includes an alumina refractory aggregate, and the ceramic fine powder includes an alumina fine powder. Amorphous refractory raw material.
【請求項6】 請求項1〜5いずれかに記載の不定形耐
火物において、前記部分安定化ジルコニア粉末には、酸
化マグネシウムまたは酸化カルシウムが含有されている
ことを特徴とする不定形耐火物原料。
6. The amorphous refractory material according to any one of claims 1 to 5, wherein the partially stabilized zirconia powder contains magnesium oxide or calcium oxide. .
【請求項7】 請求項1〜6のいずれかに記載の不定形
耐火物原料に水を加え混練物とし、成形した該混練物を
焼成して得られることを特徴とする不定形耐火物。
7. An amorphous refractory product, which is obtained by adding water to the amorphous refractory raw material according to any one of claims 1 to 6 to prepare a kneaded product, and firing the formed kneaded product.
【請求項8】 請求項7に記載の不定形耐火物におい
て、スピネル型アルミナ−酸化ニッケル化合物を含むこ
とを特徴とする不定形耐火物。
8. The amorphous refractory according to claim 7, wherein the amorphous refractory contains a spinel-type alumina-nickel oxide compound.
JP2001381623A 2001-12-14 2001-12-14 Amorphous refractory material and amorphous refractory Pending JP2003183082A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001381623A JP2003183082A (en) 2001-12-14 2001-12-14 Amorphous refractory material and amorphous refractory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001381623A JP2003183082A (en) 2001-12-14 2001-12-14 Amorphous refractory material and amorphous refractory

Publications (1)

Publication Number Publication Date
JP2003183082A true JP2003183082A (en) 2003-07-03

Family

ID=27592242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001381623A Pending JP2003183082A (en) 2001-12-14 2001-12-14 Amorphous refractory material and amorphous refractory

Country Status (1)

Country Link
JP (1) JP2003183082A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150016697A (en) * 2013-08-05 2015-02-13 삼성전기주식회사 Refractory for manufacturing nickel powder, manufacturing method of the same and manufacturing method of nickel powder
CN116462502A (en) * 2022-10-04 2023-07-21 汶川县神州锆业科技有限公司 High-temperature-resistant and electric corrosion-resistant method for special equipment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150016697A (en) * 2013-08-05 2015-02-13 삼성전기주식회사 Refractory for manufacturing nickel powder, manufacturing method of the same and manufacturing method of nickel powder
KR102052754B1 (en) * 2013-08-05 2019-12-09 삼성전기주식회사 Refractory for manufacturing nickel powder, manufacturing method of the same and manufacturing method of nickel powder
CN116462502A (en) * 2022-10-04 2023-07-21 汶川县神州锆业科技有限公司 High-temperature-resistant and electric corrosion-resistant method for special equipment

Similar Documents

Publication Publication Date Title
US8309483B2 (en) Binder for monolithic refractories and monolithic refractory
JP2002193681A (en) Castable refractory and waste melting furnace utilizing it
JP2004026561A (en) Rare earth metal-containing monolithic refractory, applied body and kiln lined with them
JPH08198649A (en) Calcium aluminate, cement composition and prepared unshaped refractory containing the same
JP5031239B2 (en) Alumina cement, alumina cement composition and amorphous refractory
JP2003183082A (en) Amorphous refractory material and amorphous refractory
JP2002241173A (en) Shaped refractory
JP2000203953A (en) Castable refractory for trough of blast furnace
BRPI0822533B1 (en) BINDING FOR MONOLYTIC REFRACTORS
RU2140407C1 (en) Refractory concrete mix
JP2000178074A (en) Castable refractory for blast furnace tapping spout
JPH09142916A (en) Spinel-containing refractory
JP2007001827A (en) Alumina-chromia based monolithic refractory
JP6535528B2 (en) Alumina-silicon carbide-carbon based monolithic refractories
JP4538779B2 (en) Magnesia-alumina clinker and refractory obtained using the same
JP3741595B2 (en) Unshaped refractory raw material and unshaped refractory
JP3604301B2 (en) Refractory raw materials, kneaded raw materials and refractories
JP2005067930A (en) Alumina cement, alumina cement composition, and monolithic refractory using it
JP4269148B2 (en) Basic refractory
JP3958812B2 (en) Basic brick for cement kiln
JP2004123501A (en) Refractory brick
JPH06321608A (en) Cement composition and monolithic refractories incorporating the same
JP2001182921A (en) A castable refractory for constructing waste fusing furnace with casting process and waste fusing furnace using the same
TW202413307A (en) Magnesia-alumina based castable and refractory brick
JP3875054B2 (en) Refractory composition for ash melting furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040706

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041001

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070307

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080402